diff options
Diffstat (limited to 'libgo/go/big')
-rw-r--r-- | libgo/go/big/arith.go | 259 | ||||
-rw-r--r-- | libgo/go/big/arith_decl.go | 18 | ||||
-rw-r--r-- | libgo/go/big/arith_test.go | 342 | ||||
-rw-r--r-- | libgo/go/big/calibrate_test.go | 92 | ||||
-rw-r--r-- | libgo/go/big/hilbert_test.go | 173 | ||||
-rw-r--r-- | libgo/go/big/int.go | 741 | ||||
-rw-r--r-- | libgo/go/big/int_test.go | 1055 | ||||
-rw-r--r-- | libgo/go/big/nat.go | 1067 | ||||
-rw-r--r-- | libgo/go/big/nat_test.go | 358 | ||||
-rw-r--r-- | libgo/go/big/rat.go | 326 | ||||
-rw-r--r-- | libgo/go/big/rat_test.go | 282 |
11 files changed, 4713 insertions, 0 deletions
diff --git a/libgo/go/big/arith.go b/libgo/go/big/arith.go new file mode 100644 index 000000000..a4048d6d7 --- /dev/null +++ b/libgo/go/big/arith.go @@ -0,0 +1,259 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file provides Go implementations of elementary multi-precision +// arithmetic operations on word vectors. Needed for platforms without +// assembly implementations of these routines. + +package big + +// TODO(gri) Decide if Word needs to remain exported. + +type Word uintptr + +const ( + // Compute the size _S of a Word in bytes. + _m = ^Word(0) + _logS = _m>>8&1 + _m>>16&1 + _m>>32&1 + _S = 1 << _logS + + _W = _S << 3 // word size in bits + _B = 1 << _W // digit base + _M = _B - 1 // digit mask + + _W2 = _W / 2 // half word size in bits + _B2 = 1 << _W2 // half digit base + _M2 = _B2 - 1 // half digit mask +) + + +// ---------------------------------------------------------------------------- +// Elementary operations on words +// +// These operations are used by the vector operations below. + +// z1<<_W + z0 = x+y+c, with c == 0 or 1 +func addWW_g(x, y, c Word) (z1, z0 Word) { + yc := y + c + z0 = x + yc + if z0 < x || yc < y { + z1 = 1 + } + return +} + + +// z1<<_W + z0 = x-y-c, with c == 0 or 1 +func subWW_g(x, y, c Word) (z1, z0 Word) { + yc := y + c + z0 = x - yc + if z0 > x || yc < y { + z1 = 1 + } + return +} + + +// z1<<_W + z0 = x*y +func mulWW(x, y Word) (z1, z0 Word) { return mulWW_g(x, y) } +// Adapted from Warren, Hacker's Delight, p. 132. +func mulWW_g(x, y Word) (z1, z0 Word) { + x0 := x & _M2 + x1 := x >> _W2 + y0 := y & _M2 + y1 := y >> _W2 + w0 := x0 * y0 + t := x1*y0 + w0>>_W2 + w1 := t & _M2 + w2 := t >> _W2 + w1 += x0 * y1 + z1 = x1*y1 + w2 + w1>>_W2 + z0 = x * y + return +} + + +// z1<<_W + z0 = x*y + c +func mulAddWWW_g(x, y, c Word) (z1, z0 Word) { + z1, zz0 := mulWW(x, y) + if z0 = zz0 + c; z0 < zz0 { + z1++ + } + return +} + + +// Length of x in bits. +func bitLen(x Word) (n int) { + for ; x >= 0x100; x >>= 8 { + n += 8 + } + for ; x > 0; x >>= 1 { + n++ + } + return +} + + +// log2 computes the integer binary logarithm of x. +// The result is the integer n for which 2^n <= x < 2^(n+1). +// If x == 0, the result is -1. +func log2(x Word) int { + return bitLen(x) - 1 +} + + +// Number of leading zeros in x. +func leadingZeros(x Word) uint { + return uint(_W - bitLen(x)) +} + + +// q = (u1<<_W + u0 - r)/y +func divWW(x1, x0, y Word) (q, r Word) { return divWW_g(x1, x0, y) } +// Adapted from Warren, Hacker's Delight, p. 152. +func divWW_g(u1, u0, v Word) (q, r Word) { + if u1 >= v { + return 1<<_W - 1, 1<<_W - 1 + } + + s := leadingZeros(v) + v <<= s + + vn1 := v >> _W2 + vn0 := v & _M2 + un32 := u1<<s | u0>>(_W-s) + un10 := u0 << s + un1 := un10 >> _W2 + un0 := un10 & _M2 + q1 := un32 / vn1 + rhat := un32 - q1*vn1 + +again1: + if q1 >= _B2 || q1*vn0 > _B2*rhat+un1 { + q1-- + rhat += vn1 + if rhat < _B2 { + goto again1 + } + } + + un21 := un32*_B2 + un1 - q1*v + q0 := un21 / vn1 + rhat = un21 - q0*vn1 + +again2: + if q0 >= _B2 || q0*vn0 > _B2*rhat+un0 { + q0-- + rhat += vn1 + if rhat < _B2 { + goto again2 + } + } + + return q1*_B2 + q0, (un21*_B2 + un0 - q0*v) >> s +} + + +func addVV(z, x, y []Word) (c Word) { return addVV_g(z, x, y) } +func addVV_g(z, x, y []Word) (c Word) { + for i := range z { + c, z[i] = addWW_g(x[i], y[i], c) + } + return +} + + +func subVV(z, x, y []Word) (c Word) { return subVV_g(z, x, y) } +func subVV_g(z, x, y []Word) (c Word) { + for i := range z { + c, z[i] = subWW_g(x[i], y[i], c) + } + return +} + + +func addVW(z, x []Word, y Word) (c Word) { return addVW_g(z, x, y) } +func addVW_g(z, x []Word, y Word) (c Word) { + c = y + for i := range z { + c, z[i] = addWW_g(x[i], c, 0) + } + return +} + + +func subVW(z, x []Word, y Word) (c Word) { return subVW_g(z, x, y) } +func subVW_g(z, x []Word, y Word) (c Word) { + c = y + for i := range z { + c, z[i] = subWW_g(x[i], c, 0) + } + return +} + + +func shlVW(z, x []Word, s Word) (c Word) { return shlVW_g(z, x, s) } +func shlVW_g(z, x []Word, s Word) (c Word) { + if n := len(z); n > 0 { + ŝ := _W - s + w1 := x[n-1] + c = w1 >> ŝ + for i := n - 1; i > 0; i-- { + w := w1 + w1 = x[i-1] + z[i] = w<<s | w1>>ŝ + } + z[0] = w1 << s + } + return +} + + +func shrVW(z, x []Word, s Word) (c Word) { return shrVW_g(z, x, s) } +func shrVW_g(z, x []Word, s Word) (c Word) { + if n := len(z); n > 0 { + ŝ := _W - s + w1 := x[0] + c = w1 << ŝ + for i := 0; i < n-1; i++ { + w := w1 + w1 = x[i+1] + z[i] = w>>s | w1<<ŝ + } + z[n-1] = w1 >> s + } + return +} + + +func mulAddVWW(z, x []Word, y, r Word) (c Word) { return mulAddVWW_g(z, x, y, r) } +func mulAddVWW_g(z, x []Word, y, r Word) (c Word) { + c = r + for i := range z { + c, z[i] = mulAddWWW_g(x[i], y, c) + } + return +} + + +func addMulVVW(z, x []Word, y Word) (c Word) { return addMulVVW_g(z, x, y) } +func addMulVVW_g(z, x []Word, y Word) (c Word) { + for i := range z { + z1, z0 := mulAddWWW_g(x[i], y, z[i]) + c, z[i] = addWW_g(z0, c, 0) + c += z1 + } + return +} + + +func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) { return divWVW_g(z, xn, x, y) } +func divWVW_g(z []Word, xn Word, x []Word, y Word) (r Word) { + r = xn + for i := len(z) - 1; i >= 0; i-- { + z[i], r = divWW_g(r, x[i], y) + } + return +} diff --git a/libgo/go/big/arith_decl.go b/libgo/go/big/arith_decl.go new file mode 100644 index 000000000..c456d5f67 --- /dev/null +++ b/libgo/go/big/arith_decl.go @@ -0,0 +1,18 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package big + +// implemented in arith_$GOARCH.s +func mulWW(x, y Word) (z1, z0 Word) +func divWW(x1, x0, y Word) (q, r Word) +func addVV(z, x, y []Word) (c Word) +func subVV(z, x, y []Word) (c Word) +func addVW(z, x []Word, y Word) (c Word) +func subVW(z, x []Word, y Word) (c Word) +func shlVW(z, x []Word, s Word) (c Word) +func shrVW(z, x []Word, s Word) (c Word) +func mulAddVWW(z, x []Word, y, r Word) (c Word) +func addMulVVW(z, x []Word, y Word) (c Word) +func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) diff --git a/libgo/go/big/arith_test.go b/libgo/go/big/arith_test.go new file mode 100644 index 000000000..934b302df --- /dev/null +++ b/libgo/go/big/arith_test.go @@ -0,0 +1,342 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package big + +import "testing" + + +type funWW func(x, y, c Word) (z1, z0 Word) +type argWW struct { + x, y, c, z1, z0 Word +} + +var sumWW = []argWW{ + {0, 0, 0, 0, 0}, + {0, 1, 0, 0, 1}, + {0, 0, 1, 0, 1}, + {0, 1, 1, 0, 2}, + {12345, 67890, 0, 0, 80235}, + {12345, 67890, 1, 0, 80236}, + {_M, 1, 0, 1, 0}, + {_M, 0, 1, 1, 0}, + {_M, 1, 1, 1, 1}, + {_M, _M, 0, 1, _M - 1}, + {_M, _M, 1, 1, _M}, +} + + +func testFunWW(t *testing.T, msg string, f funWW, a argWW) { + z1, z0 := f(a.x, a.y, a.c) + if z1 != a.z1 || z0 != a.z0 { + t.Errorf("%s%+v\n\tgot z1:z0 = %#x:%#x; want %#x:%#x", msg, a, z1, z0, a.z1, a.z0) + } +} + + +func TestFunWW(t *testing.T) { + for _, a := range sumWW { + arg := a + testFunWW(t, "addWW_g", addWW_g, arg) + + arg = argWW{a.y, a.x, a.c, a.z1, a.z0} + testFunWW(t, "addWW_g symmetric", addWW_g, arg) + + arg = argWW{a.z0, a.x, a.c, a.z1, a.y} + testFunWW(t, "subWW_g", subWW_g, arg) + + arg = argWW{a.z0, a.y, a.c, a.z1, a.x} + testFunWW(t, "subWW_g symmetric", subWW_g, arg) + } +} + + +type funVV func(z, x, y []Word) (c Word) +type argVV struct { + z, x, y nat + c Word +} + +var sumVV = []argVV{ + {}, + {nat{0}, nat{0}, nat{0}, 0}, + {nat{1}, nat{1}, nat{0}, 0}, + {nat{0}, nat{_M}, nat{1}, 1}, + {nat{80235}, nat{12345}, nat{67890}, 0}, + {nat{_M - 1}, nat{_M}, nat{_M}, 1}, + {nat{0, 0, 0, 0}, nat{_M, _M, _M, _M}, nat{1, 0, 0, 0}, 1}, + {nat{0, 0, 0, _M}, nat{_M, _M, _M, _M - 1}, nat{1, 0, 0, 0}, 0}, + {nat{0, 0, 0, 0}, nat{_M, 0, _M, 0}, nat{1, _M, 0, _M}, 1}, +} + + +func testFunVV(t *testing.T, msg string, f funVV, a argVV) { + z := make(nat, len(a.z)) + c := f(z, a.x, a.y) + for i, zi := range z { + if zi != a.z[i] { + t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i]) + break + } + } + if c != a.c { + t.Errorf("%s%+v\n\tgot c = %#x; want %#x", msg, a, c, a.c) + } +} + + +func TestFunVV(t *testing.T) { + for _, a := range sumVV { + arg := a + testFunVV(t, "addVV_g", addVV_g, arg) + testFunVV(t, "addVV", addVV, arg) + + arg = argVV{a.z, a.y, a.x, a.c} + testFunVV(t, "addVV_g symmetric", addVV_g, arg) + testFunVV(t, "addVV symmetric", addVV, arg) + + arg = argVV{a.x, a.z, a.y, a.c} + testFunVV(t, "subVV_g", subVV_g, arg) + testFunVV(t, "subVV", subVV, arg) + + arg = argVV{a.y, a.z, a.x, a.c} + testFunVV(t, "subVV_g symmetric", subVV_g, arg) + testFunVV(t, "subVV symmetric", subVV, arg) + } +} + + +type funVW func(z, x []Word, y Word) (c Word) +type argVW struct { + z, x nat + y Word + c Word +} + +var sumVW = []argVW{ + {}, + {nil, nil, 2, 2}, + {nat{0}, nat{0}, 0, 0}, + {nat{1}, nat{0}, 1, 0}, + {nat{1}, nat{1}, 0, 0}, + {nat{0}, nat{_M}, 1, 1}, + {nat{0, 0, 0, 0}, nat{_M, _M, _M, _M}, 1, 1}, +} + +var prodVW = []argVW{ + {}, + {nat{0}, nat{0}, 0, 0}, + {nat{0}, nat{_M}, 0, 0}, + {nat{0}, nat{0}, _M, 0}, + {nat{1}, nat{1}, 1, 0}, + {nat{22793}, nat{991}, 23, 0}, + {nat{0, 0, 0, 22793}, nat{0, 0, 0, 991}, 23, 0}, + {nat{0, 0, 0, 0}, nat{7893475, 7395495, 798547395, 68943}, 0, 0}, + {nat{0, 0, 0, 0}, nat{0, 0, 0, 0}, 894375984, 0}, + {nat{_M << 1 & _M}, nat{_M}, 1 << 1, _M >> (_W - 1)}, + {nat{_M << 7 & _M}, nat{_M}, 1 << 7, _M >> (_W - 7)}, + {nat{_M << 7 & _M, _M, _M, _M}, nat{_M, _M, _M, _M}, 1 << 7, _M >> (_W - 7)}, +} + +var lshVW = []argVW{ + {}, + {nat{0}, nat{0}, 0, 0}, + {nat{0}, nat{0}, 1, 0}, + {nat{0}, nat{0}, 20, 0}, + + {nat{_M}, nat{_M}, 0, 0}, + {nat{_M << 1 & _M}, nat{_M}, 1, 1}, + {nat{_M << 20 & _M}, nat{_M}, 20, _M >> (_W - 20)}, + + {nat{_M, _M, _M}, nat{_M, _M, _M}, 0, 0}, + {nat{_M << 1 & _M, _M, _M}, nat{_M, _M, _M}, 1, 1}, + {nat{_M << 20 & _M, _M, _M}, nat{_M, _M, _M}, 20, _M >> (_W - 20)}, +} + +var rshVW = []argVW{ + {}, + {nat{0}, nat{0}, 0, 0}, + {nat{0}, nat{0}, 1, 0}, + {nat{0}, nat{0}, 20, 0}, + + {nat{_M}, nat{_M}, 0, 0}, + {nat{_M >> 1}, nat{_M}, 1, _M << (_W - 1) & _M}, + {nat{_M >> 20}, nat{_M}, 20, _M << (_W - 20) & _M}, + + {nat{_M, _M, _M}, nat{_M, _M, _M}, 0, 0}, + {nat{_M, _M, _M >> 1}, nat{_M, _M, _M}, 1, _M << (_W - 1) & _M}, + {nat{_M, _M, _M >> 20}, nat{_M, _M, _M}, 20, _M << (_W - 20) & _M}, +} + + +func testFunVW(t *testing.T, msg string, f funVW, a argVW) { + z := make(nat, len(a.z)) + c := f(z, a.x, a.y) + for i, zi := range z { + if zi != a.z[i] { + t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i]) + break + } + } + if c != a.c { + t.Errorf("%s%+v\n\tgot c = %#x; want %#x", msg, a, c, a.c) + } +} + + +func TestFunVW(t *testing.T) { + for _, a := range sumVW { + arg := a + testFunVW(t, "addVW_g", addVW_g, arg) + testFunVW(t, "addVW", addVW, arg) + + arg = argVW{a.x, a.z, a.y, a.c} + testFunVW(t, "subVW_g", subVW_g, arg) + testFunVW(t, "subVW", subVW, arg) + } + + for _, a := range lshVW { + arg := a + testFunVW(t, "shlVW_g", shlVW_g, arg) + testFunVW(t, "shlVW", shlVW, arg) + } + + for _, a := range rshVW { + arg := a + testFunVW(t, "shrVW_g", shrVW_g, arg) + testFunVW(t, "shrVW", shrVW, arg) + } +} + + +type funVWW func(z, x []Word, y, r Word) (c Word) +type argVWW struct { + z, x nat + y, r Word + c Word +} + +var prodVWW = []argVWW{ + {}, + {nat{0}, nat{0}, 0, 0, 0}, + {nat{991}, nat{0}, 0, 991, 0}, + {nat{0}, nat{_M}, 0, 0, 0}, + {nat{991}, nat{_M}, 0, 991, 0}, + {nat{0}, nat{0}, _M, 0, 0}, + {nat{991}, nat{0}, _M, 991, 0}, + {nat{1}, nat{1}, 1, 0, 0}, + {nat{992}, nat{1}, 1, 991, 0}, + {nat{22793}, nat{991}, 23, 0, 0}, + {nat{22800}, nat{991}, 23, 7, 0}, + {nat{0, 0, 0, 22793}, nat{0, 0, 0, 991}, 23, 0, 0}, + {nat{7, 0, 0, 22793}, nat{0, 0, 0, 991}, 23, 7, 0}, + {nat{0, 0, 0, 0}, nat{7893475, 7395495, 798547395, 68943}, 0, 0, 0}, + {nat{991, 0, 0, 0}, nat{7893475, 7395495, 798547395, 68943}, 0, 991, 0}, + {nat{0, 0, 0, 0}, nat{0, 0, 0, 0}, 894375984, 0, 0}, + {nat{991, 0, 0, 0}, nat{0, 0, 0, 0}, 894375984, 991, 0}, + {nat{_M << 1 & _M}, nat{_M}, 1 << 1, 0, _M >> (_W - 1)}, + {nat{_M<<1&_M + 1}, nat{_M}, 1 << 1, 1, _M >> (_W - 1)}, + {nat{_M << 7 & _M}, nat{_M}, 1 << 7, 0, _M >> (_W - 7)}, + {nat{_M<<7&_M + 1<<6}, nat{_M}, 1 << 7, 1 << 6, _M >> (_W - 7)}, + {nat{_M << 7 & _M, _M, _M, _M}, nat{_M, _M, _M, _M}, 1 << 7, 0, _M >> (_W - 7)}, + {nat{_M<<7&_M + 1<<6, _M, _M, _M}, nat{_M, _M, _M, _M}, 1 << 7, 1 << 6, _M >> (_W - 7)}, +} + + +func testFunVWW(t *testing.T, msg string, f funVWW, a argVWW) { + z := make(nat, len(a.z)) + c := f(z, a.x, a.y, a.r) + for i, zi := range z { + if zi != a.z[i] { + t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i]) + break + } + } + if