diff options
Diffstat (limited to 'gcc/testsuite/go.test/test/bench/meteor-contest.go')
-rw-r--r-- | gcc/testsuite/go.test/test/bench/meteor-contest.go | 665 |
1 files changed, 665 insertions, 0 deletions
diff --git a/gcc/testsuite/go.test/test/bench/meteor-contest.go b/gcc/testsuite/go.test/test/bench/meteor-contest.go new file mode 100644 index 000000000..6660810eb --- /dev/null +++ b/gcc/testsuite/go.test/test/bench/meteor-contest.go @@ -0,0 +1,665 @@ +/* +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + * Neither the name of "The Computer Language Benchmarks Game" nor the + name of "The Computer Language Shootout Benchmarks" nor the names of + its contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +*/ + +/* The Computer Language Benchmarks Game + * http://shootout.alioth.debian.org/ + * + * contributed by The Go Authors. + * based on meteor-contest.c by Christian Vosteen + */ + +package main + +import ( + "flag" + "fmt" +) + +var max_solutions = flag.Int("n", 2100, "maximum number of solutions") + + +func boolInt(b bool) int8 { + if b { + return 1 + } + return 0 +} + +/* The board is a 50 cell hexagonal pattern. For . . . . . + * maximum speed the board will be implemented as . . . . . + * 50 bits, which will fit into a 64 bit long long . . . . . + * int. . . . . . + * . . . . . + * I will represent 0's as empty cells and 1's . . . . . + * as full cells. . . . . . + * . . . . . + * . . . . . + * . . . . . + */ + +var board uint64 = 0xFFFC000000000000 + +/* The puzzle pieces must be specified by the path followed + * from one end to the other along 12 hexagonal directions. + * + * Piece 0 Piece 1 Piece 2 Piece 3 Piece 4 + * + * O O O O O O O O O O O O O O O + * O O O O O O O + * O O O + * + * Piece 5 Piece 6 Piece 7 Piece 8 Piece 9 + * + * O O O O O O O O O O O O O + * O O O O O O O O O + * O O O + * + * I had to make it 12 directions because I wanted all of the + * piece definitions to fit into the same size arrays. It is + * not possible to define piece 4 in terms of the 6 cardinal + * directions in 4 moves. + */ + +const ( + E = iota + ESE + SE + S + SW + WSW + W + WNW + NW + N + NE + ENE + PIVOT +) + +var piece_def = [10][4]int8{ + [4]int8{E, E, E, SE}, + [4]int8{SE, E, NE, E}, + [4]int8{E, E, SE, SW}, + [4]int8{E, E, SW, SE}, + [4]int8{SE, E, NE, S}, + [4]int8{E, E, SW, E}, + [4]int8{E, SE, SE, NE}, + [4]int8{E, SE, SE, W}, + [4]int8{E, SE, E, E}, + [4]int8{E, E, E, SW}, +} + + +/* To minimize the amount of work done in the recursive solve function below, + * I'm going to allocate enough space for all legal rotations of each piece + * at each position on the board. That's 10 pieces x 50 board positions x + * 12 rotations. However, not all 12 rotations will fit on every cell, so + * I'll have to keep count of the actual number that do. + * The pieces are going to be unsigned long long ints just like the board so + * they can be bitwise-anded with the board to determine if they fit. + * I'm also going to record the next possible open cell for each piece and + * location to reduce the burden on the solve function. + */ +var ( + pieces [10][50][12]uint64 + piece_counts [10][50]int + next_cell [10][50][12]int8 +) + +/* Returns the direction rotated 60 degrees clockwise */ +func rotate(dir int8) int8 { return (dir + 2) % PIVOT } + +/* Returns the direction flipped on the horizontal axis */ +func flip(dir int8) int8 { return (PIVOT - dir) % PIVOT } + + +/* Returns the new cell index from the specified cell in the + * specified direction. The index is only valid if the + * starting cell and direction have been checked by the + * out_of_bounds function first. + */ +func shift(cell, dir int8) int8 { + switch dir { + case E: + return cell + 1 + case ESE: + if ((cell / 5) % 2) != 0 { + return cell + 7 + } else { + return cell + 6 + } + case SE: + if ((cell / 5) % 2) != 0 { + return cell + 6 + } else { + return cell + 5 + } + case S: + return cell + 10 + case SW: + if ((cell / 5) % 2) != 0 { + return cell + 5 + } else { + return cell + 4 + } + case WSW: + if ((cell / 5) % 2) != 0 { + return cell + 4 + } else { + return cell + 3 + } + case W: + return cell - 1 + case WNW: + if ((cell / 5) % 2) != 0 { + return cell - 6 + } else { + return cell - 7 + } + case NW: + if ((cell / 5) % 2) != 0 { + return cell - 5 + } else { + return cell - 6 + } + case N: + return cell - 10 + case NE: + if ((cell / 5) % 2) != 0 { + return cell - 4 + } else { + return cell - 5 + } + case ENE: + if ((cell / 5) % 2) != 0 { + return cell - 3 + } else { + return cell - 4 + } + } + return cell +} + +/* Returns wether the specified cell and direction will land outside + * of the board. Used to determine if a piece is at a legal board + * location or not. + */ +func out_of_bounds(cell, dir int8) bool { + switch dir { + case E: + return cell%5 == 4 + case ESE: + i := cell % 10 + return i == 4 || i == 8 || i == 9 || cell >= 45 + case SE: + return cell%10 == 9 || cell >= 45 + case S: + return cell >= 40 + case SW: + return cell%10 == 0 || cell >= 45 + case WSW: + i := cell % 10 + return i == 0 || i == 1 || i == 5 || cell >= 45 + case W: + return cell%5 == 0 + case WNW: + i := cell % 10 + return i == 0 || i == 1 || i == 5 || cell < 5 + case NW: + return cell%10 == 0 || cell < 5 + case N: + return cell < 10 + case NE: + return cell%10 == 9 || cell < 5 + case ENE: + i := cell % 10 + return i == 4 || i == 8 || i == 9 || cell < 5 + } + return false +} + +/* Rotate a piece 60 degrees clockwise */ +func rotate_piece(piece int) { + for i := 0; i < 4; i++ { + piece_def[piece][i] = rotate(piece_def[piece][i]) + } +} + +/* Flip a piece along the horizontal axis */ +func flip_piece(piece int) { + for i := 0; i < 4; i++ { + piece_def[piece][i] = flip(piece_def[piece][i]) + } +} + +/* Convenience function to quickly calculate all of the indices for a piece */ +func calc_cell_indices(cell []int8, piece int, index int8) { + cell[0] = index + for i := 1; i < 5; i++ { + cell[i] = shift(cell[i-1], piece_def[piece][i-1]) + } +} + +/* Convenience function to quickly calculate if a piece fits on the board */ +func cells_fit_on_board(cell []int8, piece int) bool { + return !out_of_bounds(cell[0], piece_def[piece][0]) && + !out_of_bounds(cell[1], piece_def[piece][1]) && + !out_of_bounds(cell[2], piece_def[piece][2]) && + !out_of_bounds(cell[3], piece_def[piece][3]) +} + +/* Returns the lowest index of the cells of a piece. + * I use the lowest index that a piece occupies as the index for looking up + * the piece in the solve function. + */ +func minimum_of_cells(cell []int8) int8 { + minimum := cell[0] + for i := 1; i < 5; i++ { + if cell[i] < minimum { + minimum = cell[i] + } + } + return minimum +} + +/* Calculate the lowest possible open cell if the piece is placed on the board. + * Used to later reduce the amount of time searching for open cells in the + * solve function. + */ +func first_empty_cell(cell []int8, minimum int8) int8 { + first_empty := minimum + for first_empty == cell[0] || first_empty == cell[1] || + first_empty == cell[2] || first_empty == cell[3] || + first_empty == cell[4] { + first_empty++ + } + return first_empty +} + +/* Generate the unsigned long long int that will later be anded with the + * board to determine if it fits. + */ +func bitmask_from_cells(cell []int8) uint64 { + var piece_mask uint64 + for i := 0; i < 5; i++ { + piece_mask |= 1 << uint(cell[i]) + } + return piece_mask +} + +/* Record the piece and other important information in arrays that will + * later be used by the solve function. + */ +func record_piece(piece int, minimum int8, first_empty int8, piece_mask uint64) { + pieces[piece][minimum][piece_counts[piece][minimum]] = piece_mask + next_cell[piece][minimum][piece_counts[piece][minimum]] = first_empty + piece_counts[piece][minimum]++ +} + + +/* Fill the entire board going cell by cell. If any cells are "trapped" + * they will be left alone. + */ +func fill_contiguous_space(board []int8, index int8) { + if board[index] == 1 { + return + } + board[index] = 1 + if !out_of_bounds(index, E) { + fill_contiguous_space(board, shift(index, E)) + } + if !out_of_bounds(index, SE) { + fill_contiguous_space(board, shift(index, SE)) + } + if !out_of_bounds(index, SW) { + fill_contiguous_space(board, shift(index, SW)) + } + if !out_of_bounds(index, W) { + fill_contiguous_space(board, shift(index, W)) + } + if !out_of_bounds(index, NW) { + fill_contiguous_space(board, shift(index, NW)) + } + if !out_of_bounds(index, NE) { + fill_contiguous_space(board, shift(index, NE)) + } +} + + +/* To thin the number of pieces, I calculate if any of them trap any empty + * cells at the edges. There are only a handful of exceptions where the + * the board can be solved with the trapped cells. For example: piece 8 can + * trap 5 cells in the corner, but piece 3 can fit in those cells, or piece 0 + * can split the board in half where both halves are viable. + */ +func has_island(cell []int8, piece int) bool { + temp_board := make([]int8, 50) + var i int + for i = 0; i < 5; i++ { + temp_board[cell[i]] = 1 + } + i = 49 + for temp_board[i] == 1 { + i-- + } + fill_contiguous_space(temp_board, int8(i)) + c := 0 + for i = 0; i < 50; i++ { + if temp_board[i] == 0 { + c++ + } + } + if c == 0 || (c == 5 && piece == 8) || (c == 40 && piece == 8) || + (c%5 == 0 && piece == 0) { + return false + } + return true +} + + +/* Calculate all six rotations of the specified piece at the specified index. + * We calculate only half of piece 3's rotations. This is because any solution + * found has an identical solution rotated 180 degrees. Thus we can reduce the + * number of attempted pieces in the solve algorithm by not including the 180- + * degree-rotated pieces of ONE of the pieces. I chose piece 3 because it gave + * me the best time ;) + */ +func calc_six_rotations(piece, index int) { + cell := make([]int8, 5) + for rotation := 0; rotation < 6; rotation++ { + if piece != 3 || rotation < 3 { + calc_cell_indices(cell, piece, int8(index)) + if cells_fit_on_board(cell, piece) && !has_island(cell, piece) { + minimum := minimum_of_cells(cell) + first_empty := first_empty_cell(cell, minimum) + piece_mask := bitmask_from_cells(cell) + record_piece(piece, minimum, first_empty, piece_mask) + } + } + rotate_piece(piece) + } +} + +/* Calculate every legal rotation for each piece at each board location. */ +func calc_pieces() { + for piece := 0; piece < 10; piece++ { + for index := 0; index < 50; index++ { + calc_six_rotations(piece, index) + flip_piece(piece) + calc_six_rotations(piece, index) + } + } +} + + +/* Calculate all 32 possible states for a 5-bit row and all rows that will + * create islands that follow any of the 32 possible rows. These pre- + * calculated 5-bit rows will be used to find islands in a partially solved + * board in the solve function. + */ +const ( + ROW_MASK = 0x1F + TRIPLE_MASK = 0x7FFF +) + +var ( + all_rows = [32]int8{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, + 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + } + bad_even_rows [32][32]int8 + bad_odd_rows [32][32]int8 + bad_even_triple [32768]int8 + bad_odd_triple [32768]int8 +) + +func rows_bad(row1, row2 int8, even bool) int8 { + /* even is referring to row1 */ + var row2_shift int8 + /* Test for blockages at same index and shifted index */ + if even { + row2_shift = ((row2 << 1) & ROW_MASK) | 0x01 + } else { + row2_shift = (row2 >> 1) | 0x10 + } + block := ((row1 ^ row2) & row2) & ((row1 ^ row2_shift) & row2_shift) + /* Test for groups of 0's */ + in_zeroes := false + group_okay := false + for i := uint8(0); i < 5; i++ { + if row1&(1<<i) != 0 { + if in_zeroes { + if !group_okay { + return 1 + } + in_zeroes = false + group_okay = false + } + } else { + if !in_zeroes { + in_zeroes = true + } + if (block & (1 << i)) == 0 { + group_okay = true + } + } + } + if in_zeroes { + return boolInt(!group_okay) + } + return 0 +} + +/* Check for cases where three rows checked sequentially cause a false + * positive. One scenario is when 5 cells may be surrounded where piece 5 + * or 7 can fit. The other scenario is when piece 2 creates a hook shape. + */ +func triple_is_okay(row1, row2, row3 int, even bool) bool { + if even { + /* There are four cases: + * row1: 00011 00001 11001 10101 + * row2: 01011 00101 10001 10001 + * row3: 011?? 