summaryrefslogtreecommitdiff
path: root/libgo/go/exp/draw/x11/conn.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/exp/draw/x11/conn.go')
-rw-r--r--libgo/go/exp/draw/x11/conn.go622
1 files changed, 622 insertions, 0 deletions
diff --git a/libgo/go/exp/draw/x11/conn.go b/libgo/go/exp/draw/x11/conn.go
new file mode 100644
index 000000000..da2181536
--- /dev/null
+++ b/libgo/go/exp/draw/x11/conn.go
@@ -0,0 +1,622 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This package implements an X11 backend for the exp/draw package.
+//
+// The X protocol specification is at ftp://ftp.x.org/pub/X11R7.0/doc/PDF/proto.pdf.
+// A summary of the wire format can be found in XCB's xproto.xml.
+package x11
+
+import (
+ "bufio"
+ "exp/draw"
+ "image"
+ "io"
+ "log"
+ "net"
+ "os"
+ "strconv"
+ "strings"
+ "time"
+)
+
+type resID uint32 // X resource IDs.
+
+// TODO(nigeltao): Handle window resizes.
+const (
+ windowHeight = 600
+ windowWidth = 800
+)
+
+const (
+ keymapLo = 8
+ keymapHi = 255
+)
+
+type conn struct {
+ c io.Closer
+ r *bufio.Reader
+ w *bufio.Writer
+
+ gc, window, root, visual resID
+
+ img *image.RGBA
+ eventc chan interface{}
+ mouseState draw.MouseEvent
+
+ buf [256]byte // General purpose scratch buffer.
+
+ flush chan bool
+ flushBuf0 [24]byte
+ flushBuf1 [4 * 1024]byte
+}
+
+// writeSocket runs in its own goroutine, serving both FlushImage calls
+// directly from the exp/draw client and indirectly from X expose events.
+// It paints c.img to the X server via PutImage requests.
+func (c *conn) writeSocket() {
+ defer c.c.Close()
+ for _ = range c.flush {
+ b := c.img.Bounds()
+ if b.Empty() {
+ continue
+ }
+ // Each X request has a 16-bit length (in terms of 4-byte units). To avoid going over
+ // this limit, we send PutImage for each row of the image, rather than trying to paint
+ // the entire image in one X request. This approach could easily be optimized (or the
+ // X protocol may have an escape sequence to delimit very large requests).
+ // TODO(nigeltao): See what XCB's xcb_put_image does in this situation.
+ units := 6 + b.Dx()
+ if units > 0xffff || b.Dy() > 0xffff {
+ log.Print("x11: window is too large for PutImage")
+ return
+ }
+
+ c.flushBuf0[0] = 0x48 // PutImage opcode.
+ c.flushBuf0[1] = 0x02 // XCB_IMAGE_FORMAT_Z_PIXMAP.
+ c.flushBuf0[2] = uint8(units)
+ c.flushBuf0[3] = uint8(units >> 8)
+ setU32LE(c.flushBuf0[4:8], uint32(c.window))
+ setU32LE(c.flushBuf0[8:12], uint32(c.gc))
+ setU32LE(c.flushBuf0[12:16], 1<<16|uint32(b.Dx()))
+ c.flushBuf0[21] = 0x18 // depth = 24 bits.
+
+ for y := b.Min.Y; y < b.Max.Y; y++ {
+ setU32LE(c.flushBuf0[16:20], uint32(y<<16))
+ if _, err := c.w.Write(c.flushBuf0[0:24]); err != nil {
+ if err != os.EOF {
+ log.Println("x11:", err.String())
+ }
+ return
+ }
+ p := c.img.Pix[y*c.img.Stride : (y+1)*c.img.Stride]
+ for x := b.Min.X; x < b.Max.X; {
+ nx := b.Max.X - x
+ if nx > len(c.flushBuf1)/4 {
+ nx = len(c.flushBuf1) / 4
+ }
+ for i, rgba := range p[x : x+nx] {
+ c.flushBuf1[4*i+0] = rgba.B
+ c.flushBuf1[4*i+1] = rgba.G
+ c.flushBuf1[4*i+2] = rgba.R
+ }
+ x += nx
+ if _, err := c.w.Write(c.flushBuf1[0 : 4*nx]); err != nil {
+ if err != os.EOF {
+ log.Println("x11:", err.String())
+ }
+ return
+ }
+ }
+ }
+ if err := c.w.Flush(); err != nil {
+ if err != os.EOF {
+ log.Println("x11:", err.String())
+ }
+ return
+ }
+ }
+}
+
+func (c *conn) Screen() draw.Image { return c.img }
+
+func (c *conn) FlushImage() {
+ // We do the send (the <- operator) in an expression context, rather than in
+ // a statement context, so that it does not block, and fails if the buffered
+ // channel is full (in which case there already is a flush request pending).