c != a.c { + t.Errorf("%s%+v\n\tgot c = %#x; want %#x", msg, a, c, a.c) + } +} + + +// TODO(gri) mulAddVWW and divWVW are symmetric operations but +// their signature is not symmetric. Try to unify. + +type funWVW func(z []Word, xn Word, x []Word, y Word) (r Word) +type argWVW struct { + z nat + xn Word + x nat + y Word + r Word +} + +func testFunWVW(t *testing.T, msg string, f funWVW, a argWVW) { + z := make(nat, len(a.z)) + r := f(z, a.xn, a.x, a.y) + for i, zi := range z { + if zi != a.z[i] { + t.Errorf("%s%+v\n\tgot z[%d] = %#x; want %#x", msg, a, i, zi, a.z[i]) + break + } + } + if r != a.r { + t.Errorf("%s%+v\n\tgot r = %#x; want %#x", msg, a, r, a.r) + } +} + + +func TestFunVWW(t *testing.T) { + for _, a := range prodVWW { + arg := a + testFunVWW(t, "mulAddVWW_g", mulAddVWW_g, arg) + testFunVWW(t, "mulAddVWW", mulAddVWW, arg) + + if a.y != 0 && a.r < a.y { + arg := argWVW{a.x, a.c, a.z, a.y, a.r} + testFunWVW(t, "divWVW_g", divWVW_g, arg) + testFunWVW(t, "divWVW", divWVW, arg) + } + } +} + + +var mulWWTests = []struct { + x, y Word + q, r Word +}{ + {_M, _M, _M - 1, 1}, + // 32 bit only: {0xc47dfa8c, 50911, 0x98a4, 0x998587f4}, +} + + +func TestMulWW(t *testing.T) { + for i, test := range mulWWTests { + q, r := mulWW_g(test.x, test.y) + if q != test.q || r != test.r { + t.Errorf("#%d got (%x, %x) want (%x, %x)", i, q, r, test.q, test.r) + } + } +} + + +var mulAddWWWTests = []struct { + x, y, c Word + q, r Word +}{ + // TODO(agl): These will only work on 64-bit platforms. + // {15064310297182388543, 0xe7df04d2d35d5d80, 13537600649892366549, 13644450054494335067, 10832252001440893781}, + // {15064310297182388543, 0xdab2f18048baa68d, 13644450054494335067, 12869334219691522700, 14233854684711418382}, + {_M, _M, 0, _M - 1, 1}, + {_M, _M, _M, _M, 0}, +} + + +func TestMulAddWWW(t *testing.T) { + for i, test := range mulAddWWWTests { + q, r := mulAddWWW_g(test.x, test.y, test.c) + if q != test.q || r != test.r { + t.Errorf("#%d got (%x, %x) want (%x, %x)", i, q, r, test.q, test.r) + } + } +} diff --git a/libgo/go/big/calibrate_test.go b/libgo/go/big/calibrate_test.go new file mode 100644 index 000000000..c6cd2e693 --- /dev/null +++ b/libgo/go/big/calibrate_test.go @@ -0,0 +1,92 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file prints execution times for the Mul benchmark +// given different Karatsuba thresholds. The result may be +// used to manually fine-tune the threshold constant. The +// results are somewhat fragile; use repeated runs to get +// a clear picture. + +// Usage: gotest -calibrate + +package big + +import ( + "flag" + "fmt" + "testing" + "time" +) + + +var calibrate = flag.Bool("calibrate", false, "run calibration test") + + +// measure returns the time to run f +func measure(f func()) int64 { + const N = 100 + start := time.Nanoseconds() + for i := N; i > 0; i-- { + f() + } + stop := time.Nanoseconds() + return (stop - start) / N +} + + +func computeThresholds() { + fmt.Printf("Multiplication times for varying Karatsuba thresholds\n") + fmt.Printf("(run repeatedly for good results)\n") + + // determine Tk, the work load execution time using basic multiplication + karatsubaThreshold = 1e9 // disable karatsuba + Tb := measure(benchmarkMulLoad) + fmt.Printf("Tb = %dns\n", Tb) + + // thresholds + n := 8 // any lower values for the threshold lead to very slow multiplies + th1 := -1 + th2 := -1 + + var deltaOld int64 + for count := -1; count != 0; count-- { + // determine Tk, the work load execution time using Karatsuba multiplication + karatsubaThreshold = n // enable karatsuba + Tk := measure(benchmarkMulLoad) + + // improvement over Tb + delta := (Tb - Tk) * 100 / Tb + + fmt.Printf("n = %3d Tk = %8dns %4d%%", n, Tk, delta) + + // determine break-even point + if Tk < Tb && th1 < 0 { + th1 = n + fmt.Print(" break-even point") + } + + // determine diminishing return + if 0 < delta && delta < deltaOld && th2 < 0 { + th2 = n + fmt.Print(" diminishing return") + } + deltaOld = delta + + fmt.Println() + + // trigger counter + if th1 >= 0 && th2 >= 0 && count < 0 { + count = 20 // this many extra measurements after we got both thresholds + } + + n++ + } +} + + +func TestCalibrate(t *testing.T) { + if *calibrate { + computeThresholds() + } +} diff --git a/libgo/go/big/hilbert_test.go b/libgo/go/big/hilbert_test.go new file mode 100644 index 000000000..66a21214d --- /dev/null +++ b/libgo/go/big/hilbert_test.go @@ -0,0 +1,173 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// A little test program and benchmark for rational arithmetics. +// Computes a Hilbert matrix, its inverse, multiplies them +// and verifies that the product is the identity matrix. + +package big + +import ( + "fmt" + "testing" +) + + +type matrix struct { + n, m int + a []*Rat +} + + +func (a *matrix) at(i, j int) *Rat { + if !(0 <= i && i < a.n && 0 <= j && j < a.m) { + panic("index out of range") + } + return a.a[i*a.m+j] +} + + +func (a *matrix) set(i, j int, x *Rat) { + if !(0 <= i && i < a.n && 0 <= j && j < a.m) { + panic("index out of range") + } + a.a[i*a.m+j] = x +} + + +func newMatrix(n, m int) *matrix { + if !(0 <= n && 0 <= m) { + panic("illegal matrix") + } + a := new(matrix) + a.n = n + a.m = m + a.a = make([]*Rat, n*m) + return a +} + + +func newUnit(n int) *matrix { + a := newMatrix(n, n) + for i := 0; i < n; i++ { + for j := 0; j < n; j++ { + x := NewRat(0, 1) + if i == j { + x.SetInt64(1) + } + a.set(i, j, x) + } + } + return a +} + + +func newHilbert(n int) *matrix { + a := newMatrix(n, n) + for i := 0; i < n; i++ { + for j := 0; j < n; j++ { + a.set(i, j, NewRat(1, int64(i+j+1))) + } + } + return a +} + + +func newInverseHilbert(n int) *matrix { + a := newMatrix(n, n) + for i := 0; i < n; i++ { + for j := 0; j < n; j++ { + x1 := new(Rat).SetInt64(int64(i + j + 1)) + x2 := new(Rat).SetInt(new(Int).Binomial(int64(n+i), int64(n-j-1))) + x3 := new(Rat).SetInt(new(Int).Binomial(int64(n+j), int64(n-i-1))) + x4 := new(Rat).SetInt(new(Int).Binomial(int64(i+j), int64(i))) + + x1.Mul(x1, x2) + x1.Mul(x1, x3) + x1.Mul(x1, x4) + x1.Mul(x1, x4) + + if (i+j)&1 != 0 { + x1.Neg(x1) + } + + a.set(i, j, x1) + } + } + return a +} + + +func (a *matrix) mul(b *matrix) *matrix { + if a.m != b.n { + panic("illegal matrix multiply") + } + c := newMatrix(a.n, b.m) + for i := 0; i < c.n; i++ { + for j := 0; j < c.m; j++ { + x := NewRat(0, 1) + for k := 0; k < a.m; k++ { + x.Add(x, new(Rat).Mul(a.at(i, k), b.at(k, j))) + } + c.set(i, j, x) + } + } + return c +} + + +func (a *matrix) eql(b *matrix) bool { + if a.n != b.n || a.m != b.m { + return false + } + for i := 0; i < a.n; i++ { + for j := 0; j < a.m; j++ { + if a.at(i, j).Cmp(b.at(i, j)) != 0 { + return false + } + } + } + return true +} + + +func (a *matrix) String() string { + s := "" + for i := 0; i < a.n; i++ { + for j := 0; j < a.m; j++ { + s += fmt.Sprintf("\t%s", a.at(i, j)) + } + s += "\n" + } + return s +} + + +func doHilbert(t *testing.T, n int) { + a := newHilbert(n) + b := newInverseHilbert(n) + I := newUnit(n) + ab := a.mul(b) + if !ab.eql(I) { + if t == nil { + panic("Hilbert failed") + } + t.Errorf("a = %s\n", a) + t.Errorf("b = %s\n", b) + t.Errorf("a*b = %s\n", ab) + t.Errorf("I = %s\n", I) + } +} + + +func TestHilbert(t *testing.T) { + doHilbert(t, 10) +} + + +func BenchmarkHilbert(b *testing.B) { + for i := 0; i < b.N; i++ { + doHilbert(nil, 10) + } +} diff --git a/libgo/go/big/int.go b/libgo/go/big/int.go new file mode 100644 index 000000000..46e008734 --- /dev/null +++ b/libgo/go/big/int.go @@ -0,0 +1,741 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file implements signed multi-precision integers. + +package big + +import ( + "fmt" + "rand" +) + +// An Int represents a signed multi-precision integer. +// The zero value for an Int represents the value 0. +type Int struct { + neg bool // sign + abs nat // absolute value of the integer +} + + +var intOne = &Int{false, natOne} + + +// Sign returns: +// +// -1 if x < 0 +// 0 if x == 0 +// +1 if x > 0 +// +func (x *Int) Sign() int { + if len(x.abs) == 0 { + return 0 + } + if x.neg { + return -1 + } + return 1 +} + + +// SetInt64 sets z to x and returns z. +func (z *Int) SetInt64(x int64) *Int { + neg := false + if x < 0 { + neg = true + x = -x + } + z.abs = z.abs.setUint64(uint64(x)) + z.neg = neg + return z +} + + +// NewInt allocates and returns a new Int set to x. +func NewInt(x int64) *Int { + return new(Int).SetInt64(x) +} + + +// Set sets z to x and returns z. +func (z *Int) Set(x *Int) *Int { + z.abs = z.abs.set(x.abs) + z.neg = x.neg + return z +} + + +// Abs sets z to |x| (the absolute value of x) and returns z. +func (z *Int) Abs(x *Int) *Int { + z.abs = z.abs.set(x.abs) + z.neg = false + return z +} + + +// Neg sets z to -x and returns z. +func (z *Int) Neg(x *Int) *Int { + z.abs = z.abs.set(x.abs) + z.neg = len(z.abs) > 0 && !x.neg // 0 has no sign + return z +} + + +// Add sets z to the sum x+y and returns z. +func (z *Int) Add(x, y *Int) *Int { + neg := x.neg + if x.neg == y.neg { + // x + y == x + y + // (-x) + (-y) == -(x + y) + z.abs = z.abs.add(x.abs, y.abs) + } else { + // x + (-y) == x - y == -(y - x) + // (-x) + y == y - x == -(x - y) + if x.abs.cmp(y.abs) >= 0 { + z.abs = z.abs.sub(x.abs, y.abs) + } else { + neg = !neg + z.abs = z.abs.sub(y.abs, x.abs) + } + } + z.neg = len(z.abs) > 0 && neg // 0 has no sign + return z +} + + +// Sub sets z to the difference x-y and returns z. +func (z *Int) Sub(x, y *Int) *Int { + neg := x.neg + if x.neg != y.neg { + // x - (-y) == x + y + // (-x) - y == -(x + y) + z.abs = z.abs.add(x.abs, y.abs) + } else { + // x - y == x - y == -(y - x) + // (-x) - (-y) == y - x == -(x - y) + if x.abs.cmp(y.abs) >= 0 { + z.abs = z.abs.sub(x.abs, y.abs) + } else { + neg = !neg + z.abs = z.abs.sub(y.abs, x.abs) + } + } + z.neg = len(z.abs) > 0 && neg // 0 has no sign + return z +} + + +// Mul sets z to the product x*y and returns z. +func (z *Int) Mul(x, y *Int) *Int { + // x * y == x * y + // x * (-y) == -(x * y) + // (-x) * y == -(x * y) + // (-x) * (-y) == x * y + z.abs = z.abs.mul(x.abs, y.abs) + z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign + return z +} + + +// MulRange sets z to the product of all integers +// in the range [a, b] inclusively and returns z. +// If a > b (empty range), the result is 1. +func (z *Int) MulRange(a, b int64) *Int { + switch { + case a > b: + return z.SetInt64(1) // empty range + case a <= 0 && b >= 0: + return z.SetInt64(0) // range includes 0 + } + // a <= b && (b < 0 || a > 0) + + neg := false + if a < 0 { + neg = (b-a)&1 == 0 + a, b = -b, -a + } + + z.abs = z.abs.mulRange(uint64(a), uint64(b)) + z.neg = neg + return z +} + + +// Binomial sets z to the binomial coefficient of (n, k) and returns z. +func (z *Int) Binomial(n, k int64) *Int { + var a, b Int + a.MulRange(n-k+1, n) + b.MulRange(1, k) + return z.Quo(&a, &b) +} + + +// Quo sets z to the quotient x/y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// See QuoRem for more details. +func (z *Int) Quo(x, y *Int) *Int { + z.abs, _ = z.abs.div(nil, x.abs, y.abs) + z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign + return z +} + + +// Rem sets z to the remainder x%y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// See QuoRem for more details. +func (z *Int) Rem(x, y *Int) *Int { + _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) + z.neg = len(z.abs) > 0 && x.neg // 0 has no sign + return z +} + + +// QuoRem sets z to the quotient x/y and r to the remainder x%y +// and returns the pair (z, r) for y != 0. +// If y == 0, a division-by-zero run-time panic occurs. +// +// QuoRem implements T-division and modulus (like Go): +// +// q = x/y with the result truncated to zero +// r = x - y*q +// +// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) +// +func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { + z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) + z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign + return z, r +} + + +// Div sets z to the quotient x/y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// See DivMod for more details. +func (z *Int) Div(x, y *Int) *Int { + y_neg := y.neg // z may be an alias for y + var r Int + z.QuoRem(x, y, &r) + if r.neg { + if y_neg { + z.Add(z, intOne) + } else { + z.Sub(z, intOne) + } + } + return z +} + + +// Mod sets z to the modulus x%y for y != 0 and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +// See DivMod for more details. +func (z *Int) Mod(x, y *Int) *Int { + y0 := y // save y + if z == y || alias(z.abs, y.abs) { + y0 = new(Int).Set(y) + } + var q Int + q.QuoRem(x, y, z) + if z.neg { + if y0.neg { + z.Sub(z, y0) + } else { + z.Add(z, y0) + } + } + return z +} + + +// DivMod sets z to the quotient x div y and m to the modulus x mod y +// and returns the pair (z, m) for y != 0. +// If y == 0, a division-by-zero run-time panic occurs. +// +// DivMod implements Euclidean division and modulus (unlike Go): +// +// q = x div y such that +// m = x - y*q with 0 <= m < |q| +// +// (See Raymond T. Boute, ``The Euclidean definition of the functions +// div and mod''. ACM Transactions on Programming Languages and +// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. +// ACM press.) +// +func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { + y0 := y // save