summaryrefslogtreecommitdiff
path: root/libgo/go/fmt
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/fmt')
-rw-r--r--libgo/go/fmt/doc.go164
-rw-r--r--libgo/go/fmt/fmt_test.go650
-rw-r--r--libgo/go/fmt/format.go398
-rw-r--r--libgo/go/fmt/print.go921
-rw-r--r--libgo/go/fmt/scan.go985
-rw-r--r--libgo/go/fmt/scan_test.go659
-rw-r--r--libgo/go/fmt/stringer_test.go61
7 files changed, 3838 insertions, 0 deletions
diff --git a/libgo/go/fmt/doc.go b/libgo/go/fmt/doc.go
new file mode 100644
index 000000000..191bf68b1
--- /dev/null
+++ b/libgo/go/fmt/doc.go
@@ -0,0 +1,164 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+ Package fmt implements formatted I/O with functions analogous
+ to C's printf and scanf. The format 'verbs' are derived from C's but
+ are simpler.
+
+ Printing:
+
+ The verbs:
+
+ General:
+ %v the value in a default format.
+ when printing structs, the plus flag (%+v) adds field names
+ %#v a Go-syntax representation of the value
+ %T a Go-syntax representation of the type of the value
+
+ Boolean:
+ %t the word true or false
+ Integer:
+ %b base 2
+ %c the character represented by the corresponding Unicode code point
+ %d base 10
+ %o base 8
+ %x base 16, with lower-case letters for a-f
+ %X base 16, with upper-case letters for A-F
+ %U unicode format: U+1234; same as "U+%x" with 4 digits default
+ Floating-point and complex constituents:
+ %e scientific notation, e.g. -1234.456e+78
+ %E scientific notation, e.g. -1234.456E+78
+ %f decimal point but no exponent, e.g. 123.456
+ %g whichever of %e or %f produces more compact output
+ %G whichever of %E or %f produces more compact output
+ String and slice of bytes:
+ %s the uninterpreted bytes of the string or slice
+ %q a double-quoted string safely escaped with Go syntax
+ %x base 16, lower-case, two characters per byte
+ %X base 16, upper-case, two characters per byte
+ Pointer:
+ %p base 16 notation, with leading 0x
+
+ There is no 'u' flag. Integers are printed unsigned if they have unsigned type.
+ Similarly, there is no need to specify the size of the operand (int8, int64).
+
+ For numeric values, the width and precision flags control
+ formatting; width sets the width of the field, precision the
+ number of places after the decimal, if appropriate. The
+ format %6.2f prints 123.45. The width of a field is the number
+ of Unicode code points in the string. This differs from C's printf where
+ the field width is the number of bytes. Either or both of the
+ flags may be replaced with the character '*', causing their values
+ to be obtained from the next operand, which must be of type int.
+
+ Other flags:
+ + always print a sign for numeric values
+ - pad with spaces on the right rather than the left (left-justify the field)
+ # alternate format: add leading 0 for octal (%#o), 0x for hex (%#x);
+ 0X for hex (%#X); suppress 0x for %p (%#p);
+ print a raw (backquoted) string if possible for %q (%#q)
+ ' ' (space) leave a space for elided sign in numbers (% d);
+ put spaces between bytes printing strings or slices in hex (% x, % X)
+ 0 pad with leading zeros rather than spaces
+
+ For each Printf-like function, there is also a Print function
+ that takes no format and is equivalent to saying %v for every
+ operand. Another variant Println inserts blanks between
+ operands and appends a newline.
+
+ Regardless of the verb, if an operand is an interface value,
+ the internal concrete value is used, not the interface itself.
+ Thus:
+ var i interface{} = 23
+ fmt.Printf("%v\n", i)
+ will print 23.
+
+ If an operand implements interface Formatter, that interface
+ can be used for fine control of formatting.
+
+ If an operand implements method String() string that method
+ will be used to convert the object to a string, which will then
+ be formatted as required by the verb (if any). To avoid
+ recursion in cases such as
+ type X int
+ func (x X) String() string { return Sprintf("%d", x) }
+ cast the value before recurring:
+ func (x X) String() string { return Sprintf("%d", int(x)) }
+
+ Format errors:
+
+ If an invalid argument is given for a verb, such as providing
+ a string to %d, the generated string will contain a
+ description of the problem, as in these examples:
+
+ Wrong type or unknown verb: %!verb(type=value)
+ Printf("%d", hi): %!d(string=hi)
+ Too many arguments: %!(EXTRA type=value)
+ Printf("hi", "guys"): hi%!(EXTRA string=guys)
+ Too few arguments: %!verb(MISSING)
+ Printf("hi%d"): hi %!d(MISSING)
+ Non-int for width or precision: %!(BADWIDTH) or %!(BADPREC)
+ Printf("%*s", 4.5, "hi"): %!(BADWIDTH)hi
+ Printf("%.*s", 4.5, "hi"): %!(BADPREC)hi
+
+ All errors begin with the string "%!" followed sometimes
+ by a single character (the verb) and end with a parenthesized
+ description.