+ _ = c.flush <- false
+}
+
+func (c *conn) Close() os.Error {
+ // Shut down the writeSocket goroutine. This will close the socket to the
+ // X11 server, which will cause c.eventc to close.
+ close(c.flush)
+ for _ = range c.eventc {
+ // Drain the channel to allow the readSocket goroutine to shut down.
+ }
+ return nil
+}
+
+func (c *conn) EventChan() <-chan interface{} { return c.eventc }
+
+// readSocket runs in its own goroutine, reading X events and sending draw
+// events on c's EventChan.
+func (c *conn) readSocket() {
+ var (
+ keymap [256][]int
+ keysymsPerKeycode int
+ )
+ defer close(c.eventc)
+ for {
+ // X events are always 32 bytes long.
+ if _, err := io.ReadFull(c.r, c.buf[0:32]); err != nil {
+ if err != os.EOF {
+ c.eventc <- draw.ErrEvent{err}
+ }
+ return
+ }
+ switch c.buf[0] {
+ case 0x01: // Reply from a request (e.g. GetKeyboardMapping).
+ cookie := int(c.buf[3])<<8 | int(c.buf[2])
+ if cookie != 1 {
+ // We issued only one request (GetKeyboardMapping) with a cookie of 1,
+ // so we shouldn't get any other reply from the X server.
+ c.eventc <- draw.ErrEvent{os.NewError("x11: unexpected cookie")}
+ return
+ }
+ keysymsPerKeycode = int(c.buf[1])
+ b := make([]int, 256*keysymsPerKeycode)
+ for i := range keymap {
+ keymap[i] = b[i*keysymsPerKeycode : (i+1)*keysymsPerKeycode]
+ }
+ for i := keymapLo; i <= keymapHi; i++ {
+ m := keymap[i]
+ for j := range m {
+ u, err := readU32LE(c.r, c.buf[0:4])
+ if err != nil {
+ if err != os.EOF {
+ c.eventc <- draw.ErrEvent{err}
+ }
+ return
+ }
+ m[j] = int(u)
+ }
+ }
+ case 0x02, 0x03: // Key press, key release.
+ // X Keyboard Encoding is documented at http://tronche.com/gui/x/xlib/input/keyboard-encoding.html
+ // TODO(nigeltao): Do we need to implement the "MODE SWITCH / group modifier" feature
+ // or is that some no-longer-used X construct?
+ if keysymsPerKeycode < 2 {
+ // Either we haven't yet received the GetKeyboardMapping reply or
+ // the X server has sent one that's too short.
+ continue
+ }
+ keycode := int(c.buf[1])
+ shift := int(c.buf[28]) & 0x01
+ keysym := keymap[keycode][shift]
+ if keysym == 0 {
+ keysym = keymap[keycode][0]
+ }
+ // TODO(nigeltao): Should we send KeyEvents for Shift/Ctrl/Alt? Should Shift-A send
+ // the same int down the channel as the sent on just the A key?
+ // TODO(nigeltao): How should IME events (e.g. key presses that should generate CJK text) work? Or
+ // is that outside the scope of the draw.Window interface?
+ if c.buf[0] == 0x03 {
+ keysym = -keysym
+ }
+ c.eventc <- draw.KeyEvent{keysym}
+ case 0x04, 0x05: // Button press, button release.
+ mask := 1 << (c.buf[1] - 1)
+ if c.buf[0] == 0x04 {
+ c.mouseState.Buttons |= mask
+ } else {
+ c.mouseState.Buttons &^= mask
+ }
+ c.mouseState.Nsec = time.Nanoseconds()
+ c.eventc <- c.mouseState
+ case 0x06: // Motion notify.
