summaryrefslogtreecommitdiff
path: root/libgo/go/crypto/rsa/rsa.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/crypto/rsa/rsa.go')
-rw-r--r--libgo/go/crypto/rsa/rsa.go445
1 files changed, 445 insertions, 0 deletions
diff --git a/libgo/go/crypto/rsa/rsa.go b/libgo/go/crypto/rsa/rsa.go
new file mode 100644
index 000000000..c7a8d2053
--- /dev/null
+++ b/libgo/go/crypto/rsa/rsa.go
@@ -0,0 +1,445 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This package implements RSA encryption as specified in PKCS#1.
+package rsa
+
+// TODO(agl): Add support for PSS padding.
+
+import (
+ "big"
+ "crypto/subtle"
+ "hash"
+ "io"
+ "os"
+)
+
+var bigZero = big.NewInt(0)
+var bigOne = big.NewInt(1)
+
+// randomPrime returns a number, p, of the given size, such that p is prime
+// with high probability.
+func randomPrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
+ if bits < 1 {
+ err = os.EINVAL
+ }
+
+ bytes := make([]byte, (bits+7)/8)
+ p = new(big.Int)
+
+ for {
+ _, err = io.ReadFull(rand, bytes)
+ if err != nil {
+ return
+ }
+
+ // Don't let the value be too small.
+ bytes[0] |= 0x80
+ // Make the value odd since an even number this large certainly isn't prime.
+ bytes[len(bytes)-1] |= 1
+
+ p.SetBytes(bytes)
+ if big.ProbablyPrime(p, 20) {
+ return
+ }
+ }
+
+ return
+}
+
+// randomNumber returns a uniform random value in [0, max).
+func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) {
+ k := (max.BitLen() + 7) / 8
+
+ // r is the number of bits in the used in the most significant byte of
+ // max.
+ r := uint(max.BitLen() % 8)
+ if r == 0 {
+ r = 8
+ }
+
+ bytes := make([]byte, k)
+ n = new(big.Int)
+
+ for {
+ _, err = io.ReadFull(rand, bytes)
+ if err != nil {
+ return
+ }
+
+ // Clear bits in the first byte to increase the probability
+ // that the candidate is < max.
+ bytes[0] &= uint8(int(1<<r) - 1)
+
+ n.SetBytes(bytes)
+ if n.Cmp(max) < 0 {
+ return
+ }
+ }
+
+ return
+}
+
+// A PublicKey represents the public part of an RSA key.
+type PublicKey struct {
+ N *big.Int // modulus
+ E int // public exponent
+}
+
+// A PrivateKey represents an RSA key
+type PrivateKey struct {
+ PublicKey // public part.
+ D *big.Int // private exponent
+ P, Q *big.Int // prime factors of N
+}
+
+// Validate performs basic sanity checks on the key.
+// It returns nil if the key is valid, or else an os.Error describing a problem.
+
+func (priv PrivateKey) Validate() os.Error {
+ // Check that p and q are prime. Note that this is just a sanity
+ // check. Since the random witnesses chosen by ProbablyPrime are
+ // deterministic, given the candidate number, it's easy for an attack
+ // to generate composites that pass this test.
+ if !big.ProbablyPrime(priv.P, 20) {
+ return os.ErrorString("P is composite")
+ }
+ if !big.ProbablyPrime(priv.Q, 20) {
+ return os.ErrorString("Q is composite")
+ }
+
+ // Check that p*q == n.
+ modulus := new(big.Int).Mul(priv.P, priv.Q)
+ if modulus.Cmp(priv.N) != 0 {
+ return os.ErrorString("invalid modulus")
+ }
+ // Check that e and totient(p, q) are coprime.
+ pminus1 := new(big.Int).Sub(priv.P, bigOne)
+ qminus1 := new(big.Int).Sub(priv.Q, bigOne)
+ totient := new(big.Int).Mul(pminus1, qminus1)
+ e := big.NewInt(int64(priv.E))
+ gcd := new(big.Int)
+ x := new(big.Int)
+ y := new(big.Int)
+ big.GcdInt(gcd, x, y, totient, e)
+ if gcd.Cmp(bigOne) != 0 {
+ return os.ErrorString("invalid public exponent E")
+ }
+ // Check that de ≡ 1 (mod totient(p, q))
+ de := new(big.Int).Mul(priv.D, e)
+ de.Mod(de, totient)
+ if de.Cmp(bigOne) != 0 {
+ return os.ErrorString("invalid private exponent D")
+ }
+ return nil
+}
+
+// GenerateKeyPair generates an RSA keypair of the given bit size.