y + if z == y || alias(z.abs, y.abs) { + y0 = new(Int).Set(y) + } + z.QuoRem(x, y, m) + if m.neg { + if y0.neg { + z.Add(z, intOne) + m.Sub(m, y0) + } else { + z.Sub(z, intOne) + m.Add(m, y0) + } + } + return z, m +} + + +// Cmp compares x and y and returns: +// +// -1 if x < y +// 0 if x == y +// +1 if x > y +// +func (x *Int) Cmp(y *Int) (r int) { + // x cmp y == x cmp y + // x cmp (-y) == x + // (-x) cmp y == y + // (-x) cmp (-y) == -(x cmp y) + switch { + case x.neg == y.neg: + r = x.abs.cmp(y.abs) + if x.neg { + r = -r + } + case x.neg: + r = -1 + default: + r = 1 + } + return +} + + +func (x *Int) String() string { + s := "" + if x.neg { + s = "-" + } + return s + x.abs.string(10) +} + + +func fmtbase(ch int) int { + switch ch { + case 'b': + return 2 + case 'o': + return 8 + case 'd': + return 10 + case 'x': + return 16 + } + return 10 +} + + +// Format is a support routine for fmt.Formatter. It accepts +// the formats 'b' (binary), 'o' (octal), 'd' (decimal) and +// 'x' (hexadecimal). +// +func (x *Int) Format(s fmt.State, ch int) { + if x.neg { + fmt.Fprint(s, "-") + } + fmt.Fprint(s, x.abs.string(fmtbase(ch))) +} + + +// Int64 returns the int64 representation of z. +// If z cannot be represented in an int64, the result is undefined. +func (x *Int) Int64() int64 { + if len(x.abs) == 0 { + return 0 + } + v := int64(x.abs[0]) + if _W == 32 && len(x.abs) > 1 { + v |= int64(x.abs[1]) << 32 + } + if x.neg { + v = -v + } + return v +} + + +// SetString sets z to the value of s, interpreted in the given base, +// and returns z and a boolean indicating success. If SetString fails, +// the value of z is undefined. +// +// If the base argument is 0, the string prefix determines the actual +// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the +// ``0'' prefix selects base 8, and a ``0b'' or ``0B'' prefix selects +// base 2. Otherwise the selected base is 10. +// +func (z *Int) SetString(s string, base int) (*Int, bool) { + if len(s) == 0 || base < 0 || base == 1 || 16 < base { + return z, false + } + + neg := s[0] == '-' + if neg || s[0] == '+' { + s = s[1:] + if len(s) == 0 { + return z, false + } + } + + var scanned int + z.abs, _, scanned = z.abs.scan(s, base) + if scanned != len(s) { + return z, false + } + z.neg = len(z.abs) > 0 && neg // 0 has no sign + + return z, true +} + + +// SetBytes interprets b as the bytes of a big-endian, unsigned integer and +// sets z to that value. +func (z *Int) SetBytes(b []byte) *Int { + const s = _S + z.abs = z.abs.make((len(b) + s - 1) / s) + + j := 0 + for len(b) >= s { + var w Word + + for i := s; i > 0; i-- { + w <<= 8 + w |= Word(b[len(b)-i]) + } + + z.abs[j] = w + j++ + b = b[0 : len(b)-s] + } + + if len(b) > 0 { + var w Word + + for i := len(b); i > 0; i-- { + w <<= 8 + w |= Word(b[len(b)-i]) + } + + z.abs[j] = w + } + + z.abs = z.abs.norm() + z.neg = false + return z +} + + +// Bytes returns the absolute value of x as a big-endian byte array. +func (z *Int) Bytes() []byte { + const s = _S + b := make([]byte, len(z.abs)*s) + + for i, w := range z.abs { + wordBytes := b[(len(z.abs)-i-1)*s : (len(z.abs)-i)*s] + for j := s - 1; j >= 0; j-- { + wordBytes[j] = byte(w) + w >>= 8 + } + } + + i := 0 + for i < len(b) && b[i] == 0 { + i++ + } + + return b[i:] +} + + +// BitLen returns the length of the absolute value of z in bits. +// The bit length of 0 is 0. +func (z *Int) BitLen() int { + return z.abs.bitLen() +} + + +// Exp sets z = x**y mod m. If m is nil, z = x**y. +// See Knuth, volume 2, section 4.6.3. +func (z *Int) Exp(x, y, m *Int) *Int { + if y.neg || len(y.abs) == 0 { + neg := x.neg + z.SetInt64(1) + z.neg = neg + return z + } + + var mWords nat + if m != nil { + mWords = m.abs + } + + z.abs = z.abs.expNN(x.abs, y.abs, mWords) + z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign + return z +} + + +// GcdInt sets d to the greatest common divisor of a and b, which must be +// positive numbers. +// If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y. +// If either a or b is not positive, GcdInt sets d = x = y = 0. +func GcdInt(d, x, y, a, b *Int) { + if a.neg || b.neg { + d.SetInt64(0) + if x != nil { + x.SetInt64(0) + } + if y != nil { + y.SetInt64(0) + } + return + } + + A := new(Int).Set(a) + B := new(Int).Set(b) + + X := new(Int) + Y := new(Int).SetInt64(1) + + lastX := new(Int).SetInt64(1) + lastY := new(Int) + + q := new(Int) + temp := new(Int) + + for len(B.abs) > 0 { + r := new(Int) + q, r = q.QuoRem(A, B, r) + + A, B = B, r + + temp.Set(X) + X.Mul(X, q) + X.neg = !X.neg + X.Add(X, lastX) + lastX.Set(temp) + + temp.Set(Y) + Y.Mul(Y, q) + Y.neg = !Y.neg + Y.Add(Y, lastY) + lastY.Set(temp) + } + + if x != nil { + *x = *lastX + } + + if y != nil { + *y = *lastY + } + + *d = *A +} + + +// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime. +// If it returns true, z is prime with probability 1 - 1/4^n. +// If it returns false, z is not prime. +func ProbablyPrime(z *Int, n int) bool { + return !z.neg && z.abs.probablyPrime(n) +} + + +// Rand sets z to a pseudo-random number in [0, n) and returns z. +func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { + z.neg = false + if n.neg == true || len(n.abs) == 0 { + z.abs = nil + return z + } + z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) + return z +} + + +// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where +// p is a prime) and returns z. +func (z *Int) ModInverse(g, p *Int) *Int { + var d Int + GcdInt(&d, z, nil, g, p) + // x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking + // that modulo p results in g*x = 1, therefore x is the inverse element. + if z.neg { + z.Add(z, p) + } + return z +} + + +// Lsh sets z = x << n and returns z. +func (z *Int) Lsh(x *Int, n uint) *Int { + z.abs = z.abs.shl(x.abs, n) + z.neg = x.neg + return z +} + + +// Rsh sets z = x >> n and returns z. +func (z *Int) Rsh(x *Int, n uint) *Int { + if x.neg { + // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) + t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 + t = t.shr(t, n) + z.abs = t.add(t, natOne) + z.neg = true // z cannot be zero if x is negative + return z + } + + z.abs = z.abs.shr(x.abs, n) + z.neg = false + return z +} + + +// And sets z = x & y and returns z. +func (z *Int) And(x, y *Int) *Int { + if x.neg == y.neg { + if x.neg { + // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) + x1 := nat{}.sub(x.abs, natOne) + y1 := nat{}.sub(y.abs, natOne) + z.abs = z.abs.add(z.abs.or(x1, y1), natOne) + z.neg = true // z cannot be zero if x and y are negative + return z + } + + // x & y == x & y + z.abs = z.abs.and(x.abs, y.abs) + z.neg = false + return z + } + + // x.neg != y.neg + if x.neg { + x, y = y, x // & is symmetric + } + + // x & (-y) == x & ^(y-1) == x &^ (y-1) + y1 := nat{}.sub(y.abs, natOne) + z.abs = z.abs.andNot(x.abs, y1) + z.neg = false + return z +} + + +// AndNot sets z = x &^ y and returns z. +func (z *Int) AndNot(x, y *Int) *Int { + if x.neg == y.neg { + if x.neg { + // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) + x1 := nat{}.sub(x.abs, natOne) + y1 := nat{}.sub(y.abs, natOne) + z.abs = z.abs.andNot(y1, x1) + z.neg = false + return z + } + + // x &^ y == x &^ y + z.abs = z.abs.andNot(x.abs, y.abs) + z.neg = false + return z + } + + if x.neg { + // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) + x1 := nat{}.sub(x.abs, natOne) + z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) + z.neg = true // z cannot be zero if x is negative and y is positive + return z + } + + // x &^ (-y) == x &^ ^(y-1) == x & (y-1) + y1 := nat{}.add(y.abs, natOne) + z.abs = z.abs.and(x.abs, y1) + z.neg = false + return z +} + + +// Or sets z = x | y and returns z. +func (z *Int) Or(x, y *Int) *Int { + if x.neg == y.neg { + if x.neg { + // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) + x1 := nat{}.sub(x.abs, natOne) + y1 := nat{}.sub(y.abs, natOne) + z.abs = z.abs.add(z.abs.and(x1, y1), natOne) + z.neg = true // z cannot be zero if x and y are negative + return z + } + + // x | y == x | y + z.abs = z.abs.or(x.abs, y.abs) + z.neg = false + return z + } + + // x.neg != y.neg + if x.neg { + x, y = y, x // | is symmetric + } + + // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) + y1 := nat{}.sub(y.abs, natOne) + z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) + z.neg = true // z cannot be zero if one of x or y is negative + return z +} + + +// Xor sets z = x ^ y and returns z. +func (z *Int) Xor(x, y *Int) *Int { + if x.neg == y.neg { + if x.neg { + // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) + x1 := nat{}.sub(x.abs, natOne) + y1 := nat{}.sub(y.abs, natOne) + z.abs = z.abs.xor(x1, y1) + z.neg = false + return z + } + + // x ^ y == x ^ y + z.abs = z.abs.xor(x.abs, y.abs) + z.neg = false + return z + } + + // x.neg != y.neg + if x.neg { + x, y = y, x // ^ is symmetric + } + + // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) + y1 := nat{}.sub(y.abs, natOne) + z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) + z.neg = true // z cannot be zero if only one of x or y is negative + return z +} + + +// Not sets z = ^x and returns z. +func (z *Int) Not(x *Int) *Int { + if x.neg { + // ^(-x) == ^(^(x-1)) == x-1 + z.abs = z.abs.sub(x.abs, natOne) + z.neg = false + return z + } + + // ^x == -x-1 == -(x+1) + z.abs = z.abs.add(x.abs, natOne) + z.neg = true // z cannot be zero if x is positive + return z +} diff --git a/libgo/go/big/int_test.go b/libgo/go/big/int_test.go new file mode 100644 index 000000000..fc981e1da --- /dev/null +++ b/libgo/go/big/int_test.go @@ -0,0 +1,1055 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package big + +import ( + "bytes" + "encoding/hex" + "fmt" + "testing" + "testing/quick" +) + + +func isNormalized(x *Int) bool { + if len(x.abs) == 0 { + return !x.neg + } + // len(x.abs) > 0 + return x.abs[len(x.abs)-1] != 0 +} + + +type funZZ func(z, x, y *Int) *Int +type argZZ struct { + z, x, y *Int +} + + +var sumZZ = []argZZ{ + {NewInt(0), NewInt(0), NewInt(0)}, + {NewInt(1), NewInt(1), NewInt(0)}, + {NewInt(1111111110), NewInt(123456789), NewInt(987654321)}, + {NewInt(-1), NewInt(-1), NewInt(0)}, + {NewInt(864197532), NewInt(-123456789), NewInt(987654321)}, + {NewInt(-1111111110), NewInt(-123456789), NewInt(-987654321)}, +} + + +var prodZZ = []argZZ{ + {NewInt(0), NewInt(0), NewInt(0)}, + {NewInt(0), NewInt(1), NewInt(0)}, + {NewInt(1), NewInt(1), NewInt(1)}, + {NewInt(-991 * 991), NewInt(991), NewInt(-991)}, + // TODO(gri) add larger products +} + + +func TestSignZ(t *testing.T) { + var zero Int + for _, a := range sumZZ { + s := a.z.Sign() + e := a.z.Cmp(&zero) + if s != e { + t.Errorf("got %d; want %d for z = %v", s, e, a.z) + } + } +} + + +func TestSetZ(t *testing.T) { + for _, a := range sumZZ { + var z Int + z.Set(a.z) + if !isNormalized(&z) { + t.Errorf("%v is not normalized", z) + } + if (&z).Cmp(a.z) != 0 { + t.Errorf("got z = %v; want %v", z, a.z) + } + } +} + + +func TestAbsZ(t *testing.T) { + var zero Int + for _, a := range sumZZ { + var z Int + z.Abs(a.z) + var e Int + e.Set(a.z) + if e.Cmp(&zero) < 0 { + e.Sub(&zero, &e) + } + if z.Cmp(&e) != 0 { + t.Errorf("got z = %v; want %v", z, e) + } + } +} + + +func testFunZZ(t *testing.T, msg string, f funZZ, a argZZ) { + var z Int + f(&z, a.x, a.y) + if !isNormalized(&z) { + t.Errorf("%s%v is not normalized", z, msg) + } + if (&z).Cmp(a.z) != 0 { + t.Errorf("%s%+v\n\tgot z = %v; want %v", msg, a, &z, a.z) + } +} + + +func TestSumZZ(t *testing.T) { + AddZZ := func(z, x, y *Int) *Int { return z.Add(x, y) } + SubZZ := func(z, x, y *Int) *Int { return z.Sub(x, y) } + for _, a := range sumZZ { + arg := a + testFunZZ(t, "AddZZ", AddZZ, arg) + + arg = argZZ{a.z, a.y, a.x} + testFunZZ(t, "AddZZ symmetric", AddZZ, arg) + + arg = argZZ{a.x, a.z, a.y} + testFunZZ(t, "SubZZ", SubZZ, arg) + + arg = argZZ{a.y, a.z, a.x} + testFunZZ(t, "SubZZ symmetric", SubZZ, arg) + } +} + + +func TestProdZZ(t *testing.T) { + MulZZ := func(z, x, y *Int) *Int { return z.Mul(x, y) } + for _, a := range prodZZ { + arg := a + testFunZZ(t, "MulZZ", MulZZ, arg) + + arg = argZZ{a.z, a.y, a.x} + testFunZZ(t, "MulZZ symmetric", MulZZ, arg) + } +} + + +// mulBytes returns x*y via grade school multiplication. Both inputs +// and the result are assumed to be in big-endian representation (to +// match the semantics of Int.Bytes and Int.SetBytes). +func mulBytes(x, y []byte) []byte { + z := make([]byte, len(x)+len(y)) + + // multiply + k0 := len(z) - 1 + for j := len(y) - 1; j >= 0; j-- { + d := int(y[j]) + if d != 0 { + k := k0 + carry := 0 + for i := len(x) - 1; i >= 0; i-- { + t := int(z[k]) + int(x[i])*d + carry + z[k], carry = byte(t), t>>8 + k-- + } + z[k] = byte(carry) + } + k0-- + } + + // normalize (remove leading 0's) + i := 0 + for i < len(z) && z[i] == 0 { + i++ + } + + return z[i:] +} + + +func checkMul(a, b []byte) bool { + var x, y, z1 Int + x.SetBytes(a) + y.SetBytes(b) + z1.Mul(&x, &y) + + var z2 Int + z2.SetBytes(mulBytes(a, b)) + + return z1.Cmp(&z2) == 0 +} + + +func TestMul(t *testing.T) { + if err := quick.Check(checkMul, nil); err != nil { + t.Error(err) + } +} + + +var mulRangesZ = []struct { + a, b int64 + prod string +}{ + // entirely positive ranges are covered by mulRangesN + {-1, 1, "0"}, + {-2, -1, "2"}, + {-3, -2, "6"}, + {-3, -1, "-6"}, + {1, 