+ c.mouseState.Loc.X = int(int16(c.buf[25])<<8 | int16(c.buf[24]))
+ c.mouseState.Loc.Y = int(int16(c.buf[27])<<8 | int16(c.buf[26]))
+ c.mouseState.Nsec = time.Nanoseconds()
+ c.eventc <- c.mouseState
+ case 0x0c: // Expose.
+ // A single user action could trigger multiple expose events (e.g. if moving another
+ // window with XShape'd rounded corners over our window). In that case, the X server will
+ // send a uint16 count (in bytes 16-17) of the number of additional expose events coming.
+ // We could parse each event for the (x, y, width, height) and maintain a minimal dirty
+ // rectangle, but for now, the simplest approach is to paint the entire window, when
+ // receiving the final event in the series.
+ if c.buf[17] == 0 && c.buf[16] == 0 {
+ // TODO(nigeltao): Should we ignore the very first expose event? A freshly mapped window
+ // will trigger expose, but until the first c.FlushImage call, there's probably nothing to
+ // paint but black. For an 800x600 window, at 4 bytes per pixel, each repaint writes about
+ // 2MB over the socket.
+ c.FlushImage()
+ }
+ // TODO(nigeltao): Should we listen to DestroyNotify (0x11) and ResizeRequest (0x19) events?
+ // What about EnterNotify (0x07) and LeaveNotify (0x08)?
+ }
+ }
+}
+
+// connect connects to the X server given by the full X11 display name (e.g.
+// ":12.0") and returns the connection as well as the portion of the full name
+// that is the display number (e.g. "12").
+// Examples:
+// connect(":1") // calls net.Dial("unix", "", "/tmp/.X11-unix/X1"), displayStr="1"
+// connect("/tmp/launch-123/:0") // calls net.Dial("unix", "", "/tmp/launch-123/:0"), displayStr="0"
+// connect("hostname:2.1") // calls net.Dial("tcp", "", "hostname:6002"), displayStr="2"
+// connect("tcp/hostname:1.0") // calls net.Dial("tcp", "", "hostname:6001"), displayStr="1"
+func connect(display string) (conn net.Conn, displayStr string, err os.Error) {
+ colonIdx := strings.LastIndex(display, ":")
+ if colonIdx < 0 {
+ return nil, "", os.NewError("bad display: " + display)
+ }
+ // Parse the section before the colon.
+ var protocol, host, socket string
+ if display[0] == '/' {
+ socket = display[0:colonIdx]
+ } else {
+ if i := strings.LastIndex(display, "/"); i < 0 {
+ // The default protocol is TCP.
+ protocol = "tcp"
+ host = display[0:colonIdx]
+ } else {
+ protocol = display[0:i]
+ host = display[i+1 : colonIdx]
+ }
+ }
+ // Parse the section after the colon.
+ after := display[colonIdx+1:]
+ if after == "" {
+ return nil, "", os.NewError("bad display: " + display)
+ }
+ if i := strings.LastIndex(after, "."); i < 0 {
+ displayStr = after
+ } else {
+ displayStr = after[0:i]
+ }
+ displayInt, err := strconv.Atoi(displayStr)
+ if err != nil || displayInt < 0 {
+ return nil, "", os.NewError("bad display: " + display)
+ }
+ // Make the connection.
+ if socket != "" {
+ conn, err = net.Dial("unix", "", socket+":"+displayStr)
+ } else if host != "" {
+ conn, err = net.Dial(protocol, "", host+":"+strconv.Itoa(6000+displayInt))
+ } else {
+ conn, err = net.Dial("unix", "", "/tmp/.X11-unix/X"+displayStr)
+ }
+ if err != nil {
+ return nil, "", os.NewError("cannot connect to " + display + ": " + err.String())
+ }
+ return
+}
+
+// authenticate authenticates ourselves with the X server.
+// displayStr is the "12" out of ":12.0".
+func authenticate(w *bufio.Writer, displayStr string) os.Error {
+ key, value, err := readAuth(displayStr)
+ if err != nil {
+ return err
+ }
+ // Assume that the authentication protocol is "MIT-MAGIC-COOKIE-1".
+ if len(key) != 18 || len(value) != 16 {
+ return os.NewError("unsupported Xauth")
+ }
+ // 0x006c means little-endian. 0x000b, 0x0000 means X major version 11, minor version 0.