+func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
+ priv = new(PrivateKey)
+ // Smaller public exponents lead to faster public key
+ // operations. Since the exponent must be coprime to
+ // (p-1)(q-1), the smallest possible value is 3. Some have
+ // suggested that a larger exponent (often 2**16+1) be used
+ // since previous implementation bugs[1] were avoided when this
+ // was the case. However, there are no current reasons not to use
+ // small exponents.
+ // [1] http://marc.info/?l=cryptography&m=115694833312008&w=2
+ priv.E = 3
+
+ pminus1 := new(big.Int)
+ qminus1 := new(big.Int)
+ totient := new(big.Int)
+
+ for {
+ p, err := randomPrime(rand, bits/2)
+ if err != nil {
+ return nil, err
+ }
+
+ q, err := randomPrime(rand, bits/2)
+ if err != nil {
+ return nil, err
+ }
+
+ if p.Cmp(q) == 0 {
+ continue
+ }
+
+ n := new(big.Int).Mul(p, q)
+ pminus1.Sub(p, bigOne)
+ qminus1.Sub(q, bigOne)
+ totient.Mul(pminus1, qminus1)
+
+ g := new(big.Int)
+ priv.D = new(big.Int)
+ y := new(big.Int)
+ e := big.NewInt(int64(priv.E))
+ big.GcdInt(g, priv.D, y, e, totient)
+
+ if g.Cmp(bigOne) == 0 {
+ priv.D.Add(priv.D, totient)
+ priv.P = p
+ priv.Q = q
+ priv.N = n
+
+ break
+ }
+ }
+
+ return
+}
+
+// incCounter increments a four byte, big-endian counter.
+func incCounter(c *[4]byte) {
+ if c[3]++; c[3] != 0 {
+ return
+ }
+ if c[2]++; c[2] != 0 {
+ return
+ }
+ if c[1]++; c[1] != 0 {
+ return
+ }
+ c[0]++
+}
+
+// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
+// specified in PKCS#1 v2.1.
+func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
+ var counter [4]byte
+
+ done := 0
+ for done < len(out) {
+ hash.Write(seed)
+ hash.Write(counter[0:4])
+ digest := hash.Sum()
+ hash.Reset()
+
+ for i := 0; i < len(digest) && done < len(out); i++ {
+ out[done] ^= digest[i]
+ done++
+ }
+ incCounter(&counter)
+ }
+}
+
+// MessageTooLongError is returned when attempting to encrypt a message which
+// is too large for the size of the public key.
+type MessageTooLongError struct{}
+
+func (MessageTooLongError) String() string {
+ return "message too long for RSA public key size"
+}
+
+func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
+ e := big.NewInt(int64(pub.E))
+ c.Exp(m, e, pub.N)
+ return c
+}
+
+// EncryptOAEP encrypts the given message with RSA-OAEP.
+// The message must be no longer than the length of the public modulus less
+// twice the hash length plus 2.
+func EncryptOAEP(hash hash.Hash, rand io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) {
+ hash.Reset()
+ k := (pub.N.BitLen() + 7) / 8
+ if len(msg) > k-2*hash.Size()-2 {
+ err = MessageTooLongError{}
+ return
+ }
+
+ hash.Write(label)
+ lHash := hash.Sum()
+ hash.Reset()
+
+ em := make([]byte, k)
+ seed := em[1 : 1+hash.Size()]
+ db := em[1+hash.Size():]
+
+ copy(db[0:hash.Size()], lHash)
+ db[len(db)-len(msg)-1] = 1
+ copy(db[len(db)-len(msg):], msg)
+
+ _, err = io.ReadFull(rand, seed)
+ if err != nil {
+ return
+ }
+
+ mgf1XOR(db, hash, seed)
+ mgf1XOR(seed, hash, db)
+
+ m := new(big.Int)
+ m.SetBytes(em)
+ c := encrypt(new(big.Int), pub, m)
+ out = c.Bytes()
+ return
+}
+
+// A DecryptionError represents a failure to decrypt a message.
+// It is deliberately vague to avoid adaptive attacks.
+type DecryptionError struct{}
+
+func (DecryptionError) String() string { return "RSA decryption error" }
+
+// A VerificationError represents a failure to verify a signature.
+// It is deliberately vague to avoid adaptive attacks.