00110 ????? ????? + */ + return ((row1 == 0x03) && (row2 == 0x0B) && ((row3 & 0x1C) == 0x0C)) || + ((row1 == 0x01) && (row2 == 0x05) && (row3 == 0x06)) || + ((row1 == 0x19) && (row2 == 0x11)) || + ((row1 == 0x15) && (row2 == 0x11)) + } + /* There are two cases: + * row1: 10011 10101 + * row2: 10001 10001 + * row3: ????? ????? + */ + return ((row1 == 0x13) && (row2 == 0x11)) || + ((row1 == 0x15) && (row2 == 0x11)) +} + +func calc_rows() { + for row1 := int8(0); row1 < 32; row1++ { + for row2 := int8(0); row2 < 32; row2++ { + bad_even_rows[row1][row2] = rows_bad(row1, row2, true) + bad_odd_rows[row1][row2] = rows_bad(row1, row2, false) + } + } + for row1 := 0; row1 < 32; row1++ { + for row2 := 0; row2 < 32; row2++ { + for row3 := 0; row3 < 32; row3++ { + result1 := bad_even_rows[row1][row2] + result2 := bad_odd_rows[row2][row3] + if result1 == 0 && result2 != 0 && triple_is_okay(row1, row2, row3, true) { + bad_even_triple[row1+(row2*32)+(row3*1024)] = 0 + } else { + bad_even_triple[row1+(row2*32)+(row3*1024)] = boolInt(result1 != 0 || result2 != 0) + } + + result1 = bad_odd_rows[row1][row2] + result2 = bad_even_rows[row2][row3] + if result1 == 0 && result2 != 0 && triple_is_okay(row1, row2, row3, false) { + bad_odd_triple[row1+(row2*32)+(row3*1024)] = 0 + } else { + bad_odd_triple[row1+(row2*32)+(row3*1024)] = boolInt(result1 != 0 || result2 != 0) + } + } + } + } +} + + +/* Calculate islands while solving the board. + */ +func boardHasIslands(cell int8) int8 { + /* Too low on board, don't bother checking */ + if cell >= 40 { + return 0 + } + current_triple := (board >> uint((cell/5)*5)) & TRIPLE_MASK + if (cell/5)%2 != 0 { + return bad_odd_triple[current_triple] + } + return bad_even_triple[current_triple] +} + + +/* The recursive solve algorithm. Try to place each permutation in the upper- + * leftmost empty cell. Mark off available pieces as it goes along. + * Because the board is a bit mask, the piece number and bit mask must be saved + * at each successful piece placement. This data is used to create a 50 char + * array if a solution is found. + */ +var ( + avail uint16 = 0x03FF + sol_nums [10]int8 + sol_masks [10]uint64 + solutions [2100][50]int8 + solution_count = 0 +) + +func record_solution() { + for sol_no := 0; sol_no < 10; sol_no++ { + sol_mask := sol_masks[sol_no] + for index := 0; index < 50; index++ { + if sol_mask&1 == 1 { + solutions[solution_count][index] = sol_nums[sol_no] + /* Board rotated 180 degrees is a solution too! */ + solutions[solution_count+1][49-index] = sol_nums[sol_no] + } + sol_mask = sol_mask >> 1 + } + } + solution_count += 2 +} + +func solve(depth, cell int8) { + if solution_count >= *max_solutions { + return + } + + for board&(1<<uint(cell)) != 0 { + cell++ + } + + for piece := int8(0); piece < 10; piece++ { + var piece_no_mask uint16 = 1 << uint(piece) + if avail&piece_no_mask == 0 { + continue + } + avail ^= piece_no_mask + max_rots := piece_counts[piece][cell] + piece_mask := pieces[piece][cell] + for rotation := 0; rotation < max_rots; rotation++ { + if board&piece_mask[rotation] == 0 { + sol_nums[depth] = piece + sol_masks[depth] = piece_mask[rotation] + if depth == 9 { + /* Solution found!!!!!11!!ONE! */ + record_solution() + avail ^= piece_no_mask + return + } + board |= piece_mask[rotation] + if boardHasIslands(next_cell[piece][cell][rotation]) == 0 { + solve(depth+1, next_cell[piece][cell][rotation]) + } + board ^= piece_mask[rotation] + } + } + avail ^= piece_no_mask + } +} + +/* pretty print a board in the specified hexagonal format */ +func pretty(b *[50]int8) { + for i := 0; i < 50; i += 10 { + fmt.Printf("%c %c %c %c %c \n %c %c %c %c %c \n", b[i]+'0', b[i+1]+'0', + b[i+2]+'0', b[i+3]+'0', b[i+4]+'0', b[i+5]+'0', b[i+6]+'0', + b[i+7]+'0', b[i+8]+'0', b[i+9]+'0') + } + fmt.Printf("\n") +} + +/* Find smallest and largest solutions */ +func smallest_largest() (smallest, largest *[50]int8) { + smallest = &solutions[0] + largest = &solutions[0] + for i := 1; i < solution_count; i++ { + candidate := &solutions[i] + for j, s := range *smallest { + c := candidate[j] + if c == s { + continue + } + if c < s { + smallest = candidate + } + break + } + for j, s := range *largest { + c := candidate[j] + if c == s { + continue + } + if c > s { + largest = candidate + } + break + } + } + return +} + +func main() { + flag.Parse() + calc_pieces() + calc_rows() + solve(0, 0) + fmt.Printf("%d solutions found\n\n", solution_count) + smallest, largest := smallest_largest() + pretty(smallest) + pretty(largest) +} |