+
+ Scanning:
+
+ An analogous set of functions scans formatted text to yield
+ values. Scan, Scanf and Scanln read from os.Stdin; Fscan,
+ Fscanf and Fscanln read from a specified os.Reader; Sscan,
+ Sscanf and Sscanln read from an argument string. Sscanln,
+ Fscanln and Sscanln stop scanning at a newline and require that
+ the items be followed by one; Sscanf, Fscanf and Sscanf require
+ newlines in the input to match newlines in the format; the other
+ routines treat newlines as spaces.
+
+ Scanf, Fscanf, and Sscanf parse the arguments according to a
+ format string, analogous to that of Printf. For example, %x
+ will scan an integer as a hexadecimal number, and %v will scan
+ the default representation format for the value.
+
+ The formats behave analogously to those of Printf with the
+ following exceptions:
+
+ %p is not implemented
+ %T is not implemented
+ %e %E %f %F %g %g are all equivalent and scan any floating point or complex value
+ %s and %v on strings scan a space-delimited token
+
+ Width is interpreted in the input text (%5s means at most
+ five runes of input will be read to scan a string) but there
+ is no syntax for scanning with a precision (no %5.2f, just
+ %5f).
+
+ When scanning with a format, all non-empty runs of space
+ characters (except newline) are equivalent to a single
+ space in both the format and the input. With that proviso,
+ text in the format string must match the input text; scanning
+ stops if it does not, with the return value of the function
+ indicating the number of arguments scanned.
+
+ In all the scanning functions, if an operand implements method
+ Scan (that is, it implements the Scanner interface) that
+ method will be used to scan the text for that operand. Also,
+ if the number of arguments scanned is less than the number of
+ arguments provided, an error is returned.
+
+ All arguments to be scanned must be either pointers to basic
+ types or implementations of the Scanner interface.
+
+ Note: Fscan etc. can read one character (rune) past the
+ input they return, which means that a loop calling a scan
+ routine may skip some of the input. This is usually a
+ problem only when there is no space between input values.
+ However, if the reader provided to Fscan implements UnreadRune,
+ that method will be used to save the character and successive
+ calls will not lose data. To attach an UnreadRune method
+ to a reader without that capability, use bufio.NewReader.
+*/
+package fmt
diff --git a/libgo/go/fmt/fmt_test.go b/libgo/go/fmt/fmt_test.go
new file mode 100644
index 000000000..3f085b722
--- /dev/null
+++ b/libgo/go/fmt/fmt_test.go
@@ -0,0 +1,650 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package fmt_test
+
+import (
+ . "fmt"
+ "io"
+ "math"
+ "runtime" // for the malloc count test only
+ "strings"
+ "testing"
+)
+
+type (
+ renamedBool bool
+ renamedInt int
+ renamedInt8 int8
+ renamedInt16 int16
+ renamedInt32 int32
+ renamedInt64 int64
+ renamedUint uint
+ renamedUint8 uint8
+ renamedUint16 uint16
+ renamedUint32 uint32
+ renamedUint64 uint64
+ renamedUintptr uintptr
+ renamedString string
+ renamedBytes []byte
+ renamedFloat32 float32
+ renamedFloat64 float64
