summaryrefslogtreecommitdiff
path: root/libgo/go/crypto/aes/block.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/crypto/aes/block.go')
-rw-r--r--libgo/go/crypto/aes/block.go176
1 files changed, 176 insertions, 0 deletions
diff --git a/libgo/go/crypto/aes/block.go b/libgo/go/crypto/aes/block.go
new file mode 100644
index 000000000..130cd011c
--- /dev/null
+++ b/libgo/go/crypto/aes/block.go
@@ -0,0 +1,176 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This Go implementation is derived in part from the reference
+// ANSI C implementation, which carries the following notice:
+//
+// rijndael-alg-fst.c
+//
+// @version 3.0 (December 2000)
+//
+// Optimised ANSI C code for the Rijndael cipher (now AES)
+//
+// @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
+// @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
+// @author Paulo Barreto <paulo.barreto@terra.com.br>
+//
+// This code is hereby placed in the public domain.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
+// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission
+// for implementation details.
+// http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
+// http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
+
+package aes
+
+// Encrypt one block from src into dst, using the expanded key xk.
+func encryptBlock(xk []uint32, dst, src []byte) {
+ var s0, s1, s2, s3, t0, t1, t2, t3 uint32
+
+ s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
+ s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
+ s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11])
+ s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15])
+
+ // First round just XORs input with key.
+ s0 ^= xk[0]
+ s1 ^= xk[1]
+ s2 ^= xk[2]
+ s3 ^= xk[3]
+
+ // Middle rounds shuffle using tables.
+ // Number of rounds is set by length of expanded key.
+ nr := len(xk)/4 - 2 // - 2: one above, one more below
+ k := 4
+ for r := 0; r < nr; r++ {
+ t0 = xk[k+0] ^ te[0][s0>>24] ^ te[1][s1>>16&0xff] ^ te[2][s2>>8&0xff] ^ te[3][s3&0xff]
+ t1 = xk[k+1] ^ te[0][s1>>24] ^ te[1][s2>>16&0xff] ^ te[2][s3>>8&0xff] ^ te[3][s0&0xff]
+ t2 = xk[k+2] ^ te[0][s2>>24] ^ te[1][s3>>16&0xff] ^ te[2][s0>>8&0xff] ^ te[3][s1&0xff]
+ t3 = xk[k+3] ^ te[0][s3>>24] ^ te[1][s0>>16&0xff] ^ te[2][s1>>8&0xff] ^ te[3][s2&0xff]
+ k += 4
+ s0, s1, s2, s3 = t0, t1, t2, t3
+ }
+
+ // Last round uses s-box directly and XORs to produce output.
+ s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff])
+ s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff])
+ s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff])
+ s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff])
+
+ s0 ^= xk[k+0]
+ s1 ^= xk[k+1]
+ s2 ^= xk[k+2]
+ s3 ^= xk[k+3]
+
+ dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0)
+ dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1)
+ dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2)
+ dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3)
+}
+
+// Decrypt one block from src into dst, using the expanded key xk.
+func decryptBlock(xk []uint32, dst, src []byte) {
+ var s0, s1, s2, s3, t0, t1, t2, t3 uint32
+
+ s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
+ s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
+ s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11])
+ s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15])
+
+ // First round just XORs input with key.
+ s0 ^= xk[0]
+ s1 ^= xk[1]
+ s2 ^= xk[2]
+ s3 ^= xk[3]
+
+ // Middle rounds shuffle using tables.
+ // Number of rounds is set by length of expanded key.
+ nr := len(xk)/4 - 2 // - 2: one above, one more below
+ k := 4
+ for r := 0; r < nr; r++ {
+ t0 = xk[k+0] ^ td[0][s0>>24] ^ td[1][s3>>16&0xff] ^ td[2][s2>>8&0xff] ^ td[3][s1&0xff]
+ t1 = xk[k+1] ^ td[0][s1>>24] ^ td[1][s0>>16&0xff] ^ td[2][s3>>8&0xff] ^ td[3][s2&0xff]
+ t2 = xk[k+2] ^ td[0][s2>>24] ^ td[1][s1>>16&0xff] ^ td[2][s0>>8&0xff] ^ td[3][s3&0xff]
+ t3 = xk[k+3] ^ td[0][s3>>24] ^ td[1][s2>>16&0xff] ^ td[2][s1>>8&0xff] ^ td[3][s0&0xff]
+ k += 4
+ s0, s1, s2, s3 = t0, t1, t2, t3
+ }
+
+ // Last round uses s-box directly and XORs to produce output.
+ s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff])
+ s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff])
+ s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff])
+ s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff])
+
+ s0 ^= xk[k+0]
+ s1 ^= xk[k+1]
+ s2 ^= xk[k+2]
+ s3 ^= xk[k+3]
+
+ dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0)
+ dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1)
+ dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2)
+ dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3)
+}
+
+// Apply sbox0 to each byte in w.
+func subw(w uint32) uint32 {
+ return uint32(sbox0[w>>24])<<24 |
+ uint32(sbox0[w>>16&0xff])<<16 |
+ uint32(sbox0[w>>8&0xff])<<8 |
+ uint32(sbox0[w&0xff])
+}
+
+// Rotate
+func rotw(w uint32) uint32 { return w<<8 | w>>24 }
+
+// Key expansion algorithm. See FIPS-197, Figure 11.
+// Their rcon[i] is our powx[i-1] << 24.
+func expandKey(key []byte, enc, dec []uint32) {
+ // Encryption key setup.
+ var i int
+ nk := len(key) / 4
+ for i = 0; i < nk; i++ {
+ enc[i] = uint32(key[4*i])<<24 | uint32(key[4*i+1])<<16 | uint32(key[4*i+2])<<8 | uint32(key[4*i+3])
+ }
+ for ; i < len(enc); i++ {
+ t := enc[i-1]
+ if i%nk == 0 {
+ t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24)
+ } else if nk > 6 && i%nk == 4 {
+ t = subw(t)
+ }
+ enc[i] = enc[i-nk] ^ t
+ }
+
+ // Derive decryption key from encryption key.
+ // Reverse the 4-word round key sets from enc to produce dec.
+ // All sets but the first and last get the MixColumn transform applied.
+ if dec == nil {
+ return
+ }
+ n := len(enc)
+ for i := 0; i < n; i += 4 {
+ ei := n - i - 4
+ for j := 0; j < 4; j++ {
+ x := enc[ei+j]
+ if i > 0 && i+4 < n {
+ x = td[0][sbox0[x>>24]] ^ td[1][sbox0[x>>16&0xff]] ^ td[2][sbox0[x>>8&0xff]] ^ td[3][sbox0[x&0xff]]
+ }
+ dec[i+j] = x
+ }
+ }
+}