+ // 0x0012 and 0x0010 means the auth key and value have lenths 18 and 16.
+ // The final 0x0000 is padding, so that the string length is a multiple of 4.
+ _, err = io.WriteString(w, "\x6c\x00\x0b\x00\x00\x00\x12\x00\x10\x00\x00\x00")
+ if err != nil {
+ return err
+ }
+ _, err = io.WriteString(w, key)
+ if err != nil {
+ return err
+ }
+ // Again, the 0x0000 is padding.
+ _, err = io.WriteString(w, "\x00\x00")
+ if err != nil {
+ return err
+ }
+ _, err = io.WriteString(w, value)
+ if err != nil {
+ return err
+ }
+ err = w.Flush()
+ if err != nil {
+ return err
+ }
+ return nil
+}
+
+// readU8 reads a uint8 from r, using b as a scratch buffer.
+func readU8(r io.Reader, b []byte) (uint8, os.Error) {
+ _, err := io.ReadFull(r, b[0:1])
+ if err != nil {
+ return 0, err
+ }
+ return uint8(b[0]), nil
+}
+
+// readU16LE reads a little-endian uint16 from r, using b as a scratch buffer.
+func readU16LE(r io.Reader, b []byte) (uint16, os.Error) {
+ _, err := io.ReadFull(r, b[0:2])
+ if err != nil {
+ return 0, err
+ }
+ return uint16(b[0]) | uint16(b[1])<<8, nil
+}
+
+// readU32LE reads a little-endian uint32 from r, using b as a scratch buffer.
+func readU32LE(r io.Reader, b []byte) (uint32, os.Error) {
+ _, err := io.ReadFull(r, b[0:4])
+ if err != nil {
+ return 0, err
+ }
+ return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24, nil
+}
+
+// setU32LE sets b[0:4] to be the little-endian representation of u.
+func setU32LE(b []byte, u uint32) {
+ b[0] = byte((u >> 0) & 0xff)
+ b[1] = byte((u >> 8) & 0xff)
+ b[2] = byte((u >> 16) & 0xff)
+ b[3] = byte((u >> 24) & 0xff)
+}
+
+// checkPixmapFormats checks that we have an agreeable X pixmap Format.
+func checkPixmapFormats(r io.Reader, b []byte, n int) (agree bool, err os.Error) {
+ for i := 0; i < n; i++ {
+ _, err = io.ReadFull(r, b[0:8])
+ if err != nil {
+ return
+ }
+ // Byte 0 is depth, byte 1 is bits-per-pixel, byte 2 is scanline-pad, the rest (5) is padding.
+ if b[0] == 24 && b[1] == 32 {
+ agree = true
+ }
+ }
+ return
+}
+
+// checkDepths checks that we have an agreeable X Depth (i.e. one that has an agreeable X VisualType).
+func checkDepths(r io.Reader, b []byte, n int, visual uint32) (agree bool, err os.Error) {
+ for i := 0; i < n; i++ {
+ depth, err := readU16LE(r, b)
+ if err != nil {
+ return
+ }
+ depth &= 0xff
+ visualsLen, err := readU16LE(r, b)
+ if err != nil {
+ return
+ }
+ // Ignore 4 bytes of padding.
+ _, err = io.ReadFull(r, b[0:4])
+ if err != nil {
+ return
+ }
+ for j := 0; j < int(visualsLen); j++ {
+ // Read 24 bytes: visual(4), class(1), bits per rgb value(1), colormap entries(2),
+ // red mask(4), green mask(4), blue mask(4), padding(4).
+ v, err := readU32LE(r, b)
+ _, err = readU32LE(r, b)
+ rm, err := readU32LE(r, b)
+ gm, err := readU32LE(r, b)
+ bm, err := readU32LE(r, b)
+ _, err = readU32LE(r, b)
+ if err != nil {
+ return
+ }
+ if v == visual && rm == 0xff0000 && gm == 0xff00 && bm == 0xff && depth == 24 {
+ agree = true
+ }
+ }
+ }
+ return
+}
+
+// checkScreens checks that we have an agreeable X Screen.