+ renamedComplex64 complex64
+ renamedComplex128 complex128
+)
+
+func TestFmtInterface(t *testing.T) {
+ var i1 interface{}
+ i1 = "abc"
+ s := Sprintf("%s", i1)
+ if s != "abc" {
+ t.Errorf(`Sprintf("%%s", empty("abc")) = %q want %q`, s, "abc")
+ }
+}
+
+
+const b32 uint32 = 1<<32 - 1
+const b64 uint64 = 1<<64 - 1
+
+var array = []int{1, 2, 3, 4, 5}
+var iarray = []interface{}{1, "hello", 2.5, nil}
+
+type A struct {
+ i int
+ j uint
+ s string
+ x []int
+}
+
+type I int
+
+func (i I) String() string { return Sprintf("<%d>", int(i)) }
+
+type B struct {
+ i I
+ j int
+}
+
+type C struct {
+ i int
+ B
+}
+
+type F int
+
+func (f F) Format(s State, c int) {
+ Fprintf(s, "<%c=F(%d)>", c, int(f))
+}
+
+type G int
+
+func (g G) GoString() string {
+ return Sprintf("GoString(%d)", int(g))
+}
+
+type S struct {
+ f F // a struct field that Formats
+ g G // a struct field that GoStrings
+}
+
+// A type with a String method with pointer receiver for testing %p
+type P int
+
+var pValue P
+
+func (p *P) String() string {
+ return "String(p)"
+}
+
+var b byte
+
+var fmttests = []struct {
+ fmt string
+ val interface{}
+ out string
+}{
+ {"%d", 12345, "12345"},
+ {"%v", 12345, "12345"},
+ {"%t", true, "true"},
+
+ // basic string
+ {"%s", "abc", "abc"},
+ {"%x", "abc", "616263"},
+ {"%x", "xyz", "78797a"},
+ {"%X", "xyz", "78797A"},
+ {"%q", "abc", `"abc"`},
+
+ // basic bytes
+ {"%s", []byte("abc"), "abc"},
+ {"%x", []byte("abc"), "616263"},
+ {"% x", []byte("abc\xff"), "61 62 63 ff"},
+ {"% X", []byte("abc\xff"), "61 62 63 FF"},
+ {"%x", []byte("xyz"), "78797a"},
+ {"%X", []byte("xyz"), "78797A"},
+ {"%q", []byte("abc"), `"abc"`},
+
+ // escaped strings
+ {"%#q", `abc`, "`abc`"},
+ {"%#q", `"`, "`\"`"},
+ {"1 %#q", `\n`, "1 `\\n`"},
+ {"2 %#q", "\n", `2 "\n"`},
+ {"%q", `"`, `"\""`},
+ {"%q", "\a\b\f\r\n\t\v", `"\a\b\f\r\n\t\v"`},
+ {"%q", "abc\xffdef", `"abc\xffdef"`},
+ {"%q", "\u263a", `"\u263a"`},
+ {"%q", "\U0010ffff", `"\U0010ffff"`},
+
+ // width
+ {"%5s", "abc", " abc"},
+ {"%2s", "\u263a", " \u263a"},
+ {"%-5s", "abc", "abc "},
+ {"%05s", "abc", "00abc"},
+
+ // integers
+ {"%d", 12345, "12345"},
+ {"%d", -12345, "-12345"},
+ {"%10d", 12345, " 12345"},
+ {"%10d", -12345, " -12345"},
+ {"%+10d", 12345, " +12345"},
+ {"%010d", 12345, "0000012345"},
+ {"%010d", -12345, "-000012345"},
+ {"%-10d", 12345, "12345 "},
+ {"%010.3d", 1, " 001"},
+ {"%010.3d", -1, " -001"},
+ {"%+d", 12345, "+12345"},
+ {"%+d", -12345, "-12345"},
+ {"%+d", 0, "+0"},
+ {"% d", 0, " 0"},
+ {"% d", 12345, " 12345"},
+
+ // unicode format
+ {"%U", 0x1, "U+0001"},
+ {"%.8U", 0x2, "U+00000002"},
+ {"%U", 0x1234, "U+1234"},
+ {"%U", 0x12345, "U+12345"},
+ {"%10.6U", 0xABC, " U+000ABC"},
+ {"%-10.6U", 0xABC, "U+000ABC "},
+
+ // floats
+ {"%+.3e", 0.0, "+0.000e+00"},
+ {"%+.3e", 1.0, "+1.000e+00"},
+ {"%+.3f", -1.0, "-1.000"},
+ {"% .3E", -1.0, "-1.000E+00"},
+ {"% .3e", 1.0, " 1.000e+00"},
+ {"%+.3g", 0.0, "+0"},
+ {"%+.3g", 1.0, "+1"},
+ {"%+.3g", -1.0, "-1"},
+ {"% .3g", -1.0, "-1"},
+ {"% .3g", 1.0, " 1"},
+
+ // complex values
+ {"%+.3e", 0i, "(+0.000e+00+0.000e+00i)"},
+ {"%+.3f", 0i, "(+0.000+0.000i)"},
+ {"%+.3g", 0i, "(+0+0i)"},
+ {"%+.3e", 1 + 2i, "(+1.000e+00+2.000e+00i)"},