3, "6"}, + {-10, -10, "-10"}, + {0, -1, "1"}, // empty range + {-1, -100, "1"}, // empty range + {-1, 1, "0"}, // range includes 0 + {-1e9, 0, "0"}, // range includes 0 + {-1e9, 1e9, "0"}, // range includes 0 + {-10, -1, "3628800"}, // 10! + {-20, -2, "-2432902008176640000"}, // -20! + {-99, -1, + "-933262154439441526816992388562667004907159682643816214685929" + + "638952175999932299156089414639761565182862536979208272237582" + + "511852109168640000000000000000000000", // -99! + }, +} + + +func TestMulRangeZ(t *testing.T) { + var tmp Int + // test entirely positive ranges + for i, r := range mulRangesN { + prod := tmp.MulRange(int64(r.a), int64(r.b)).String() + if prod != r.prod { + t.Errorf("#%da: got %s; want %s", i, prod, r.prod) + } + } + // test other ranges + for i, r := range mulRangesZ { + prod := tmp.MulRange(r.a, r.b).String() + if prod != r.prod { + t.Errorf("#%db: got %s; want %s", i, prod, r.prod) + } + } +} + + +var stringTests = []struct { + in string + out string + base int + val int64 + ok bool +}{ + {in: "", ok: false}, + {in: "a", ok: false}, + {in: "z", ok: false}, + {in: "+", ok: false}, + {in: "-", ok: false}, + {in: "0b", ok: false}, + {in: "0x", ok: false}, + {in: "2", base: 2, ok: false}, + {in: "0b2", base: 0, ok: false}, + {in: "08", ok: false}, + {in: "8", base: 8, ok: false}, + {in: "0xg", base: 0, ok: false}, + {in: "g", base: 16, ok: false}, + {"0", "0", 0, 0, true}, + {"0", "0", 10, 0, true}, + {"0", "0", 16, 0, true}, + {"+0", "0", 0, 0, true}, + {"-0", "0", 0, 0, true}, + {"10", "10", 0, 10, true}, + {"10", "10", 10, 10, true}, + {"10", "10", 16, 16, true}, + {"-10", "-10", 16, -16, true}, + {"+10", "10", 16, 16, true}, + {"0x10", "16", 0, 16, true}, + {in: "0x10", base: 16, ok: false}, + {"-0x10", "-16", 0, -16, true}, + {"+0x10", "16", 0, 16, true}, + {"00", "0", 0, 0, true}, + {"0", "0", 8, 0, true}, + {"07", "7", 0, 7, true}, + {"7", "7", 8, 7, true}, + {"023", "19", 0, 19, true}, + {"23", "23", 8, 19, true}, + {"cafebabe", "cafebabe", 16, 0xcafebabe, true}, + {"0b0", "0", 0, 0, true}, + {"-111", "-111", 2, -7, true}, + {"-0b111", "-7", 0, -7, true}, + {"0b1001010111", "599", 0, 0x257, true}, + {"1001010111", "1001010111", 2, 0x257, true}, +} + + +func format(base int) string { + switch base { + case 2: + return "%b" + case 8: + return "%o" + case 16: + return "%x" + } + return "%d" +} + + +func TestGetString(t *testing.T) { + z := new(Int) + for i, test := range stringTests { + if !test.ok { + continue + } + z.SetInt64(test.val) + + if test.base == 10 { + s := z.String() + if s != test.out { + t.Errorf("#%da got %s; want %s", i, s, test.out) + } + } + + s := fmt.Sprintf(format(test.base), z) + if s != test.out { + t.Errorf("#%db got %s; want %s", i, s, test.out) + } + } +} + + +func TestSetString(t *testing.T) { + tmp := new(Int) + for i, test := range stringTests { + n1, ok1 := new(Int).SetString(test.in, test.base) + n2, ok2 := tmp.SetString(test.in, test.base) + expected := NewInt(test.val) + if ok1 != test.ok || ok2 != test.ok { + t.Errorf("#%d (input '%s') ok incorrect (should be %t)", i, test.in, test.ok) + continue + } + if !ok1 || !ok2 { + continue + } + + if ok1 && !isNormalized(n1) { + t.Errorf("#%d (input '%s'): %v is not normalized", i, test.in, *n1) + } + if ok2 && !isNormalized(n2) { + t.Errorf("#%d (input '%s'): %v is not normalized", i, test.in, *n2) + } + + if n1.Cmp(expected) != 0 { + t.Errorf("#%d (input '%s') got: %s want: %d", i, test.in, n1, test.val) + } + if n2.Cmp(expected) != 0 { + t.Errorf("#%d (input '%s') got: %s want: %d", i, test.in, n2, test.val) + } + } +} + + +// Examples from the Go Language Spec, section "Arithmetic operators" +var divisionSignsTests = []struct { + x, y int64 + q, r int64 // T-division + d, m int64 // Euclidian division +}{ + {5, 3, 1, 2, 1, 2}, + {-5, 3, -1, -2, -2, 1}, + {5, -3, -1, 2, -1, 2}, + {-5, -3, 1, -2, 2, 1}, + {1, 2, 0, 1, 0, 1}, + {8, 4, 2, 0, 2, 0}, +} + + +func TestDivisionSigns(t *testing.T) { + for i, test := range divisionSignsTests { + x := NewInt(test.x) + y := NewInt(test.y) + q := NewInt(test.q) + r := NewInt(test.r) + d := NewInt(test.d) + m := NewInt(test.m) + + q1 := new(Int).Quo(x, y) + r1 := new(Int).Rem(x, y) + if !isNormalized(q1) { + t.Errorf("#%d Quo: %v is not normalized", i, *q1) + } + if !isNormalized(r1) { + t.Errorf("#%d Rem: %v is not normalized", i, *r1) + } + if q1.Cmp(q) != 0 || r1.Cmp(r) != 0 { + t.Errorf("#%d QuoRem: got (%s, %s), want (%s, %s)", i, q1, r1, q, r) + } + + q2, r2 := new(Int).QuoRem(x, y, new(Int)) + if !isNormalized(q2) { + t.Errorf("#%d Quo: %v is not normalized", i, *q2) + } + if !isNormalized(r2) { + t.Errorf("#%d Rem: %v is not normalized", i, *r2) + } + if q2.Cmp(q) != 0 || r2.Cmp(r) != 0 { + t.Errorf("#%d QuoRem: got (%s, %s), want (%s, %s)", i, q2, r2, q, r) + } + + d1 := new(Int).Div(x, y) + m1 := new(Int).Mod(x, y) + if !isNormalized(d1) { + t.Errorf("#%d Div: %v is not normalized", i, *d1) + } + if !isNormalized(m1) { + t.Errorf("#%d Mod: %v is not normalized", i, *m1) + } + if d1.Cmp(d) != 0 || m1.Cmp(m) != 0 { + t.Errorf("#%d DivMod: got (%s, %s), want (%s, %s)", i, d1, m1, d, m) + } + + d2, m2 := new(Int).DivMod(x, y, new(Int)) + if !isNormalized(d2) { + t.Errorf("#%d Div: %v is not normalized", i, *d2) + } + if !isNormalized(m2) { + t.Errorf("#%d Mod: %v is not normalized", i, *m2) + } + if d2.Cmp(d) != 0 || m2.Cmp(m) != 0 { + t.Errorf("#%d DivMod: got (%s, %s), want (%s, %s)", i, d2, m2, d, m) + } + } +} + + +func checkSetBytes(b []byte) bool { + hex1 := hex.EncodeToString(new(Int).SetBytes(b).Bytes()) + hex2 := hex.EncodeToString(b) + + for len(hex1) < len(hex2) { + hex1 = "0" + hex1 + } + + for len(hex1) > len(hex2) { + hex2 = "0" + hex2 + } + + return hex1 == hex2 +} + + +func TestSetBytes(t *testing.T) { + if err := quick.Check(checkSetBytes, nil); err != nil { + t.Error(err) + } +} + + +func checkBytes(b []byte) bool { + b2 := new(Int).SetBytes(b).Bytes() + return bytes.Compare(b, b2) == 0 +} + + +func TestBytes(t *testing.T) { + if err := quick.Check(checkSetBytes, nil); err != nil { + t.Error(err) + } +} + + +func checkQuo(x, y []byte) bool { + u := new(Int).SetBytes(x) + v := new(Int).SetBytes(y) + + if len(v.abs) == 0 { + return true + } + + r := new(Int) + q, r := new(Int).QuoRem(u, v, r) + + if r.Cmp(v) >= 0 { + return false + } + + uprime := new(Int).Set(q) + uprime.Mul(uprime, v) + uprime.Add(uprime, r) + + return uprime.Cmp(u) == 0 +} + + +var quoTests = []struct { + x, y string + q, r string +}{ + { + "476217953993950760840509444250624797097991362735329973741718102894495832294430498335824897858659711275234906400899559094370964723884706254265559534144986498357", + "9353930466774385905609975137998169297361893554149986716853295022578535724979483772383667534691121982974895531435241089241440253066816724367338287092081996", + "50911", + "1", + }, + { + "11510768301994997771168", + "1328165573307167369775", + "8", + "885443715537658812968", + }, +} + + +func TestQuo(t *testing.T) { + if err := quick.Check(checkQuo, nil); err != nil { + t.Error(err) + } + + for i, test := range quoTests { + x, _ := new(Int).SetString(test.x, 10) + y, _ := new(Int).SetString(test.y, 10) + expectedQ, _ := new(Int).SetString(test.q, 10) + expectedR, _ := new(Int).SetString(test.r, 10) + + r := new(Int) + q, r := new(Int).QuoRem(x, y, r) + + if q.Cmp(expectedQ) != 0 || r.Cmp(expectedR) != 0 { + t.Errorf("#%d got (%s, %s) want (%s, %s)", i, q, r, expectedQ, expectedR) + } + } +} + + +func TestQuoStepD6(t *testing.T) { + // See Knuth, Volume 2, section 4.3.1, exercise 21. This code exercises + // a code path which only triggers 1 in 10^{-19} cases. + + u := &Int{false, nat{0, 0, 1 + 1<<(_W-1), _M ^ (1 << (_W - 1))}} + v := &Int{false, nat{5, 2 + 1<<(_W-1), 1 << (_W - 1)}} + + r := new(Int) + q, r := new(Int).QuoRem(u, v, r) + const expectedQ64 = "18446744073709551613" + const expectedR64 = "3138550867693340382088035895064302439801311770021610913807" + const expectedQ32 = "4294967293" + const expectedR32 = "39614081266355540837921718287" + if q.String() != expectedQ64 && q.String() != expectedQ32 || + r.String() != expectedR64 && r.String() != expectedR32 { + t.Errorf("got (%s, %s) want (%s, %s) or (%s, %s)", q, r, expectedQ64, expectedR64, expectedQ32, expectedR32) + } +} + + +var bitLenTests = []struct { + in string + out int +}{ + {"-1", 1}, + {"0", 0}, + {"1", 1}, + {"2", 2}, + {"4", 3}, + {"0xabc", 12}, + {"0x8000", 16}, + {"0x80000000", 32}, + {"0x800000000000", 48}, + {"0x8000000000000000", 64}, + {"0x80000000000000000000", 80}, + {"-0x4000000000000000000000", 87}, +} + + +func TestBitLen(t *testing.T) { + for i, test := range bitLenTests { + x, ok := new(Int).SetString(test.in, 0) + if !ok { + t.Errorf("#%d test input invalid: %s", i, test.in) + continue + } + + if n := x.BitLen(); n != test.out { + t.Errorf("#%d got %d want %d", i, n, test.out) + } + } +} + + +var expTests = []struct { + x, y, m string + out string +}{ + {"5", "0", "", "1"}, + {"-5", "0", "", "-1"}, + {"5", "1", "", "5"}, + {"-5", "1", "", "-5"}, + {"-2", "3", "2", "0"}, + {"5", "2", "", "25"}, + {"1", "65537", "2", "1"}, + {"0x8000000000000000", "2", "", "0x40000000000000000000000000000000"}, + {"0x8000000000000000", "2", "6719", "4944"}, + {"0x8000000000000000", "3", "6719", "5447"}, + {"0x8000000000000000", "1000", "6719", "1603"}, + {"0x8000000000000000", "1000000", "6719", "3199"}, + { + "2938462938472983472983659726349017249287491026512746239764525612965293865296239471239874193284792387498274256129746192347", + "298472983472983471903246121093472394872319615612417471234712061", + "29834729834729834729347290846729561262544958723956495615629569234729836259263598127342374289365912465901365498236492183464", + "23537740700184054162508175125554701713153216681790245129157191391322321508055833908509185839069455749219131480588829346291", + }, +} + + +func TestExp(t *testing.T) { + for i, test := range expTests { + x, ok1 := new(Int).SetString(test.x, 0) + y, ok2 := new(Int).SetString(test.y, 0) + out, ok3 := new(Int).SetString(test.out, 0) + + var ok4 bool + var m *Int + + if len(test.m) == 0 { + m, ok4 = nil, true + } else { + m, ok4 = new(Int).SetString(test.m, 0) + } + + if !ok1 || !ok2 || !ok3 || !ok4 { + t.Errorf("#%d: error in input", i) + continue + } + + z := y.Exp(x, y, m) + if !isNormalized(z) { + t.Errorf("#%d: %v is not normalized", i, *z) + } + if z.Cmp(out) != 0 { + t.Errorf("#%d: got %s want %s", i, z, out) + } + } +} + + +func checkGcd(aBytes, bBytes []byte) bool { + a := new(Int).SetBytes(aBytes) + b := new(Int).SetBytes(bBytes) + + x := new(Int) + y := new(Int) + d := new(Int) + + GcdInt(d, x, y, a, b) + x.Mul(x, a) + y.Mul(y, b) + x.Add(x, y) + + return x.Cmp(d) == 0 +} + + +var gcdTests = []struct { + a, b int64 + d, x, y int64 +}{ + {120, 23, 1, -9, 47}, +} + + +func TestGcd(t *testing.T) { + for i, test := range gcdTests { + a := NewInt(test.a) + b := NewInt(test.b) + + x := new(Int) + y := new(Int) + d := new(Int) + + expectedX := NewInt(test.x) + expectedY := NewInt(test.y) + expectedD := NewInt(test.d) + + GcdInt(d, x, y, a, b) + + if expectedX.Cmp(x) != 0 || + expectedY.Cmp(y) != 0 || + expectedD.Cmp(d) != 0 { + t.Errorf("#%d got (%s %s %s) want (%s %s %s)", i, x, y, d, expectedX, expectedY, expectedD) + } + } + + quick.Check(checkGcd, nil) +} + + +var primes = []string{ + "2", + "3", + "5", + "7", + "11", + + "13756265695458089029", + "13496181268022124907", + "10953742525620032441", + "17908251027575790097", + + // http://code.google.com/p/go/issues/detail?id=638 + "18699199384836356663", + + "98920366548084643601728869055592650835572950932266967461790948584315647051443", + "94560208308847015747498523884063394671606671904944666360068158221458669711639", + + // http://primes.utm.edu/lists/small/small3.html + "449417999055441493994709297093108513015373787049558499205492347871729927573118262811508386655998299074566974373711472560655026288668094291699357843464363003144674940345912431129144354948751003607115263071543163", + "230975859993204150666423538988557839555560243929065415434980904258310530753006723857139742334640122533598517597674807096648905501653461687601339782814316124971547968912893214002992086353183070342498989426570593", + "5521712099665906221540423207019333379125265462121169655563495403888449493493629943498064604536961775110765377745550377067893607246020694972959780839151452457728855382113555867743022746090187341871655890805971735385789993", + "203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123", +} + + +var composites = []string{ + "21284175091214687912771199898307297748211672914763848041968395774954376176754", + "6084766654921918907427900243509372380954290099172559290432744450051395395951", + "84594350493221918389213352992032324280367711247940675652888030554255915464401", + "82793403787388584738507275144194252681", +} + + +func TestProbablyPrime(t *testing.T) { + for i, s := range primes { + p, _ := new(Int).SetString(s, 10) + if !ProbablyPrime(p, 20) { + t.Errorf("#%d prime found to be non-prime (%s)", i, s) + } + } + + for i, s := range composites { + c, _ := new(Int).SetString(s, 10) + if ProbablyPrime(c, 20) { + t.Errorf("#%d composite found to be prime (%s)", i, s) + } + } +} + + +type intShiftTest struct { + in string + shift uint + out string +} + + +var rshTests = []intShiftTest{ + {"0", 0, "0"}, + {"-0", 0, "0"}, + {"0", 1, "0"}, + {"0", 2, "0"}, + {"1", 0, "1"}, + {"1", 1, "0"}, + {"1", 2, "0"}, + {"2", 0, "2"}, + {"2", 1, "1"}, + {"-1", 0, "-1"}, + {"-1", 1, "-1"}, + {"-1", 10, "-1"}, + {"-100", 2, "-25"}, + {"-100", 3, "-13"}, + {"-100", 100, "-1"}, + {"4294967296", 0, "4294967296"}, + {"4294967296", 1, "2147483648"}, + {"4294967296", 2, "1073741824"}, + {"18446744073709551616", 0, "18446744073709551616"}, + {"18446744073709551616", 1, "9223372036854775808"}, + {"18446744073709551616", 2, "4611686018427387904"}, + {"18446744073709551616", 64, "1"}, + {"340282366920938463463374607431768211456", 64, "18446744073709551616"}, + {"340282366920938463463374607431768211456", 128, "1"}, +} + + +func TestRsh(t *testing.T) { + for i, test := range rshTests { + in, _ := new(Int).SetString(test.in, 10) + expected, _ := new(Int).SetString(test.out, 10) + out := new(Int).Rsh(in, test.shift) + + if !isNormalized(out) { + t.Errorf("#%d: %v is not normalized", i, *out) + } + if out.Cmp(expected) != 0 { + t.Errorf("#%d: got %s want %s", i, out, expected) + } + } +} + + +func TestRshSelf(t *testing.T) { + for i, test := range rshTests { + z, _ := new(Int).SetString(test.in, 10) + expected, _ := new(Int).SetString(test.out, 10) + z.Rsh(z, test.shift) + + if !isNormalized(z) { + t.Errorf("#%d: %v is not normalized", i, *z) + } + if z.Cmp(expected) != 0 { + t.Errorf("#%d: got %s want %s", i, z, expected) + } + } +} + + +var lshTests = []intShiftTest{ + {"0", 0, "0"}, + {"0", 1, "0"}, + {"0", 2, "0"}, + {"1", 0, "1"}, + {"1", 1, "2"}, + {"1", 2, "4"}, + {"2", 0, "2"}, + {"2", 1, "4"}, + {"2", 2, "8"}, + {"-87", 1, "-174"}, + {"4294967296", 0, "4294967296"}, + {"4294967296", 1, "8589934592"}, + {"4294967296", 2, "17179869184"}, + {"18446744073709551616", 0, "18446744073709551616"}, + {"9223372036854775808", 1, "18446744073709551616"}, + {"4611686018427387904", 2, "18446744073709551616"}, + {"1", 64, "18446744073709551616"}, + {"18446744073709551616", 64, "340282366920938463463374607431768211456"}, + {"1", 128, "340282366920938463463374607431768211456"}, +} + + +func TestLsh(t *testing.T) { + for i, test := range lshTests { + in, _ := new(Int).SetString(test.in, 10) + expected, _ := new(Int).SetString(test.out, 10) + out := new(Int).Lsh(in, test.shift) + + if !isNormalized(out) { + t.Errorf("#%d: %v is not normalized", i, *out) + } + if out.Cmp(expected) != 0 { + t.Errorf("#%d: got %s want %s", i, out, expected) + } + } +} + + +func TestLshSelf(t *testing.T) { + for i, test := range lshTests { + z, _ := new(Int).SetString(test.in, 10) + expected, _ := new(Int).SetString(test.out, 10) + z.Lsh(z, test.shift) + + if !isNormalized(z) { + t.Errorf("#%d: %v is not normalized", i, *z) + } + if z.Cmp(expected) != 0 { + t.Errorf("#%d: got %s want %s", i, z, expected) + } + } +} + + +func TestLshRsh(t *testing.T) { + for i, test := range rshTests { + in, _ := new(Int).SetString(test.in, 10) + out := new(Int).Lsh(in, test.shift) + out = out.Rsh(out, test.shift) + + if !isNormalized(out) { + t.Errorf("#%d: %v is not normalized", i, *out) + } + if in.Cmp(out) != 0 { + t.Errorf("#%d: got %s want %s", i, out, in) + } + } + for i, test := range lshTests { + in, _ := new(Int).SetString(test.in, 10) + out := new(Int).Lsh(in, test.shift) + out.Rsh(out, test.shift) + + if !isNormalized(out) { + t.Errorf("#%d: %v is not normalized", i, *out) + } + if in.Cmp(out) != 0 { + t.Errorf("#%d: got %s want %s", i, out, in) + } + } +} + + +var int64Tests = []int64{ + 0, + 1, + -1, + 4294967295, + -4294967295, + 4294967296, + -4294967296, + 9223372036854775807, + -9223372036854775807, + -9223372036854775808, +} + + +func TestInt64(t *testing.T) { + for i, testVal := range int64Tests { + in := NewInt(testVal) + out := in.Int64() + + if out != testVal { + t.Errorf("#%d got %d want %d", i, out, testVal) + } + } +} + + +var bitwiseTests = []struct { + x, y string + and, or, xor, andNot string +}{ + {"0x00", "0x00", "0x00", "0x00", "0x00", "0x00"}, + {"0x00", "0x01", "0x00", "0x01", "0x01", "0x00"}, + {"0x01", "0x00", "0x00", "0x01", "0x01", "0x01"}, + {"-0x01", "0x00", "0x00", "-0x01", "-0x01", "-0x01"}, + {"-0xaf", "-0x50", "-0xf0", "-0x0f", "0xe1", "0x41"}, + {"0x00", "-0x01", "0x00", "-0x01", "-0x01", "0x00"}, + {"0x01", "0x01", "0x01", "0x01", "0x00", "0x00"}, + {"-0x01", "-0x01", "-0x01", "-0x01", "0x00", "0x00"}, + {"0x07", "0x08", "0x00", "0x0f", "0x0f", "0x07"}, + {"0x05", "0x0f", "0x05", "0x0f", "0x0a", "0x00"}, + {"0x013ff6", "0x9a4e", "0x1a46", "0x01bffe", "0x01a5b8", "0x0125b0"}, + {"-0x013ff6", "0x9a4e", "0x800a", "-0x0125b2", "-0x01a5bc", "-0x01c000"}, + {"-0x013ff6", "-0x9a4e", "-0x01bffe", "-0x1a46", "0x01a5b8", "0x8008"}, + { + "0x1000009dc6e3d9822cba04129bcbe3401", + "0xb9bd7d543685789d57cb918e833af352559021483cdb05cc21fd", + "0x1000001186210100001000009048c2001", + "0xb9bd7d543685789d57cb918e8bfeff7fddb2ebe87dfbbdfe35fd", + "0xb9bd7d543685789d57ca918e8ae69d6fcdb2eae87df2b97215fc", + "0x8c40c2d8822caa04120b8321400", + }, + { + "0x1000009dc6e3d9822cba04129bcbe3401", + "-0xb9bd7d543685789d57cb918e833af352559021483cdb05cc21fd", + "0x8c40c2d8822caa04120b8321401", + "-0xb9bd7d543685789d57ca918e82229142459020483cd2014001fd", + "-0xb9bd7d543685789d57ca918e8ae69d6fcdb2eae87df2b97215fe", + "0x1000001186210100001000009048c2000", + }, + { + "-0x1000009dc6e3d9822cba04129bcbe3401", + "-0xb9bd7d543685789d57cb918e833af352559021483cdb05cc21fd", + "-0xb9bd7d543685789d57cb918e8bfeff7fddb2ebe87dfbbdfe35fd", + "-0x1000001186210100001000009048c2001", + "0xb9bd7d543685789d57ca918e8ae69d6fcdb2eae87df2b97215fc", + "0xb9bd7d543685789d57ca918e82229142459020483cd2014001fc", + }, +} + + +type bitFun func(z, x, y *Int) *Int + +func testBitFun(t *testing.T, msg string, f bitFun, x, y *Int, exp string) { + expected := new(Int) + expected.SetString(exp, 0) + + out := f(new(Int), x, y) + if out.Cmp(expected) != 0 { + t.Errorf("%s: got %s want %s", msg, out, expected) + } +} + + +func testBitFunSelf(t *testing.T, msg string, f bitFun, x, y *Int, exp string) { + self := new(Int) + self.Set(x) + expected := new(Int) + expected.SetString(exp, 0) + + self = f(self, self, y) + if self.Cmp(expected) != 0 { + t.Errorf("%s: got %s want %s", msg, self, expected) + } +} + + +func TestBitwise(t *testing.T) { + x := new(Int) + y := new(Int) + for _, test := range bitwiseTests { + x.SetString(test.x, 0) + y.SetString(test.y, 0) + + testBitFun(t, "and", (*Int).And, x, y, test.and) + testBitFunSelf(t, "and", (*Int).And, x, y, test.and) + testBitFun(t, "andNot", (*Int).AndNot, x, y, test.andNot) + testBitFunSelf(t, "andNot", (*Int).AndNot, x, y, test.andNot) + testBitFun(t, "or", (*Int).Or, x, y, test.or) + testBitFunSelf(t, "or", (*Int).Or, x, y, test.or) + testBitFun(t, "xor", (*Int).Xor, x, y, test.xor) + testBitFunSelf(t, "xor", (*Int).Xor, x, y, test.xor) + } +} + + +var notTests = []struct { + in string + out string +}{ + {"0", "-1"}, + {"1", "-2"}, + {"7", "-8"}, + {"0", "-1"}, + {"-81910", "81909"}, + { + "298472983472983471903246121093472394872319615612417471234712061", + "-298472983472983471903246121093472394872319615612417471234712062", + }, +} + +func TestNot(t *testing.T) { + in := new(Int) + out := new(Int) + expected := new(Int) + for i, test := range notTests { + in.SetString(test.in, 10) + expected.SetString(test.out, 10) + out = out.Not(in) + if out.Cmp(expected) != 0 { + t.Errorf("#%d: got %s want %s", i, out, expected) + } + out = out.Not(out) + if out.Cmp(in) != 0 { + t.Errorf("#%d: got %s want %s", i, out, in) + } + } +} + + +var modInverseTests = []struct { + element string + prime string +}{ + {"1", "7"}, + {"1", "13"}, + {"239487239847", "2410312426921032588552076022197566074856950548502459942654116941958108831682612228890093858261341614673227141477904012196503648957050582631942730706805009223062734745341073406696246014589361659774041027169249453200378729434170325843778659198143763193776859869524088940195577346119843545301547043747207749969763750084308926339295559968882457872412993810129130294592999947926365264059284647209730384947211681434464714438488520940127459844288859336526896320919633919"}, +} + +func TestModInverse(t *testing.T) { + var element, prime Int + one := NewInt(1) + for i, test := range modInverseTests { + (&element).SetString(test.element, 10) + (&prime).SetString(test.prime, 10) + inverse := new(Int).ModInverse(&element, &prime) + inverse.Mul(inverse, &element) + inverse.Mod(inverse, &prime) + if inverse.Cmp(one) != 0 { + t.Errorf("#%d: failed (e·e^(-1)=%s)", i, inverse) + } + } +} diff --git a/libgo/go/big/nat.go b/libgo/go/big/nat.go new file mode 100644 index 000000000..a308f69e8 --- /dev/null +++ b/libgo/go/big/nat.go @@ -0,0 +1,1067 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file contains operations on unsigned multi-precision integers. +// These are the building blocks for the operations on signed integers +// and rationals. + +// This package implements multi-precision arithmetic (big numbers). +// The following numeric types are supported: +// +// - Int signed integers +// - Rat rational numbers +// +// All methods on Int take the result as the receiver; if it is one +// of the operands it may be overwritten (and its memory reused). +// To enable chaining of operations, the result is also returned. +// +package big + +import "rand" + +// An unsigned integer x of the form +// +// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] +// +// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, +// with the digits x[i] as the slice elements. +// +// A number is normalized if the slice contains no leading 0 digits. +// During arithmetic operations, denormalized values may occur but are +// always normalized before returning the final result. The normalized +// representation of 0 is the empty or nil slice (length = 0). + +type nat []Word + +var ( + natOne = nat{1} + natTwo = nat{2} + natTen = nat{10} +) + + +func (z nat) clear() { + for i := range z { + z[i] = 0 + } +} + + +func (z nat) norm() nat { + i := len(z) + for i > 0 && z[i-1] == 0 { + i-- + } + return z[0:i] +} + + +func (z nat) make(n int) nat { + if n <= cap(z) { + return z[0:n] // reuse z + } + // Choosing a good value for e has significant performance impact + // because it increases the chance that a value can be reused. + const e = 4 // extra capacity + return make(nat, n, n+e) +} + + +func (z nat) setWord(x Word) nat { + if x == 0 { + return z.make(0) + } + z = z.make(1) + z[0] = x + return z +} + + +func (z nat) setUint64(x uint64) nat { + // single-digit values + if w := Word(x); uint64(w) == x { + return z.setWord(w) + } + + // compute number of words n required to represent x + n := 0 + for t := x; t > 0; t >>= _W { + n++ + } + + // split x into n words + z = z.make(n) + for i := range z { + z[i] = Word(x & _M) + x >>= _W + } + + return z +} + + +func (z nat) set(x nat) nat { + z = z.make(len(x)) + copy(z, x) + return z +} + + +func (z nat) add(x, y nat) nat { + m := len(x) + n := len(y) + + switch { + case m < n: + return z.add(y, x) + case m == 0: + // n == 0 because m >= n; result is 0 + return z.make(0) + case n == 0: + // result is x + return z.set(x) + } + // m > 0 + + z = z.make(m + 1) + c := addVV(z[0:n], x, y) + if m > n { + c = addVW(z[n:m], x[n:], c) + } + z[m] = c + + return z.norm() +} + + +func (z nat) sub(x, y nat) nat { + m := len(x) + n := len(y) + + switch { + case m < n: + panic("underflow") + case m == 0: + // n == 0 because m >= n; result is 0 + return z.make(0) + case n == 0: + // result is x + return z.set(x) + } + // m > 0 + + z = z.make(m) + c := subVV(z[0:n], x, y) + if m > n { + c = subVW(z[n:], x[n:], c) + } + if c != 0 { + panic("underflow") + } + + return z.norm() +} + + +func (x nat) cmp(y nat) (r int) { + m := len(x) + n := len(y) + if m != n || m == 0 { + switch { + case m < n: + r = -1 + case m > n: + r = 1 + } + return + } + + i := m - 1 + for i > 0 && x[i] == y[i] { + i-- + } + + switch { + case x[i] < y[i]: + r = -1 + case x[i] > y[i]: + r = 1 + } + return +} + + +func (z nat) mulAddWW(x nat, y, r Word) nat { + m := len(x) + if m == 0 || y == 0 { + return z.setWord(r) // result is r + } + // m > 0 + + z = z.make(m + 1) + z[m] = mulAddVWW(z[0:m], x, y, r) + + return z.norm() +} + + +// basicMul multiplies x and y and leaves the result in z. +// The (non-normalized) result is placed in z[0 : len(x) + len(y)]. +func basicMul(z, x, y nat) { + z[0 : len(x)+len(y)].clear() // initialize z + for i, d := range y { + if d != 0 { + z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d) + } + } +} + + +// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks. +// Factored out for readability - do not use outside karatsuba. +func karatsubaAdd(z, x nat, n int) { + if c := addVV(z[0:n], z, x); c != 0 { + addVW(z[n:n+n>>1], z[n:], c) + } +} + + +// Like karatsubaAdd, but does subtract. +func karatsubaSub(z, x nat, n int) { + if c := subVV(z[0:n], z, x); c != 0 { + subVW(z[n:n+n>>1], z[n:], c) + } +} + + +// Operands that are shorter than karatsubaThreshold are multiplied using +// "grade school" multiplication; for longer operands the Karatsuba algorithm +// is used. +var karatsubaThreshold int = 32 // computed by calibrate.go + +// karatsuba multiplies x and y