+func checkScreens(r io.Reader, b []byte, n int) (root, visual uint32, err os.Error) {
+ for i := 0; i < n; i++ {
+ root0, err := readU32LE(r, b)
+ if err != nil {
+ return
+ }
+ // Ignore the next 7x4 bytes, which is: colormap, whitepixel, blackpixel, current input masks,
+ // width and height (pixels), width and height (mm), min and max installed maps.
+ _, err = io.ReadFull(r, b[0:28])
+ if err != nil {
+ return
+ }
+ visual0, err := readU32LE(r, b)
+ if err != nil {
+ return
+ }
+ // Next 4 bytes: backing stores, save unders, root depth, allowed depths length.
+ x, err := readU32LE(r, b)
+ if err != nil {
+ return
+ }
+ nDepths := int(x >> 24)
+ agree, err := checkDepths(r, b, nDepths, visual0)
+ if err != nil {
+ return
+ }
+ if agree && root == 0 {
+ root = root0
+ visual = visual0
+ }
+ }
+ return
+}
+
+// handshake performs the protocol handshake with the X server, and ensures
+// that the server provides a compatible Screen, Depth, etc.
+func (c *conn) handshake() os.Error {
+ _, err := io.ReadFull(c.r, c.buf[0:8])
+ if err != nil {
+ return err
+ }
+ // Byte 0:1 should be 1 (success), bytes 2:6 should be 0xb0000000 (major/minor version 11.0).
+ if c.buf[0] != 1 || c.buf[2] != 11 || c.buf[3] != 0 || c.buf[4] != 0 || c.buf[5] != 0 {
+ return os.NewError("unsupported X version")
+ }
+ // Ignore the release number.
+ _, err = io.ReadFull(c.r, c.buf[0:4])
+ if err != nil {
+ return err
+ }
+ // Read the resource ID base.
+ resourceIdBase, err := readU32LE(c.r, c.buf[0:4])
+ if err != nil {
+ return err
+ }
+ // Read the resource ID mask.
+ resourceIdMask, err := readU32LE(c.r, c.buf[0:4])
+ if err != nil {
+ return err
+ }
+ if resourceIdMask < 256 {
+ return os.NewError("X resource ID mask is too small")
+ }
+ // Ignore the motion buffer size.
+ _, err = io.ReadFull(c.r, c.buf[0:4])
+ if err != nil {
+ return err
+ }
+ // Read the vendor length and round it up to a multiple of 4,
+ // for X11 protocol alignment reasons.
+ vendorLen, err := readU16LE(c.r, c.buf[0:2])
+ if err != nil {
+ return err
+ }
+ vendorLen = (vendorLen + 3) &^ 3
+ // Read the maximum request length.
+ maxReqLen, err := readU16LE(c.r, c.buf[0:2])
+ if err != nil {
+ return err
+ }
+ if maxReqLen != 0xffff {
+ return os.NewError("unsupported X maximum request length")
+ }
+ // Read the roots length.
+ rootsLen, err := readU8(c.r, c.buf[0:1])
+ if err != nil {
+ return err
+ }
+ // Read the pixmap formats length.
+ pixmapFormatsLen, err := readU8(c.r, c.buf[0:1])
+ if err != nil {
+ return err
+ }
+ // Ignore some things that we don't care about (totalling 10 + vendorLen bytes):
+ // imageByteOrder(1), bitmapFormatBitOrder(1), bitmapFormatScanlineUnit(1) bitmapFormatScanlinePad(1),
+ // minKeycode(1), maxKeycode(1), padding(4), vendor (vendorLen).
+ if 10+int(vendorLen) > cap(c.buf) {
+ return os.NewError("unsupported X vendor")
+ }
+ _, err = io.ReadFull(c.r, c.buf[0:10+int(vendorLen)])
+ if err != nil {
+ return err
+ }
+ // Check that we have an agreeable pixmap format.
+ agree, err := checkPixmapFormats(c.r, c.buf[0:8], int(pixmapFormatsLen))
+ if err != nil {
+ return err
+ }
+ if !agree {
+ return os.NewError("unsupported X pixmap formats")
+ }
+ // Check that we have an agreeable screen.