+ {"%+.3f", 1 + 2i, "(+1.000+2.000i)"},
+ {"%+.3g", 1 + 2i, "(+1+2i)"},
+ {"%.3e", 0i, "(0.000e+00+0.000e+00i)"},
+ {"%.3f", 0i, "(0.000+0.000i)"},
+ {"%.3g", 0i, "(0+0i)"},
+ {"%.3e", 1 + 2i, "(1.000e+00+2.000e+00i)"},
+ {"%.3f", 1 + 2i, "(1.000+2.000i)"},
+ {"%.3g", 1 + 2i, "(1+2i)"},
+ {"%.3e", -1 - 2i, "(-1.000e+00-2.000e+00i)"},
+ {"%.3f", -1 - 2i, "(-1.000-2.000i)"},
+ {"%.3g", -1 - 2i, "(-1-2i)"},
+ {"% .3E", -1 - 2i, "(-1.000E+00-2.000E+00i)"},
+ {"%+.3g", complex64(1 + 2i), "(+1+2i)"},
+ {"%+.3g", complex128(1 + 2i), "(+1+2i)"},
+
+ // erroneous formats
+ {"", 2, "%!(EXTRA int=2)"},
+ {"%d", "hello", "%!d(string=hello)"},
+
+ // old test/fmt_test.go
+ {"%d", 1234, "1234"},
+ {"%d", -1234, "-1234"},
+ {"%d", uint(1234), "1234"},
+ {"%d", uint32(b32), "4294967295"},
+ {"%d", uint64(b64), "18446744073709551615"},
+ {"%o", 01234, "1234"},
+ {"%#o", 01234, "01234"},
+ {"%o", uint32(b32), "37777777777"},
+ {"%o", uint64(b64), "1777777777777777777777"},
+ {"%x", 0x1234abcd, "1234abcd"},
+ {"%#x", 0x1234abcd, "0x1234abcd"},
+ {"%x", b32 - 0x1234567, "fedcba98"},
+ {"%X", 0x1234abcd, "1234ABCD"},
+ {"%X", b32 - 0x1234567, "FEDCBA98"},
+ {"%#X", 0, "0X0"},
+ {"%x", b64, "ffffffffffffffff"},
+ {"%b", 7, "111"},
+ {"%b", b64, "1111111111111111111111111111111111111111111111111111111111111111"},
+ {"%b", -6, "-110"},
+ {"%e", 1.0, "1.000000e+00"},
+ {"%e", 1234.5678e3, "1.234568e+06"},
+ {"%e", 1234.5678e-8, "1.234568e-05"},
+ {"%e", -7.0, "-7.000000e+00"},
+ {"%e", -1e-9, "-1.000000e-09"},
+ {"%f", 1234.5678e3, "1234567.800000"},
+ {"%f", 1234.5678e-8, "0.000012"},
+ {"%f", -7.0, "-7.000000"},
+ {"%f", -1e-9, "-0.000000"},
+ {"%g", 1234.5678e3, "1.2345678e+06"},
+ {"%g", float32(1234.5678e3), "1.2345678e+06"},
+ {"%g", 1234.5678e-8, "1.2345678e-05"},
+ {"%g", -7.0, "-7"},
+ {"%g", -1e-9, "-1e-09"},
+ {"%g", float32(-1e-9), "-1e-09"},
+ {"%E", 1.0, "1.000000E+00"},
+ {"%E", 1234.5678e3, "1.234568E+06"},
+ {"%E", 1234.5678e-8, "1.234568E-05"},
+ {"%E", -7.0, "-7.000000E+00"},
+ {"%E", -1e-9, "-1.000000E-09"},
+ {"%G", 1234.5678e3, "1.2345678E+06"},
+ {"%G", float32(1234.5678e3), "1.2345678E+06"},
+ {"%G", 1234.5678e-8, "1.2345678E-05"},
+ {"%G", -7.0, "-7"},
+ {"%G", -1e-9, "-1E-09"},
+ {"%G", float32(-1e-9), "-1E-09"},
+ {"%c", 'x', "x"},
+ {"%c", 0xe4, "ä"},
+ {"%c", 0x672c, "本"},
+ {"%c", '日', "日"},
+ {"%20.8d", 1234, " 00001234"},
+ {"%20.8d", -1234, " -00001234"},
+ {"%20d", 1234, " 1234"},
+ {"%-20.8d", 1234, "00001234 "},
+ {"%-20.8d", -1234, "-00001234 "},
+ {"%-#20.8x", 0x1234abc, "0x01234abc "},
+ {"%-#20.8X", 0x1234abc, "0X01234ABC "},
+ {"%-#20.8o", 01234, "00001234 "},
+ {"%.20b", 7, "00000000000000000111"},
+ {"%20.5s", "qwertyuiop", " qwert"},
+ {"%.5s", "qwertyuiop", "qwert"},
+ {"%-20.5s", "qwertyuiop", "qwert "},
+ {"%20c", 'x', " x"},
+ {"%-20c", 'x', "x "},
+ {"%20.6e", 1.2345e3, " 1.234500e+03"},
+ {"%20.6e", 1.2345e-3, " 1.234500e-03"},
+ {"%20e", 1.2345e3, " 1.234500e+03"},
+ {"%20e", 1.2345e-3, " 1.234500e-03"},
+ {"%20.8e", 1.2345e3, " 1.23450000e+03"},
+ {"%20f", 1.23456789e3, " 1234.567890"},
+ {"%20f", 1.23456789e-3, " 0.001235"},
+ {"%20f", 12345678901.23456789, " 12345678901.234568"},