and leaves the result in z. +// Both x and y must have the same length n and n must be a +// power of 2. The result vector z must have len(z) >= 6*n. +// The (non-normalized) result is placed in z[0 : 2*n]. +func karatsuba(z, x, y nat) { + n := len(y) + + // Switch to basic multiplication if numbers are odd or small. + // (n is always even if karatsubaThreshold is even, but be + // conservative) + if n&1 != 0 || n < karatsubaThreshold || n < 2 { + basicMul(z, x, y) + return + } + // n&1 == 0 && n >= karatsubaThreshold && n >= 2 + + // Karatsuba multiplication is based on the observation that + // for two numbers x and y with: + // + // x = x1*b + x0 + // y = y1*b + y0 + // + // the product x*y can be obtained with 3 products z2, z1, z0 + // instead of 4: + // + // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0 + // = z2*b*b + z1*b + z0 + // + // with: + // + // xd = x1 - x0 + // yd = y0 - y1 + // + // z1 = xd*yd + z1 + z0 + // = (x1-x0)*(y0 - y1) + z1 + z0 + // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z1 + z0 + // = x1*y0 - z1 - z0 + x0*y1 + z1 + z0 + // = x1*y0 + x0*y1 + + // split x, y into "digits" + n2 := n >> 1 // n2 >= 1 + x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0 + y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0 + + // z is used for the result and temporary storage: + // + // 6*n 5*n 4*n 3*n 2*n 1*n 0*n + // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ] + // + // For each recursive call of karatsuba, an unused slice of + // z is passed in that has (at least) half the length of the + // caller's z. + + // compute z0 and z2 with the result "in place" in z + karatsuba(z, x0, y0) // z0 = x0*y0 + karatsuba(z[n:], x1, y1) // z2 = x1*y1 + + // compute xd (or the negative value if underflow occurs) + s := 1 // sign of product xd*yd + xd := z[2*n : 2*n+n2] + if subVV(xd, x1, x0) != 0 { // x1-x0 + s = -s + subVV(xd, x0, x1) // x0-x1 + } + + // compute yd (or the negative value if underflow occurs) + yd := z[2*n+n2 : 3*n] + if subVV(yd, y0, y1) != 0 { // y0-y1 + s = -s + subVV(yd, y1, y0) // y1-y0 + } + + // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0 + // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0 + p := z[n*3:] + karatsuba(p, xd, yd) + + // save original z2:z0 + // (ok to use upper half of z since we're done recursing) + r := z[n*4:] + copy(r, z) + + // add up all partial products + // + // 2*n n 0 + // z = [ z2 | z0 ] + // + [ z0 ] + // + [ z2 ] + // + [ p ] + // + karatsubaAdd(z[n2:], r, n) + karatsubaAdd(z[n2:], r[n:], n) + if s > 0 { + karatsubaAdd(z[n2:], p, n) + } else { + karatsubaSub(z[n2:], p, n) + } +} + + +// alias returns true if x and y share the same base array. +func alias(x, y nat) bool { + return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1] +} + + +// addAt implements z += x*(1<<(_W*i)); z must be long enough. +// (we don't use nat.add because we need z to stay the same +// slice, and we don't need to normalize z after each addition) +func addAt(z, x nat, i int) { + if n := len(x); n > 0 { + if c := addVV(z[i:i+n], z[i:], x); c != 0 { + j := i + n + if j < len(z) { + addVW(z[j:], z[j:], c) + } + } + } +} + + +func max(x, y int) int { + if x > y { + return x + } + return y +} + + +// karatsubaLen computes an approximation to the maximum k <= n such that +// k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the +// result is the largest number that can be divided repeatedly by 2 before +// becoming about the value of karatsubaThreshold. +func karatsubaLen(n int) int { + i := uint(0) + for n > karatsubaThreshold { + n >>= 1 + i++ + } + return n << i +} + + +func (z nat) mul(x, y nat) nat { + m := len(x) + n := len(y) + + switch { + case m < n: + return z.mul(y, x) + case m == 0 || n == 0: + return z.make(0) + case n == 1: + return z.mulAddWW(x, y[0], 0) + } + // m >= n > 1 + + // determine if z can be reused + if alias(z, x) || alias(z, y) { + z = nil // z is an alias for x or y - cannot reuse + } + + // use basic multiplication if the numbers are small + if n < karatsubaThreshold || n < 2 { + z = z.make(m + n) + basicMul(z, x, y) + return z.norm() + } + // m >= n && n >= karatsubaThreshold && n >= 2 + + // determine Karatsuba length k such that + // + // x = x1*b + x0 + // y = y1*b + y0 (and k <= len(y), which implies k <= len(x)) + // b = 1<<(_W*k) ("base" of digits xi, yi) + // + k := karatsubaLen(n) + // k <= n + + // multiply x0 and y0 via Karatsuba + x0 := x[0:k] // x0 is not normalized + y0 := y[0:k] // y0 is not normalized + z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y + karatsuba(z, x0, y0) + z = z[0 : m+n] // z has final length but may be incomplete, upper portion is garbage + + // If x1 and/or y1 are not 0, add missing terms to z explicitly: + // + // m+n 2*k 0 + // z = [ ... | x0*y0 ] + // + [ x1*y1 ] + // + [ x1*y0 ] + // + [ x0*y1 ] + // + if k < n || m != n { + x1 := x[k:] // x1 is normalized because x is + y1 := y[k:] // y1 is normalized because y is + var t nat + t = t.mul(x1, y1) + copy(z[2*k:], t) + z[2*k+len(t):].clear() // upper portion of z is garbage + t = t.mul(x1, y0.norm()) + addAt(z, t, k) + t = t.mul(x0.norm(), y1) + addAt(z, t, k) + } + + return z.norm() +} + + +// mulRange computes the product of all the unsigned integers in the +// range [a, b] inclusively. If a > b (empty range), the result is 1. +func (z nat) mulRange(a, b uint64) nat { + switch { + case a == 0: + // cut long ranges short (optimization) + return z.setUint64(0) + case a > b: + return z.setUint64(1) + case a == b: + return z.setUint64(a) + case a+1 == b: + return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b)) + } + m := (a + b) / 2 + return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b)) +} + + +// q = (x-r)/y, with 0 <= r < y +func (z nat) divW(x nat, y Word) (q nat, r Word) { + m := len(x) + switch { + case y == 0: + panic("division by zero") + case y == 1: + q = z.set(x) // result is x + return + case m == 0: + q = z.make(0) // result is 0 + return + } + // m > 0 + z = z.make(m) + r = divWVW(z, 0, x, y) + q = z.norm() + return +} + + +func (z nat) div(z2, u, v nat) (q, r nat) { + if len(v) == 0 { + panic("division by zero") + } + + if u.cmp(v) < 0 { + q = z.make(0) + r = z2.set(u) + return + } + + if len(v) == 1 { + var rprime Word + q, rprime = z.divW(u, v[0]) + if rprime > 0 { + r = z2.make(1) + r[0] = rprime + } else { + r = z2.make(0) + } + return + } + + q, r = z.divLarge(z2, u, v) + return +} + + +// q = (uIn-r)/v, with 0 <= r < y +// Uses z as storage for q, and u as storage for r if possible. +// See Knuth, Volume 2, section 4.3.1, Algorithm D. +// Preconditions: +// len(v) >= 2 +// len(uIn) >= len(v) +func (z nat) divLarge(u, uIn, v nat) (q, r nat) { + n := len(v) + m := len(uIn) - n + + // determine if z can be reused + // TODO(gri) should find a better solution - this if statement + // is very costly (see e.g. time pidigits -s -n 10000) + if alias(z, uIn) || alias(z, v) { + z = nil // z is an alias for uIn or v - cannot reuse + } + q = z.make(m + 1) + + qhatv := make(nat, n+1) + if alias(u, uIn) || alias(u, v) { + u = nil // u is an alias for uIn or v - cannot reuse + } + u = u.make(len(uIn) + 1) + u.clear() + + // D1. + shift := Word(leadingZeros(v[n-1])) + shlVW(v, v, shift) + u[len(uIn)] = shlVW(u[0:len(uIn)], uIn, shift) + + // D2. + for j := m; j >= 0; j-- { + // D3. + qhat := Word(_M) + if u[j+n] != v[n-1] { + var rhat Word + qhat, rhat = divWW(u[j+n], u[j+n-1], v[n-1]) + + // x1 | x2 = q̂v_{n-2} + x1, x2 := mulWW(qhat, v[n-2]) + // test if q̂v_{n-2} > br̂ + u_{j+n-2} + for greaterThan(x1, x2, rhat, u[j+n-2]) { + qhat-- + prevRhat := rhat + rhat += v[n-1] + // v[n-1] >= 0, so this tests for overflow. + if rhat < prevRhat { + break + } + x1, x2 = mulWW(qhat, v[n-2]) + } + } + + // D4. + qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0) + + c := subVV(u[j:j+len(qhatv)], u[j:], qhatv) + if c != 0 { + c := addVV(u[j:j+n], u[j:], v) + u[j+n] += c + qhat-- + } + + q[j] = qhat + } + + q = q.norm() + shrVW(u, u, shift) + shrVW(v, v, shift) + r = u.norm() + + return q, r +} + + +// Length of x in bits. x must be normalized. +func (x nat) bitLen() int { + if i := len(x) - 1; i >= 0 { + return i*_W + bitLen(x[i]) + } + return 0 +} + + +func hexValue(ch byte) int { + var d byte + switch { + case '0' <= ch && ch <= '9': + d = ch - '0' + case 'a' <= ch && ch <= 'f': + d = ch - 'a' + 10 + case 'A' <= ch && ch <= 'F': + d = ch - 'A' + 10 + default: + return -1 + } + return int(d) +} + + +// scan returns the natural number corresponding to the +// longest possible prefix of s representing a natural number in a +// given conversion base, the actual conversion base used, and the +// prefix length. The syntax of natural numbers follows the syntax +// of unsigned integer literals in Go. +// +// If the base argument is 0, the string prefix determines the actual +// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the +// ``0'' prefix selects base 8, and a ``0b'' or ``0B'' prefix selects +// base 2. Otherwise the selected base is 10. +// +func (z nat) scan(s string, base int) (nat, int, int) { + // determine base if necessary + i, n := 0, len(s) + if base == 0 { + base = 10 + if n > 0 && s[0] == '0' { + base, i = 8, 1 + if n > 1 { + switch s[1] { + case 'x', 'X': + base, i = 16, 2 + case 'b', 'B': + base, i = 2, 2 + } + } + } + } + + // reject illegal bases or strings consisting only of prefix + if base < 2 || 16 < base || (base != 8 && i >= n) { + return z, 0, 0 + } + + // convert string + z = z.make(0) + for ; i < n; i++ { + d := hexValue(s[i]) + if 0 <= d && d < base { + z = z.mulAddWW(z, Word(base), Word(d)) + } else { + break + } + } + + return z.norm(), base, i +} + + +// string converts x to a string for a given base, with 2 <= base <= 16. +// TODO(gri) in the style of the other routines, perhaps this should take +// a []byte buffer and return it +func (x nat) string(base int) string { + if base < 2 || 16 < base { + panic("illegal base") + } + + if len(x) == 0 { + return "0" + } + + // allocate buffer for conversion + i := x.bitLen()/log2(Word(base)) + 1 // +1: round up + s := make([]byte, i) + + // don't destroy x + q := nat(nil).set(x) + + // convert + for len(q) > 0 { + i-- + var r Word + q, r = q.divW(q, Word(base)) + s[i] = "0123456789abcdef"[r] + } + + return string(s[i:]) +} + + +const deBruijn32 = 0x077CB531 + +var deBruijn32Lookup = []byte{ + 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, + 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, +} + +const deBruijn64 = 0x03f79d71b4ca8b09 + +var deBruijn64Lookup = []byte{ + 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, + 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, + 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, + 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, +} + +// trailingZeroBits returns the number of consecutive zero bits on the right +// side of the given Word. +// See Knuth, volume 4, section 7.3.1 +func trailingZeroBits(x Word) int { + // x & -x leaves only the right-most bit set in the word. Let k be the + // index of that bit. Since only a single bit is set, the value is two + // to the power of k. Multipling by a power of two is equivalent to + // left shifting, in this case by k bits. The de Bruijn constant is + // such that all six bit, consecutive substrings are distinct. + // Therefore, if we have a left shifted version of this constant we can + // find by how many bits it was shifted by looking at which six bit + // substring ended up at the top of the word. + switch _W { + case 32: + return int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27]) + case 64: + return int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58]) + default: + panic("Unknown word size") + } + + return 0 +} + + +// z = x << s +func (z nat) shl(x nat, s uint) nat { + m := len(x) + if m == 0 { + return z.make(0) + } + // m > 0 + + n := m + int(s/_W) + z = z.make(n + 1) + z[n] = shlVW(z[n-m:n], x, Word(s%_W)) + z[0 : n-m].clear() + + return z.norm() +} + + +// z = x >> s +func (z nat) shr(x nat, s uint) nat { + m := len(x) + n := m - int(s/_W) + if n <= 0 { + return z.make(0) + } + // n > 0 + + z = z.make(n) + shrVW(z, x[m-n:], Word(s%_W)) + + return z.norm() +} + + +func (z nat) and(x, y nat) nat { + m := len(x) + n := len(y) + if m > n { + m = n + } + // m <= n + + z = z.make(m) + for i := 0; i < m; i++ { + z[i] = x[i] & y[i] + } + + return z.norm() +} + + +func (z nat) andNot(x, y nat) nat { + m := len(x) + n := len(y) + if n > m { + n = m + } + // m >= n + + z = z.make(m) + for i := 0; i < n; i++ { + z[i] = x[i] &^ y[i] + } + copy(z[n:m], x[n:m]) + + return z.norm() +} + + +func (z nat) or(x, y nat) nat { + m := len(x) + n := len(y) + s := x + if m < n { + n, m = m, n + s = y + } + // m >= n + + z = z.make(m) + for i := 0; i < n; i++ { + z[i] = x[i] | y[i] + } + copy(z[n:m], s[n:m]) + + return z.norm() +} + + +func (z nat) xor(x, y nat) nat { + m := len(x) + n := len(y) + s := x + if m < n { + n, m = m, n + s = y + } + // m >= n + + z = z.make(m) + for i := 0; i < n; i++ { + z[i] = x[i] ^ y[i] + } + copy(z[n:m], s[n:m]) + + return z.norm() +} + + +// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2) +func greaterThan(x1, x2, y1, y2 Word) bool { return x1 > y1 || x1 == y1 && x2 > y2 } + + +// modW returns x % d. +func (x nat) modW(d Word) (r Word) { + // TODO(agl): we don't actually need to store the q value. + var q nat + q = q.make(len(x)) + return divWVW(q, 0, x, d) +} + + +// powersOfTwoDecompose finds q and k such that q * 1<<k = n and q is odd. +func (n nat) powersOfTwoDecompose() (q nat, k Word) { + if len(n) == 0 { + return n, 0 + } + + zeroWords := 0 + for n[zeroWords] == 0 { + zeroWords++ + } + // One of the words must be non-zero by invariant, therefore + // zeroWords < len(n). + x := trailingZeroBits(n[zeroWords]) + + q = q.make(len(n) - zeroWords) + shrVW(q, n[zeroWords:], Word(x)) + q = q.norm() + + k = Word(_W*zeroWords + x) + return +} + + +// random creates a random integer in [0..limit), using the space in z if +// possible. n is the bit length of limit. +func (z nat) random(rand *rand.Rand, limit nat, n int) nat { + bitLengthOfMSW := uint(n % _W) + if bitLengthOfMSW == 0 { + bitLengthOfMSW = _W + } + mask := Word((1 << bitLengthOfMSW) - 1) + z = z.make(len(limit)) + + for { + for i := range z { + switch _W { + case 32: + z[i] = Word(rand.Uint32()) + case 64: + z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32 + } + } + + z[len(limit)-1] &= mask + + if z.cmp(limit) < 0 { + break + } + } + + return z.norm() +} + + +// If m != nil, expNN calculates x**y mod m. Otherwise it calculates x**y. It +// reuses the storage of z if possible. +func (z nat) expNN(x, y, m nat) nat { + if alias(z, x) || alias(z, y) { + // We cannot allow in place modification of x or y. + z = nil + } + + if len(y) == 0 { + z = z.make(1) + z[0] = 1 + return z + } + + if m != nil { + // We likely end up being as long as the modulus. + z = z.make(len(m)) + } + z = z.set(x) + v := y[len(y)-1] + // It's invalid for the most significant word to be zero, therefore we + // will find a one bit. + shift := leadingZeros(v) + 1 + v <<= shift + var q nat + + const mask = 1 << (_W - 1) + + // We walk through the bits of the exponent one by one. Each time we + // see a bit, we square, thus doubling the power. If the bit is a one, + // we also multiply by x, thus adding one to the power. + + w := _W - int(shift) + for j := 0; j < w; j++ { + z = z.mul(z, z) + + if v&mask != 0 { + z = z.mul(z, x) + } + + if m != nil { + q, z = q.div(z, z, m) + } + + v <<= 1 + } + + for i := len(y) - 2; i >= 0; i-- { + v = y[i] + + for j := 0; j < _W; j++ { + z = z.mul(z, z) + + if v&mask != 0 { + z = z.mul(z, x) + } + + if m != nil { + q, z = q.div(z, z, m) + } + + v <<= 1 + } + } + + return z +} + + +// probablyPrime performs reps Miller-Rabin tests to check whether n is prime. +// If it returns true, n is prime with probability 1 - 1/4^reps. +// If it returns false, n is not prime. +func (n nat) probablyPrime(reps int) bool { + if len(n) == 0 { + return false + } + + if len(n) == 1 { + if n[0] < 2 { + return false + } + + if n[0]%2 == 0 { + return n[0] == 2 + } + + // We have to exclude these cases because we reject all + // multiples of these numbers below. + switch n[0] { + case 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53: + return true + } + } + + const primesProduct32 = 0xC0CFD797 // Π {p ∈ primes, 2 < p <= 29} + const primesProduct64 = 0xE221F97C30E94E1D // Π {p ∈ primes, 2 < p <= 53} + + var r Word + switch _W { + case 32: + r = n.modW(primesProduct32) + case 64: + r = n.modW(primesProduct64 & _M) + default: + panic("Unknown word size") + } + + if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 || + r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 { + return false + } + + if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 || + r%43 == 0 || r%47 == 0 || r%53 == 0) { + return false + } + + nm1 := nat(nil).sub(n, natOne) + // 1<<k * q = nm1; + q, k := nm1.powersOfTwoDecompose() + + nm3 := nat(nil).sub(nm1, natTwo) + rand := rand.New(rand.NewSource(int64(n[0]))) + + var x, y, quotient nat + nm3Len := nm3.bitLen() + +NextRandom: + for i := 0; i < reps; i++ { + x = x.random(rand, nm3, nm3Len) + x = x.add(x, natTwo) + y = y.expNN(x, q, n) + if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 { + continue + } + for j := Word(1); j < k; j++ { + y = y.mul(y, y) + quotient, y = quotient.div(y, y, n) + if y.cmp(nm1) == 0 { + continue NextRandom + } + if y.cmp(natOne) == 0 { + return false + } + } + return false + } + + return true +} diff --git a/libgo/go/big/nat_test.go b/libgo/go/big/nat_test.go new file mode 100644 index 000000000..0bcb94554 --- /dev/null +++ b/libgo/go/big/nat_test.go @@ -0,0 +1,358 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package big + +import "testing" + +var cmpTests = []struct { + x, y nat + r int +}{ + {nil, nil, 0}, + {nil, nat{}, 0}, + {nat{}, nil, 0}, + {nat{}, nat{}, 0}, + {nat{0}, nat{0}, 0}, + {nat{0}, nat{1}, -1}, + {nat{1}, nat{0}, 1}, + {nat{1}, nat{1}, 0}, + {nat{0, _M}, nat{1}, 1}, + {nat{1}, nat{0, _M}, -1}, + {nat{1, _M}, nat{0, _M}, 1}, + {nat{0, _M}, nat{1, _M}, -1}, + {nat{16, 571956, 8794, 68}, nat{837, 9146, 1, 754489}, -1}, + {nat{34986, 41, 105, 1957}, nat{56, 7458, 104, 1957}, 1}, +} + + +func TestCmp(t *testing.T) { + for i, a := range cmpTests { + r := a.x.cmp(a.y) + if r != a.r { + t.Errorf("#%d got r = %v; want %v", i, r, a.r) + } + } +} + + +type funNN func(z, x, y nat) nat +type argNN struct { + z, x, y nat +} + + +var sumNN = []argNN{ + {}, + {nat{1}, nil, nat{1}}, + {nat{1111111110}, nat{123456789}, nat{987654321}}, + {nat{0, 0, 0, 1}, nil, nat{0, 0, 0, 1}}, + {nat{0, 0, 0, 1111111110}, nat{0, 0, 0, 123456789}, nat{0, 0, 0, 987654321}}, + {nat{0, 0, 0, 1}, nat{0, 0, _M}, nat{0, 0, 1}}, +} + + +var prodNN = []argNN{ + {}, + {nil, nil, nil}, + {nil, nat{991}, nil}, + {nat{991}, nat{991}, nat{1}}, + {nat{991 * 991}, nat{991}, nat{991}}, + {nat{0, 0, 991 * 991}, nat{0, 991}, nat{0, 991}}, + {nat{1 * 991, 2 * 991, 3 * 991, 4 * 991}, nat{1, 2, 3, 4}, nat{991}}, + {nat{4, 11, 20, 30, 20, 11, 4}, nat{1, 2, 3, 4}, nat{4, 3, 2, 1}}, +} + + +func TestSet(t *testing.T) { + for _, a := range sumNN { + z := nat(nil).set(a.z) + if z.cmp(a.z) != 0 { + t.Errorf("got z = %v; want %v", z, a.z) + } + } +} + + +func testFunNN(t *testing.T, msg string, f funNN, a argNN) { + z := f(nil, a.x, a.y) + if z.cmp(a.z) != 0 { + t.Errorf("%s%+v\n\tgot z = %v; want %v", msg, a, z, a.z) + } +} + + +func TestFunNN(t *testing.T) { + for _, a := range sumNN { + arg := a + testFunNN(t, "add", nat.add, arg) + + arg = argNN{a.z, a.y, a.x} + testFunNN(t, "add symmetric", nat.add, arg) + + arg = argNN{a.x, a.z, a.y} + testFunNN(t, "sub", nat.sub, arg) + + arg = argNN{a.y, a.z, a.x} + testFunNN(t, "sub symmetric", nat.sub, arg) + } + + for _, a := range prodNN { + arg := a + testFunNN(t, "mul", nat.mul, arg) + + arg = argNN{a.z, a.y, a.x} + testFunNN(t, "mul symmetric", nat.mul, arg) + } +} + + +var mulRangesN = []struct { + a, b uint64 + prod string +}{ + {0, 0, "0"}, + {1, 1, "1"}, + {1, 2, "2"}, + {1, 3, "6"}, + {10, 10, "10"}, + {0, 100, "0"}, + {0, 1e9, "0"}, + {1, 0, "1"}, // empty range + {100, 1, "1"}, // empty range + {1, 10, "3628800"}, // 10! + {1, 20, "2432902008176640000"}, // 20! + {1, 100, + "933262154439441526816992388562667004907159682643816214685929" + + "638952175999932299156089414639761565182862536979208272237582" + + "51185210916864000000000000000000000000", // 100! + }, +} + + +func TestMulRangeN(t *testing.T) { + for i, r := range mulRangesN { + prod := nat(nil).mulRange(r.a, r.b).string(10) + if prod != r.prod { + t.Errorf("#%d: got %s; want %s", i, prod, r.prod) + } + } +} + + +var mulArg, mulTmp nat + +func init() { + const n = 1000 + mulArg = make(nat, n) + for i := 0; i < n; i++ { + mulArg[i] = _M + } +} + + +func benchmarkMulLoad() { + for j := 1; j <= 10; j++ { + x := mulArg[0 : j*100] + mulTmp.mul(x, x) + } +} + + +func BenchmarkMul(b *testing.B) { + for i := 0; i < b.N; i++ { + benchmarkMulLoad() + } +} + + +var tab = []struct { + x nat + b int + s string +}{ + {nil, 10, "0"}, + {nat{1}, 10, "1"}, + {nat{10}, 10, "10"}, + {nat{1234567890}, 10, "1234567890"}, +} + + +func TestString(t *testing.T) { + for _, a := range tab { + s := a.x.string(a.b) + if s != a.s { + t.Errorf("string%+v\n\tgot s = %s; want %s", a, s, a.s) + } + + x, b, n := nat(nil).scan(a.s, a.b) + if x.cmp(a.x) != 0 { + t.Errorf("scan%+v\n\tgot z = %v; want %v", a, x, a.x) + } + if b != a.b { + t.Errorf("scan%+v\n\tgot b = %d; want %d", a, b, a.b) + } + if n != len(a.s) { + t.Errorf("scan%+v\n\tgot n = %d; want %d", a, n, len(a.s)) + } + } +} + + +func TestLeadingZeros(t *testing.T) { + var x Word = _B >> 1 + for i := 0; i <= _W; i++ { + if int(leadingZeros(x)) != i { + t.Errorf("failed at %x: got %d want %d", x, leadingZeros(x), i) + } + x >>= 1 + } +} + + +type shiftTest struct { + in nat + shift uint + out nat +} + + +var leftShiftTests = []shiftTest{ + {nil, 0, nil}, + {nil, 1, nil}, + {natOne, 0, natOne}, + {natOne, 1, natTwo}, + {nat{1 << (_W - 1)}, 1, nat{0}}, + {nat{1 << (_W - 1), 0}, 1, nat{0, 1}}, +} + + +func TestShiftLeft(t *testing.T) { + for i, test := range leftShiftTests { + var z nat + z = z.shl(test.in, test.shift) + for j, d := range test.out { + if j >= len(z) || z[j] != d { + t.Errorf("#%d: got: %v want: %v", i, z, test.out) + break + } + } + } +} + + +var rightShiftTests = []shiftTest{ + {nil, 0, nil}, + {nil, 1, nil}, + {natOne, 0, natOne}, + {natOne, 1, nil}, + {natTwo, 1, natOne}, + {nat{0, 1}, 1, nat{1 << (_W - 1)}}, + {nat{2, 1, 1}, 1, nat{1<<(_W-1) + 1, 1 << (_W - 1)}}, +} + + +func TestShiftRight(t *testing.T) { + for i, test := range rightShiftTests { + var z nat + z = z.shr(test.in, test.shift) + for j, d := range test.out { + if j >= len(z) || z[j] != d { + t.Errorf("#%d: got: %v want: %v", i, z, test.out) + break + } + } + } +} + + +type modWTest struct { + in string + dividend string + out string +} + + +var modWTests32 = []modWTest{ + {"23492635982634928349238759823742", "252341", "220170"}, +} + + +var modWTests64 = []modWTest{ + {"6527895462947293856291561095690465243862946", "524326975699234", "375066989628668"}, +} + + +func runModWTests(t *testing.T, tests []modWTest) { + for i, test := range tests { + in, _ := new(Int).SetString(test.in, 10) + d, _ := new(Int).SetString(test.dividend, 10) + out, _ := new(Int).SetString(test.out, 10) + + r := in.abs.modW(d.abs[0]) + if r != out.abs[0] { + t.Errorf("#%d failed: got %s want %s", i, r, out) + } + } +} + + +func TestModW(t *testing.T) { + if _W >= 32 { + runModWTests(t, modWTests32) + } + if _W >= 64 { + runModWTests(t, modWTests64) + } +} + + +func TestTrailingZeroBits(t *testing.T) { + var x Word + x-- + for i := 0; i < _W; i++ { + if trailingZeroBits(x) != i { + t.Errorf("Failed at step %d: x: %x got: %d", i, x, trailingZeroBits(x)) + } + x <<= 1 + } +} + + +var expNNTests = []struct { + x, y, m string + out string +}{ + {"0x8000000000000000", "2", "", "0x40000000000000000000000000000000"}, + {"0x8000000000000000", "2", "6719", "4944"}, + {"0x8000000000000000", "3", "6719", "5447"}, + {"0x8000000000000000", "1000", "6719", "1603"}, + {"0x8000000000000000", "1000000", "6719", "3199"}, + { + "2938462938472983472983659726349017249287491026512746239764525612965293865296239471239874193284792387498274256129746192347", + "298472983472983471903246121093472394872319615612417471234712061", + "29834729834729834729347290846729561262544958723956495615629569234729836259263598127342374289365912465901365498236492183464", + "23537740700184054162508175125554701713153216681790245129157191391322321508055833908509185839069455749219131480588829346291", + }, +} + + +func TestExpNN(t *testing.T) { + for i, test := range expNNTests { + x, _, _ := nat(nil).scan(test.x, 0) + y, _, _ := nat(nil).scan(test.y, 0) + out, _, _ := nat(nil).scan(test.out, 0) + + var m nat + + if len(test.m) > 0 { + m, _, _ = nat(nil).scan(test.m, 0) + } + + z := nat(nil).expNN(x, y, m) + if z.cmp(out) != 0 { + t.Errorf("#%d got %v want %v", i, z, out) + } + } +} diff --git a/libgo/go/big/rat.go b/libgo/go/big/rat.go new file mode 100644 index 000000000..e70673a1c --- /dev/null +++ b/libgo/go/big/rat.go @@ -0,0 +1,326 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file implements multi-precision rational numbers. + +package big + +import "strings" + +// A Rat represents a quotient a/b of arbitrary precision. The zero value for +// a Rat, 0/0, is not a legal Rat. +type Rat struct { + a Int + b nat +} + + +// NewRat creates a new Rat with numerator a and denominator b. +func NewRat(a, b int64) *Rat { + return new(Rat).SetFrac64(a, b) +} + + +// SetFrac sets z to a/b and returns z. +func (z *Rat) SetFrac(a, b *Int) *Rat { + z.a.Set(a) + z.a.neg = a.neg != b.neg + z.b = z.b.set(b.abs) + return z.norm() +} + + +// SetFrac64 sets z to a/b and returns z. +func (z *Rat) SetFrac64(a, b int64) *Rat { + z.a.SetInt64(a) + if b < 0 { + b = -b + z.a.neg = !z.a.neg + } + z.b = z.b.setUint64(uint64(b)) + return z.norm() +} + + +// SetInt sets z to x (by making a copy of x) and returns z. +func (z *Rat) SetInt(x *Int) *Rat { + z.a.Set(x) + z.b = z.b.setWord(1) + return z +} + + +// SetInt64 sets z to x and returns z. +func (z *Rat) SetInt64(x int64) *Rat { + z.a.SetInt64(x) + z.b = z.b.setWord(1) + return z +} + + +// Sign returns: +// +// -1 if x < 0 +// 0 if x == 0 +// +1 if x > 0 +// +func (x *Rat) Sign() int { + return