+ root, visual, err := checkScreens(c.r, c.buf[0:24], int(rootsLen))
+ if err != nil {
+ return err
+ }
+ if root == 0 || visual == 0 {
+ return os.NewError("unsupported X screen")
+ }
+ c.gc = resID(resourceIdBase)
+ c.window = resID(resourceIdBase + 1)
+ c.root = resID(root)
+ c.visual = resID(visual)
+ return nil
+}
+
+// NewWindow calls NewWindowDisplay with $DISPLAY.
+func NewWindow() (draw.Window, os.Error) {
+ display := os.Getenv("DISPLAY")
+ if len(display) == 0 {
+ return nil, os.NewError("$DISPLAY not set")
+ }
+ return NewWindowDisplay(display)
+}
+
+// NewWindowDisplay returns a new draw.Window, backed by a newly created and
+// mapped X11 window. The X server to connect to is specified by the display
+// string, such as ":1".
+func NewWindowDisplay(display string) (draw.Window, os.Error) {
+ socket, displayStr, err := connect(display)
+ if err != nil {
+ return nil, err
+ }
+ c := new(conn)
+ c.c = socket
+ c.r = bufio.NewReader(socket)
+ c.w = bufio.NewWriter(socket)
+ err = authenticate(c.w, displayStr)
+ if err != nil {
+ return nil, err
+ }
+ err = c.handshake()
+ if err != nil {
+ return nil, err
+ }
+
+ // Now that we're connected, show a window, via three X protocol messages.
+ // First, issue a GetKeyboardMapping request. This is the first request, and
+ // will be associated with a cookie of 1.
+ setU32LE(c.buf[0:4], 0x00020065) // 0x65 is the GetKeyboardMapping opcode, and the message is 2 x 4 bytes long.
+ setU32LE(c.buf[4:8], uint32((keymapHi-keymapLo+1)<<8|keymapLo))
+ // Second, create a graphics context (GC).
+ setU32LE(c.buf[8:12], 0x00060037) // 0x37 is the CreateGC opcode, and the message is 6 x 4 bytes long.
+ setU32LE(c.buf[12:16], uint32(c.gc))
+ setU32LE(c.buf[16:20], uint32(c.root))
+ setU32LE(c.buf[20:24], 0x00010004) // Bit 2 is XCB_GC_FOREGROUND, bit 16 is XCB_GC_GRAPHICS_EXPOSURES.
+ setU32LE(c.buf[24:28], 0x00000000) // The Foreground is black.
+ setU32LE(c.buf[28:32], 0x00000000) // GraphicsExposures' value is unused.
+ // Third, create the window.
+ setU32LE(c.buf[32:36], 0x000a0001) // 0x01 is the CreateWindow opcode, and the message is 10 x 4 bytes long.
+ setU32LE(c.buf[36:40], uint32(c.window))
+ setU32LE(c.buf[40:44], uint32(c.root))
+ setU32LE(c.buf[44:48], 0x00000000) // Initial (x, y) is (0, 0).
+ setU32LE(c.buf[48:52], windowHeight<<16|windowWidth)
+ setU32LE(c.buf[52:56], 0x00010000) // Border width is 0, XCB_WINDOW_CLASS_INPUT_OUTPUT is 1.
+ setU32LE(c.buf[56:60], uint32(c.visual))
+ setU32LE(c.buf[60:64], 0x00000802) // Bit 1 is XCB_CW_BACK_PIXEL, bit 11 is XCB_CW_EVENT_MASK.
+ setU32LE(c.buf[64:68], 0x00000000) // The Back-Pixel is black.
+ setU32LE(c.buf[68:72], 0x0000804f) // Key/button press and release, pointer motion, and expose event masks.
+ // Fourth, map the window.
+ setU32LE(c.buf[72:76], 0x00020008) // 0x08 is the MapWindow opcode, and the message is 2 x 4 bytes long.
+ setU32LE(c.buf[76:80], uint32(c.window))
+ // Write the bytes.
+ _, err = c.w.Write(c.buf[0:80])
+ if err != nil {
+ return nil, err
+ }
+ err = c.w.Flush()
+ if err != nil {
+ return nil, err
+ }
+
+ c.img = image.NewRGBA(windowWidth, windowHeight)
+ c.eventc = make(chan interface{}, 16)
+ c.flush = make(chan bool, 1)
+ go c.readSocket()
+ go c.writeSocket()
+ return c, nil
+}