+ {"%-20f", 1.23456789e3, "1234.567890 "},
+ {"%20.8f", 1.23456789e3, " 1234.56789000"},
+ {"%20.8f", 1.23456789e-3, " 0.00123457"},
+ {"%g", 1.23456789e3, "1234.56789"},
+ {"%g", 1.23456789e-3, "0.00123456789"},
+ {"%g", 1.23456789e20, "1.23456789e+20"},
+ {"%20e", math.Inf(1), " +Inf"},
+ {"%-20f", math.Inf(-1), "-Inf "},
+ {"%20g", math.NaN(), " NaN"},
+
+ // arrays
+ {"%v", array, "[1 2 3 4 5]"},
+ {"%v", iarray, "[1 hello 2.5 <nil>]"},
+ {"%v", &array, "&[1 2 3 4 5]"},
+ {"%v", &iarray, "&[1 hello 2.5 <nil>]"},
+
+ // complexes with %v
+ {"%v", 1 + 2i, "(1+2i)"},
+ {"%v", complex64(1 + 2i), "(1+2i)"},
+ {"%v", complex128(1 + 2i), "(1+2i)"},
+
+ // structs
+ {"%v", A{1, 2, "a", []int{1, 2}}, `{1 2 a [1 2]}`},
+ {"%+v", A{1, 2, "a", []int{1, 2}}, `{i:1 j:2 s:a x:[1 2]}`},
+
+ // +v on structs with Stringable items
+ {"%+v", B{1, 2}, `{i:<1> j:2}`},
+ {"%+v", C{1, B{2, 3}}, `{i:1 B:{i:<2> j:3}}`},
+
+ // q on Stringable items
+ {"%s", I(23), `<23>`},
+ {"%q", I(23), `"<23>"`},
+ {"%x", I(23), `3c32333e`},
+ {"%d", I(23), `%!d(string=<23>)`},
+
+ // go syntax
+ {"%#v", A{1, 2, "a", []int{1, 2}}, `fmt_test.A{i:1, j:0x2, s:"a", x:[]int{1, 2}}`},
+ {"%#v", &b, "(*uint8)(PTR)"},
+ {"%#v", TestFmtInterface, "(func(*testing.T))(PTR)"},
+ {"%#v", make(chan int), "(chan int)(PTR)"},
+ {"%#v", uint64(1<<64 - 1), "0xffffffffffffffff"},
+ {"%#v", 1000000000, "1000000000"},
+ {"%#v", map[string]int{"a": 1, "b": 2}, `map[string] int{"a":1, "b":2}`},
+ {"%#v", map[string]B{"a": {1, 2}, "b": {3, 4}}, `map[string] fmt_test.B{"a":fmt_test.B{i:1, j:2}, "b":fmt_test.B{i:3, j:4}}`},
+ {"%#v", []string{"a", "b"}, `[]string{"a", "b"}`},
+
+ // slices with other formats
+ {"%#x", []int{1, 2, 15}, `[0x1 0x2 0xf]`},
+ {"%x", []int{1, 2, 15}, `[1 2 f]`},
+ {"%d", []int{1, 2, 15}, `[1 2 15]`},
+ {"%d", []byte{1, 2, 15}, `[1 2 15]`},
+ {"%q", []string{"a", "b"}, `["a" "b"]`},
+
+ // renamings
+ {"%v", renamedBool(true), "true"},
+ {"%d", renamedBool(true), "%!d(fmt_test.renamedBool=true)"},
+ {"%o", renamedInt(8), "10"},
+ {"%d", renamedInt8(-9), "-9"},
+ {"%v", renamedInt16(10), "10"},
+ {"%v", renamedInt32(-11), "-11"},
+ {"%X", renamedInt64(255), "FF"},
+ {"%v", renamedUint(13), "13"},
+ {"%o", renamedUint8(14), "16"},
+ {"%X", renamedUint16(15), "F"},
+ {"%d", renamedUint32(16), "16"},
+ {"%X", renamedUint64(17), "11"},
+ {"%o", renamedUintptr(18), "22"},
+ {"%x", renamedString("thing"), "7468696e67"},
+ {"%d", renamedBytes([]byte{1, 2, 15}), `[1 2 15]`},
+ {"%q", renamedBytes([]byte("hello")), `"hello"`},
+ {"%v", renamedFloat32(22), "22"},
+ {"%v", renamedFloat64(33), "33"},
+ {"%v", renamedComplex64(3 + 4i), "(3+4i)"},
+ {"%v", renamedComplex128(4 - 3i), "(4-3i)"},
+
+ // Formatter
+ {"%x", F(1), "<x=F(1)>"},
+ {"%x", G(2), "2"},
+ {"%+v", S{F(4), G(5)}, "{f:<v=F(4)> g:5}"},
+
+ // GoStringer
+ {"%#v", G(6), "GoString(6)"},
+ {"%#v", S{F(7), G(8)}, "fmt_test.S{f:<v=F(7)>, g:GoString(8)}"},
+
+ // %T
+ {"%T", (4 - 3i), "complex128"},
+ {"%T", renamedComplex128(4 - 3i), "fmt_test.renamedComplex128"},
+ {"%T", intVal, "int"},
+ {"%6T", &intVal, " *int"},
+
+ // %p
+ {"p0=%p", new(int), "p0=PTR"},
+ {"p1=%s", &pValue, "p1=String(p)"}, // String method...