x.a.Sign() +} + + +// IsInt returns true if the denominator of x is 1. +func (x *Rat) IsInt() bool { + return len(x.b) == 1 && x.b[0] == 1 +} + + +// Num returns the numerator of z; it may be <= 0. +// The result is a reference to z's numerator; it +// may change if a new value is assigned to z. +func (z *Rat) Num() *Int { + return &z.a +} + + +// Demom returns the denominator of z; it is always > 0. +// The result is a reference to z's denominator; it +// may change if a new value is assigned to z. +func (z *Rat) Denom() *Int { + return &Int{false, z.b} +} + + +func gcd(x, y nat) nat { + // Euclidean algorithm. + var a, b nat + a = a.set(x) + b = b.set(y) + for len(b) != 0 { + var q, r nat + _, r = q.div(r, a, b) + a = b + b = r + } + return a +} + + +func (z *Rat) norm() *Rat { + f := gcd(z.a.abs, z.b) + if len(z.a.abs) == 0 { + // z == 0 + z.a.neg = false // normalize sign + z.b = z.b.setWord(1) + return z + } + if f.cmp(natOne) != 0 { + z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f) + z.b, _ = z.b.div(nil, z.b, f) + } + return z +} + + +func mulNat(x *Int, y nat) *Int { + var z Int + z.abs = z.abs.mul(x.abs, y) + z.neg = len(z.abs) > 0 && x.neg + return &z +} + + +// Cmp compares x and y and returns: +// +// -1 if x < y +// 0 if x == y +// +1 if x > y +// +func (x *Rat) Cmp(y *Rat) (r int) { + return mulNat(&x.a, y.b).Cmp(mulNat(&y.a, x.b)) +} + + +// Abs sets z to |x| (the absolute value of x) and returns z. +func (z *Rat) Abs(x *Rat) *Rat { + z.a.Abs(&x.a) + z.b = z.b.set(x.b) + return z +} + + +// Add sets z to the sum x+y and returns z. +func (z *Rat) Add(x, y *Rat) *Rat { + a1 := mulNat(&x.a, y.b) + a2 := mulNat(&y.a, x.b) + z.a.Add(a1, a2) + z.b = z.b.mul(x.b, y.b) + return z.norm() +} + + +// Sub sets z to the difference x-y and returns z. +func (z *Rat) Sub(x, y *Rat) *Rat { + a1 := mulNat(&x.a, y.b) + a2 := mulNat(&y.a, x.b) + z.a.Sub(a1, a2) + z.b = z.b.mul(x.b, y.b) + return z.norm() +} + + +// Mul sets z to the product x*y and returns z. +func (z *Rat) Mul(x, y *Rat) *Rat { + z.a.Mul(&x.a, &y.a) + z.b = z.b.mul(x.b, y.b) + return z.norm() +} + + +// Quo sets z to the quotient x/y and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +func (z *Rat) Quo(x, y *Rat) *Rat { + if len(y.a.abs) == 0 { + panic("division by zero") + } + a := mulNat(&x.a, y.b) + b := mulNat(&y.a, x.b) + z.a.abs = a.abs + z.b = b.abs + z.a.neg = a.neg != b.neg + return z.norm() +} + + +// Neg sets z to -x (by making a copy of x if necessary) and returns z. +func (z *Rat) Neg(x *Rat) *Rat { + z.a.Neg(&x.a) + z.b = z.b.set(x.b) + return z +} + + +// Set sets z to x (by making a copy of x if necessary) and returns z. +func (z *Rat) Set(x *Rat) *Rat { + z.a.Set(&x.a) + z.b = z.b.set(x.b) + return z +} + + +// SetString sets z to the value of s and returns z and a boolean indicating +// success. s can be given as a fraction "a/b" or as a floating-point number +// optionally followed by an exponent. If the operation failed, the value of z +// is undefined. +func (z *Rat) SetString(s string) (*Rat, bool) { + if len(s) == 0 { + return z, false + } + + // check for a quotient + sep := strings.Index(s, "/") + if sep >= 0 { + if _, ok := z.a.SetString(s[0:sep], 10); !ok { + return z, false + } + s = s[sep+1:] + var n int + if z.b, _, n = z.b.scan(s, 10); n != len(s) { + return z, false + } + return z.norm(), true + } + + // check for a decimal point + sep = strings.Index(s, ".") + // check for an exponent + e := strings.IndexAny(s, "eE") + var exp Int + if e >= 0 { + if e < sep { + // The E must come after the decimal point. + return z, false + } + if _, ok := exp.SetString(s[e+1:], 10); !ok { + return z, false + } + s = s[0:e] + } + if sep >= 0 { + s = s[0:sep] + s[sep+1:] + exp.Sub(&exp, NewInt(int64(len(s)-sep))) + } + + if _, ok := z.a.SetString(s, 10); !ok { + return z, false + } + powTen := nat{}.expNN(natTen, exp.abs, nil) + if exp.neg { + z.b = powTen + z.norm() + } else { + z.a.abs = z.a.abs.mul(z.a.abs, powTen) + z.b = z.b.setWord(1) + } + + return z, true +} + + +// String returns a string representation of z in the form "a/b" (even if b == 1). +func (z *Rat) String() string { + return z.a.String() + "/" + z.b.string(10) +} + + +// RatString returns a string representation of z in the form "a/b" if b != 1, +// and in the form "a" if b == 1. +func (z *Rat) RatString() string { + if z.IsInt() { + return z.a.String() + } + return z.String() +} + + +// FloatString returns a string representation of z in decimal form with prec +// digits of precision after the decimal point and the last digit rounded. +func (z *Rat) FloatString(prec int) string { + if z.IsInt() { + return z.a.String() + } + + q, r := nat{}.div(nat{}, z.a.abs, z.b) + + p := natOne + if prec > 0 { + p = nat{}.expNN(natTen, nat{}.setUint64(uint64(prec)), nil) + } + + r = r.mul(r, p) + r, r2 := r.div(nat{}, r, z.b) + + // see if we need to round up + r2 = r2.add(r2, r2) + if z.b.cmp(r2) <= 0 { + r = r.add(r, natOne) + if r.cmp(p) >= 0 { + q = nat{}.add(q, natOne) + r = nat{}.sub(r, p) + } + } + + s := q.string(10) + if z.a.neg { + s = "-" + s + } + + if prec > 0 { + rs := r.string(10) + leadingZeros := prec - len(rs) + s += "." + strings.Repeat("0", leadingZeros) + rs + } + + return s +} diff --git a/libgo/go/big/rat_test.go b/libgo/go/big/rat_test.go new file mode 100644 index 000000000..8f42949b0 --- /dev/null +++ b/libgo/go/big/rat_test.go @@ -0,0 +1,282 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package big + +import "testing" + + +var setStringTests = []struct { + in, out string + ok bool +}{ + {"0", "0", true}, + {"-0", "0", true}, + {"1", "1", true}, + {"-1", "-1", true}, + {"1.", "1", true}, + {"1e0", "1", true}, + {"1.e1", "10", true}, + {in: "1e", ok: false}, + {in: "1.e", ok: false}, + {in: "1e+14e-5", ok: false}, + {in: "1e4.5", ok: false}, + {in: "r", ok: false}, + {in: "a/b", ok: false}, + {in: "a.b", ok: false}, + {"-0.1", "-1/10", true}, + {"-.1", "-1/10", true}, + {"2/4", "1/2", true}, + {".25", "1/4", true}, + {"-1/5", "-1/5", true}, + {"8129567.7690E14", "812956776900000000000", true}, + {"78189e+4", "781890000", true}, + {"553019.8935e+8", "55301989350000", true}, + {"98765432109876543210987654321e-10", "98765432109876543210987654321/10000000000", true}, + {"9877861857500000E-7", "3951144743/4", true}, + {"2169378.417e-3", "2169378417/1000000", true}, + {"884243222337379604041632732738665534", "884243222337379604041632732738665534", true}, + {"53/70893980658822810696", "53/70893980658822810696", true}, + {"106/141787961317645621392", "53/70893980658822810696", true}, + {"204211327800791583.81095", "4084226556015831676219/20000", true}, +} + +func TestRatSetString(t *testing.T) { + for i, test := range setStringTests { + x, ok := new(Rat).SetString(test.in) + + if ok != test.ok || ok && x.RatString() != test.out { + t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) + } + } +} + + +var floatStringTests = []struct { + in string + prec int + out string +}{ + {"0", 0, "0"}, + {"0", 4, "0"}, + {"1", 0, "1"}, + {"1", 2, "1"}, + {"-1", 0, "-1"}, + {".25", 2, "0.25"}, + {".25", 1, "0.3"}, + {"-1/3", 3, "-0.333"}, + {"-2/3", 4, "-0.6667"}, + {"0.96", 1, "1.0"}, + {"0.999", 2, "1.00"}, + {"0.9", 0, "1"}, + {".25", -1, "0"}, + {".55", -1, "1"}, +} + +func TestFloatString(t *testing.T) { + for i, test := range floatStringTests { + x, _ := new(Rat).SetString(test.in) + + if x.FloatString(test.prec) != test.out { + t.Errorf("#%d got %s want %s", i, x.FloatString(test.prec), test.out) + } + } +} + + +func TestRatSign(t *testing.T) { + zero := NewRat(0, 1) + for _, a := range setStringTests { + var x Rat + x.SetString(a.in) + s := x.Sign() + e := x.Cmp(zero) + if s != e { + t.Errorf("got %d; want %d for z = %v", s, e, &x) + } + } +} + + +var ratCmpTests = []struct { + rat1, rat2 string + out int +}{ + {"0", "0/1", 0}, + {"1/1", "1", 0}, + {"-1", "-2/2", 0}, + {"1", "0", 1}, + {"0/1", "1/1", -1}, + {"-5/1434770811533343057144", "-5/1434770811533343057145", -1}, + {"49832350382626108453/8964749413", "49832350382626108454/8964749413", -1}, + {"-37414950961700930/7204075375675961", "37414950961700930/7204075375675961", -1}, + {"37414950961700930/7204075375675961", "74829901923401860/14408150751351922", 0}, +} + +func TestRatCmp(t *testing.T) { + for i, test := range ratCmpTests { + x, _ := new(Rat).SetString(test.rat1) + y, _ := new(Rat).SetString(test.rat2) + + out := x.Cmp(y) + if out != test.out { + t.Errorf("#%d got out = %v; want %v", i, out, test.out) + } + } +} + + +func TestIsInt(t *testing.T) { + one := NewInt(1) + for _, a := range setStringTests { + var x Rat + x.SetString(a.in) + i := x.IsInt() + e := x.Denom().Cmp(one) == 0 + if i != e { + t.Errorf("got %v; want %v for z = %v", i, e, &x) + } + } +} + + +func TestRatAbs(t *testing.T) { + zero := NewRat(0, 1) + for _, a := range setStringTests { + var z Rat + z.SetString(a.in) + var e Rat + e.Set(&z) + if e.Cmp(zero) < 0 { + e.Sub(zero, &e) + } + z.Abs(&z) + if z.Cmp(&e) != 0 { + t.Errorf("got z = %v; want %v", &z, &e) + } + } +} + + +type ratBinFun func(z, x, y *Rat) *Rat +type ratBinArg struct { + x, y, z string +} + +func testRatBin(t *testing.T, i int, name string, f ratBinFun, a ratBinArg) { + x, _ := NewRat(0, 1).SetString(a.x) + y, _ := NewRat(0, 1).SetString(a.y) + z, _ := NewRat(0, 1).SetString(a.z) + out := f(NewRat(0, 1), x, y) + + if out.Cmp(z) != 0 { + t.Errorf("%s #%d got %s want %s", name, i, out, z) + } +} + + +var ratBinTests = []struct { + x, y string + sum, prod string +}{ + {"0", "0", "0", "0"}, + {"0", "1", "1", "0"}, + {"-1", "0", "-1", "0"}, + {"-1", "1", "0", "-1"}, + {"1", "1", "2", "1"}, + {"1/2", "1/2", "1", "1/4"}, + {"1/4", "1/3", "7/12", "1/12"}, + {"2/5", "-14/3", "-64/15", "-28/15"}, + {"4707/49292519774798173060", "-3367/70976135186689855734", "84058377121001851123459/1749296273614329067191168098769082663020", "-1760941/388732505247628681598037355282018369560"}, + {"-61204110018146728334/3", "-31052192278051565633/2", "-215564796870448153567/6", "950260896245257153059642991192710872711/3"}, + {"-854857841473707320655/4237645934602118692642972629634714039", "-18/31750379913563777419", "-27/133467566250814981", "15387441146526731771790/134546868362786310073779084329032722548987800600710485341"}, + {"618575745270541348005638912139/19198433543745179392300736", "-19948846211000086/637313996471", "27674141753240653/30123979153216", "-6169936206128396568797607742807090270137721977/6117715203873571641674006593837351328"}, + {"-3/26206484091896184128", "5/2848423294177090248", "15310893822118706237/9330894968229805033368778458685147968", "-5/24882386581946146755650075889827061248"}, + {"26946729/330400702820", "41563965/225583428284", "1238218672302860271/4658307703098666660055", "224002580204097/14906584649915733312176"}, + {"-8259900599013409474/7", "-84829337473700364773/56707961321161574960", "-468402123685491748914621885145127724451/396955729248131024720", "350340947706464153265156004876107029701/198477864624065512360"}, + {"575775209696864/1320203974639986246357", "29/712593081308", "410331716733912717985762465/940768218243776489278275419794956", "808/45524274987585732633"}, + {"1786597389946320496771/2066653520653241", "6269770/1992362624741777", "3559549865190272133656109052308126637/4117523232840525481453983149257", "8967230/3296219033"}, + {"-36459180403360509753/32150500941194292113930", "9381566963714/9633539", "301622077145533298008420642898530153/309723104686531919656937098270", "-3784609207827/3426986245"}, +} + +func TestRatBin(t *testing.T) { + for i, test := range ratBinTests { + arg := ratBinArg{test.x, test.y, test.sum} + testRatBin(t, i, "Add", (*Rat).Add, arg) + + arg = ratBinArg{test.y, test.x, test.sum} + testRatBin(t, i, "Add symmetric", (*Rat).Add, arg) + + arg = ratBinArg{test.sum, test.x, test.y} + testRatBin(t, i, "Sub", (*Rat).Sub, arg) + + arg = ratBinArg{test.sum, test.y, test.x} + testRatBin(t, i, "Sub symmetric", (*Rat).Sub, arg) + + arg = ratBinArg{test.x, test.y, test.prod} + testRatBin(t, i, "Mul", (*Rat).Mul, arg) + + arg = ratBinArg{test.y, test.x, test.prod} + testRatBin(t, i, "Mul symmetric", (*Rat).Mul, arg) + + if test.x != "0" { + arg = ratBinArg{test.prod, test.x, test.y} + testRatBin(t, i, "Quo", (*Rat).Quo, arg) + } + + if test.y != "0" { + arg = ratBinArg{test.prod, test.y, test.x} + testRatBin(t, i, "Quo symmetric", (*Rat).Quo, arg) + } + } +} + + +func TestIssue820(t *testing.T) { + x := NewRat(3, 1) + y := NewRat(2, 1) + z := y.Quo(x, y) + q := NewRat(3, 2) + if z.Cmp(q) != 0 { + t.Errorf("got %s want %s", z, q) + } + + y = NewRat(3, 1) + x = NewRat(2, 1) + z = y.Quo(x, y) + q = NewRat(2, 3) + if z.Cmp(q) != 0 { + t.Errorf("got %s want %s", z, q) + } + + x = NewRat(3, 1) + z = x.Quo(x, x) + q = NewRat(3, 3) + if z.Cmp(q) != 0 { + t.Errorf("got %s want %s", z, q) + } +} + + +var setFrac64Tests = []struct { + a, b int64 + out string +}{ + {0, 1, "0"}, + {0, -1, "0"}, + {1, 1, "1"}, + {-1, 1, "-1"}, + {1, -1, "-1"}, + {-1, -1, "1"}, + {-9223372036854775808, -9223372036854775808, "1"}, +} + +func TestRatSetFrac64Rat(t *testing.T) { + for i, test := range setFrac64Tests { + x := new(Rat).SetFrac64(test.a, test.b) + if x.RatString() != test.out { + t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) + } + } +} |