+type VerificationError struct{}
+
+func (VerificationError) String() string { return "RSA verification error" }
+
+// modInverse returns ia, the inverse of a in the multiplicative group of prime
+// order n. It requires that a be a member of the group (i.e. less than n).
+func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
+ g := new(big.Int)
+ x := new(big.Int)
+ y := new(big.Int)
+ big.GcdInt(g, x, y, a, n)
+ if g.Cmp(bigOne) != 0 {
+ // In this case, a and n aren't coprime and we cannot calculate
+ // the inverse. This happens because the values of n are nearly
+ // prime (being the product of two primes) rather than truly
+ // prime.
+ return
+ }
+
+ if x.Cmp(bigOne) < 0 {
+ // 0 is not the multiplicative inverse of any element so, if x
+ // < 1, then x is negative.
+ x.Add(x, n)
+ }
+
+ return x, true
+}
+
+// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
+// random source is given, RSA blinding is used.
+func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
+ // TODO(agl): can we get away with reusing blinds?
+ if c.Cmp(priv.N) > 0 {
+ err = DecryptionError{}
+ return
+ }
+
+ var ir *big.Int
+ if rand != nil {
+ // Blinding enabled. Blinding involves multiplying c by r^e.
+ // Then the decryption operation performs (m^e * r^e)^d mod n
+ // which equals mr mod n. The factor of r can then be removed
+ // by multipling by the multiplicative inverse of r.
+
+ var r *big.Int
+
+ for {
+ r, err = randomNumber(rand, priv.N)
+ if err != nil {
+ return
+ }
+ if r.Cmp(bigZero) == 0 {
+ r = bigOne
+ }
+ var ok bool
+ ir, ok = modInverse(r, priv.N)
+ if ok {
+ break
+ }
+ }
+ bigE := big.NewInt(int64(priv.E))
+ rpowe := new(big.Int).Exp(r, bigE, priv.N)
+ c.Mul(c, rpowe)
+ c.Mod(c, priv.N)
+ }
+
+ m = new(big.Int).Exp(c, priv.D, priv.N)
+
+ if ir != nil {
+ // Unblind.
+ m.Mul(m, ir)
+ m.Mod(m, priv.N)
+ }
+
+ return
+}
+
+// DecryptOAEP decrypts ciphertext using RSA-OAEP.
+// If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
+func DecryptOAEP(hash hash.Hash, rand io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) {
+ k := (priv.N.BitLen() + 7) / 8
+ if len(ciphertext) > k ||
+ k < hash.Size()*2+2 {
+ err = DecryptionError{}
+ return
+ }
+
+ c := new(big.Int).SetBytes(ciphertext)
+
+ m, err := decrypt(rand, priv, c)
+ if err != nil {
+ return
+ }
+
+ hash.Write(label)
+ lHash := hash.Sum()
+ hash.Reset()
+
+ // Converting the plaintext number to bytes will strip any
+ // leading zeros so we may have to left pad. We do this unconditionally
+ // to avoid leaking timing information. (Although we still probably
+ // leak the number of leading zeros. It's not clear that we can do
+ // anything about this.)
+ em := leftPad(m.Bytes(), k)
+
+ firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
+
+ seed := em[1 : hash.Size()+1]
+ db := em[hash.Size()+1:]
+
+ mgf1XOR(seed, hash, db)
+ mgf1XOR(db, hash, seed)
+
+ lHash2 := db[0:hash.Size()]
+
+ // We have to validate the plaintext in constant time in order to avoid
+ // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
+ // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
+ // v2.0. In J. Kilian, editor, Advances in Cryptology.
+ lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
+
+ // The remainder of the plaintext must be zero or more 0x00, followed
+ // by 0x01, followed by the message.
+ // lookingForIndex: 1 iff we are still looking for the 0x01
+ // index: the offset of the first 0x01 byte
+ // invalid: 1 iff we saw a non-zero byte before the 0x01.
+ var lookingForIndex, index, invalid int
+ lookingForIndex = 1
+ rest := db[hash.Size():]
+
+ for i := 0; i < len(rest); i++ {
+ equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
+ equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
+ index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
+ lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
+ invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
+ }
+
+ if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
+ err = DecryptionError{}
+ return
+ }
+
+ msg = rest[index+1:]
+ return
+}
+
+// leftPad returns a new slice of length size. The contents of input are right
+// aligned in the new slice.
+func leftPad(input []byte, size int) (out []byte) {
+ n := len(input)
+ if n > size {
+ n = size
+ }
+ out = make([]byte, size)
+ copy(out[len(out)-n:], input)
+ return
+}