+ {"p2=%p", &pValue, "p2=PTR"}, // ... not called with %p
+
+ // %p on non-pointers
+ {"%p", make(chan int), "PTR"},
+ {"%p", make(map[int]int), "PTR"},
+ {"%p", make([]int, 1), "PTR"},
+ {"%p", 27, "%!p(int=27)"}, // not a pointer at all
+
+ // erroneous things
+ {"%s %", "hello", "hello %!(NOVERB)"},
+ {"%s %.2", "hello", "hello %!(NOVERB)"},
+ {"%d", "hello", "%!d(string=hello)"},
+ {"no args", "hello", "no args%!(EXTRA string=hello)"},
+ {"%s", nil, "%!s(<nil>)"},
+ {"%T", nil, "<nil>"},
+ {"%-1", 100, "%!(NOVERB)%!(EXTRA int=100)"},
+}
+
+func TestSprintf(t *testing.T) {
+ for _, tt := range fmttests {
+ s := Sprintf(tt.fmt, tt.val)
+ if i := strings.Index(s, "0x"); i >= 0 && strings.Contains(tt.out, "PTR") {
+ j := i + 2
+ for ; j < len(s); j++ {
+ c := s[j]
+ if (c < '0' || c > '9') && (c < 'a' || c > 'f') && (c < 'A' || c > 'F') {
+ break
+ }
+ }
+ s = s[0:i] + "PTR" + s[j:]
+ }
+ if s != tt.out {
+ if _, ok := tt.val.(string); ok {
+ // Don't requote the already-quoted strings.
+ // It's too confusing to read the errors.
+ t.Errorf("Sprintf(%q, %q) = <%s> want <%s>", tt.fmt, tt.val, s, tt.out)
+ } else {
+ t.Errorf("Sprintf(%q, %v) = %q want %q", tt.fmt, tt.val, s, tt.out)
+ }
+ }
+ }
+}
+
+func BenchmarkSprintfEmpty(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Sprintf("")
+ }
+}
+
+func BenchmarkSprintfString(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Sprintf("%s", "hello")
+ }
+}
+
+func BenchmarkSprintfInt(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Sprintf("%d", 5)
+ }
+}
+
+func BenchmarkSprintfIntInt(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Sprintf("%d %d", 5, 6)
+ }
+}
+
+func BenchmarkSprintfPrefixedInt(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Sprintf("This is some meaningless prefix text that needs to be scanned %d", 6)
+ }
+}
+
+func TestCountMallocs(t *testing.T) {
+ mallocs := 0 - runtime.MemStats.Mallocs
+ for i := 0; i < 100; i++ {
+ Sprintf("")
+ }
+ mallocs += runtime.MemStats.Mallocs
+ Printf("mallocs per Sprintf(\"\"): %d\n", mallocs/100)
+ mallocs = 0 - runtime.MemStats.Mallocs
+ for i := 0; i < 100; i++ {
+ Sprintf("xxx")
+ }
+ mallocs += runtime.MemStats.Mallocs
+ Printf("mallocs per Sprintf(\"xxx\"): %d\n", mallocs/100)
+ mallocs = 0 - runtime.MemStats.Mallocs
+ for i := 0; i < 100; i++ {
+ Sprintf("%x", i)
+ }
+ mallocs += runtime.MemStats.Mallocs
+ Printf("mallocs per Sprintf(\"%%x\"): %d\n", mallocs/100)
+ mallocs = 0 - runtime.MemStats.Mallocs
+ for i := 0; i < 100; i++ {
+ Sprintf("%x %x", i, i)
+ }
+ mallocs += runtime.MemStats.Mallocs
+ Printf("mallocs per Sprintf(\"%%x %%x\"): %d\n", mallocs/100)
+}
+
+type flagPrinter struct{}
+
+func (*flagPrinter) Format(f State, c int) {
+ s := "%"
+ for i := 0; i < 128; i++ {
+ if f.Flag(i) {
+ s += string(i)
+ }
+ }
+ if w, ok := f.Width(); ok {
+ s += Sprintf("%d", w)
+ }
+ if p, ok := f.Precision(); ok {
+ s += Sprintf(".%d", p)
+ }
+ s += string(c)
+ io.WriteString(f, "["+s+"]")
+}
+
+var flagtests = []struct {
+ in string
+ out string
+}{
+ {"%a", "[%a]"},
+ {"%-a", "[%-a]"},
+ {"%+a", "[%+a]"},
+ {"%#a", "[%#a]"},
+ {"% a", "[% a]"},
+ {"%0a", "[%0a]"},
+ {"%1.2a", "[%1.2a]"},
+ {"%-1.2a", "[%-1.2a]"},
+ {"%+1.2a", "[%+1.2a]"},
+ {"%-+1.2a", "[%+-1.2a]"},
+ {"%-+1.2abc", "[%+-1.2a]bc"},
+ {"%-1.2abc", "[%-1.2a]bc"},
+}
+
+func TestFlagParser(t *testing.T) {
+ var flagprinter flagPrinter
+ for _, tt := range flagtests {
+ s := Sprintf(tt.in, &flagprinter)
+ if s != tt.out {
+ t.Errorf("Sprintf(%q, &flagprinter) => %q, want %q", tt.in, s, tt.out)
+ }
+ }
+}
+
+func TestStructPrinter(t *testing.T) {
+ var s struct {
+ a string
+ b string
+ c int
+ }
+ s.a = "abc"
+ s.b = "def"
+ s.c = 123
+ var tests = []struct {
+ fmt string
+ out string
+ }{
+ {"%v", "{abc def 123}"},
+ {"%+v", "{a:abc b:def c:123}"},
+ }
+ for _, tt := range tests {
+ out := Sprintf(tt.fmt, s)
+ if out != tt.out {
+ t.Errorf("Sprintf(%q, &s) = %q, want %q", tt.fmt, out, tt.out)
+ }
+ }
+}
+
+// Check map printing using substrings so we don't depend on the print order.
+func presentInMap(s string, a []string, t *testing.T) {
+ for i := 0; i < len(a); i++ {
+ loc := strings.Index(s, a[i])
+ if loc < 0 {
+ t.Errorf("map print: expected to find %q in %q", a[i], s)
+ }
+ // make sure the match ends here
+ loc += len(a[i])
+ if loc >= len(s) || (s[loc] != ' ' && s[loc] != ']') {
+ t.Errorf("map print: %q not properly terminated in %q", a[i], s)
+ }
+ }
+}
+
+func TestMapPrinter(t *testing.T) {
+ m0 := make(map[int]string)
+ s := Sprint(m0)
+ if s != "map[]" {
+ t.Errorf("empty map printed as %q not %q", s, "map[]")
+ }
+ m1 := map[int]string{1: "one", 2: "two", 3: "three"}
+ a := []string{"1:one", "2:two", "3:three"}
+ presentInMap(Sprintf("%v", m1), a, t)
+ presentInMap(Sprint(m1), a, t)
+}
+
+func TestEmptyMap(t *testing.T) {
+ const emptyMapStr = "map[]"
+ var m map[string]int
+ s := Sprint(m)
+ if s != emptyMapStr {
+ t.Errorf("nil map printed as %q not %q", s, emptyMapStr)
+ }
+ m = make(map[string]int)
+ s = Sprint(m)
+ if s != emptyMapStr {
+ t.Errorf("empty map printed as %q not %q", s, emptyMapStr)
+ }
+}
+
+// Check that Sprint (and hence Print, Fprint) puts spaces in the right places,
+// that is, between arg pairs in which neither is a string.
+func TestBlank(t *testing.T) {
+ got := Sprint("<", 1, ">:", 1, 2, 3, "!")
+ expect := "<1>:1 2 3!"
+ if got != expect {
+ t.Errorf("got %q expected %q", got, expect)
+ }
+}
+
+// Check that Sprintln (and hence Println, Fprintln) puts spaces in the right places,
+// that is, between all arg pairs.
+func TestBlankln(t *testing.T) {
+ got := Sprintln("<", 1, ">:", 1, 2, 3, "!")
+ expect := "< 1 >: 1 2 3 !\n"
+ if got != expect {
+ t.Errorf("got %q expected %q", got, expect)
+ }
+}
+
+
+// Check Formatter with Sprint, Sprintln, Sprintf
+func TestFormatterPrintln(t *testing.T) {
+ f := F(1)
+ expect := "<v=F(1)>\n"
+ s := Sprint(f, "\n")
+ if s != expect {
+ t.Errorf("Sprint wrong with Formatter: expected %q got %q", expect, s)
+ }
+ s = Sprintln(f)
+ if s != expect {
+ t.Errorf("Sprintln wrong with Formatter: expected %q got %q", expect, s)
+ }
+ s = Sprintf("%v\n", f)
+ if s != expect {
+ t.Errorf("Sprintf wrong with Formatter: expected %q got %q", expect, s)
+ }
+}
+
+func args(a ...interface{}) []interface{} { return a }
+
+var startests = []struct {
+ fmt string
+ in []interface{}
+ out string
+}{
+ {"%*d", args(4, 42), " 42"},
+ {"%.*d", args(4, 42), "0042"},
+ {"%*.*d", args(8, 4, 42), " 0042"},
+ {"%0*d", args(4, 42), "0042"},
+ {"%-*d", args(4, 42), "42 "},
+
+ // erroneous
+ {"%*d", args(nil, 42), "%!(BADWIDTH)42"},
+ {"%.*d", args(nil, 42), "%!(BADPREC)42"},
+ {"%*d", args(5, "foo"), "%!d(string= foo)"},
+ {"%*% %d", args(20, 5), "% 5"},
+ {"%*", args(4), "%!(NOVERB)"},
+ {"%*d", args(int32(4), 42), "%!(BADWIDTH)42"},
+}
+
+func TestWidthAndPrecision(t *testing.T) {
+ for _, tt := range startests {
+ s := Sprintf(tt.fmt, tt.in...)
+ if s != tt.out {
+ t.Errorf("%q: got %q expected %q", tt.fmt, s, tt.out)
+ }
+ }
+}
diff --git a/libgo/go/fmt/format.go b/libgo/go/fmt/format.go
new file mode 100644
index 000000000..86057bf69
--- /dev/null
+++ b/libgo/go/fmt/format.go
@@ -0,0 +1,398 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package fmt
+
+import (
+ "bytes"
+ "strconv"
+ "utf8"
+)
+
+const (
+ nByte = 64
+
+ ldigits = "0123456789abcdef"
+ udigits = "0123456789ABCDEF"
+)
+
+const (
+ signed = true
+ unsigned = false
+)
+
+var padZeroBytes = make([]byte, nByte)
+var padSpaceBytes = make([]byte, nByte)
+
+var newline = []byte{'\n'}
+
+func init() {
+ for i := 0; i < nByte; i++ {
+ padZeroBytes[i] = '0'
+ padSpaceBytes[i] = ' '
+ }
+}
+
+// A fmt is the raw formatter used by Printf etc.
+// It prints into a bytes.Buffer that must be set up externally.
+type fmt struct {
+ intbuf [nByte]byte
+ buf *bytes.Buffer
+ // width, precision
+ wid int
+ prec int
+ // flags
+ widPresent bool
+ precPresent bool
+ minus bool
+ plus bool
+ sharp bool
+ space bool
+ unicode bool
+ zero bool
+}
+
+func (f *fmt) clearflags() {
+ f.wid = 0
+ f.widPresent = false
+ f.prec = 0
+ f.precPresent = false
+ f.minus = false
+ f.plus = false
+ f.sharp = false
+ f.space = false
+ f.unicode = false
+ f.zero = false
+}
+
+func (f *fmt) init(buf *bytes.Buffer) {
+ f.buf = buf
+ f.clearflags()
+}
+
+// Compute left and right padding widths (only one will be non-zero).
+func (f *fmt) computePadding(width int) (padding []byte, leftWidth, rightWidth int) {
+ left := !f.minus
+ w := f.wid
+ if w < 0 {
+ left = false
+ w = -w
+ }
+ w -= width
+ if w > 0 {
+ if left && f.zero {
+ return padZeroBytes, w, 0
+ }
+ if left {
+ return padSpaceBytes, w, 0
+ } else {
+ // can't be zero padding on the right
+ return padSpaceBytes, 0, w
+ }
+ }
+ return
+}
+
+// Generate n bytes of padding.
+func (f *fmt) writePadding(n int, padding []byte) {
+ for n > 0 {
+ m := n
+ if m > nByte {
+ m = nByte
+ }
+ f.buf.Write(padding[0:m])
+ n -= m
+ }
+}
+
+// Append b to f.buf, padded on left (w > 0) or right (w < 0 or f.minus)
+// clear flags aftewards.
+func (f *fmt) pad(b []byte) {
+ var padding []byte
+ var left, right int
+ if f.widPresent && f.wid != 0 {
+ padding, left, right = f.computePadding(len(b))
+ }
+ if left > 0 {
+ f.writePadding(left, padding)
+ }
+ f.buf.Write(b)
+ if right > 0 {
+ f.writePadding(right, padding)
+ }
+}
+
+// append s to buf, padded on left (w > 0) or right (w < 0 or f.minus).
+// clear flags aftewards.
+func (f *fmt) padString(s string) {
+ var padding []byte
+ var left, right int
+ if f.widPresent && f.wid != 0 {
+ padding, left, right = f.computePadding(utf8.RuneCountInString(s))
+ }
+ if left > 0 {
+ f.writePadding(left, padding)
+ }
+ f.buf.WriteString(s)
+ if right > 0 {
+ f.writePadding(right, padding)
+ }
+}
+
+func putint(buf []byte, base, val uint64, digits string) int {
+ i := len(buf) - 1
+ for val >= base {
+ buf[i] = digits[val%base]
+ i--
+ val /= base
+ }
+ buf[i] = digits[val]
+ return i - 1
+}
+
+// fmt_boolean formats a boolean.
+func (f *fmt) fmt_boolean(v bool) {
+ if v {
+ f.padString("true")
+ } else {
+ f.padString("false")
+ }
+}
+
+// integer; interprets prec but not wid. Once formatted, result is sent to pad()
+// and then flags are cleared.
+func (f *fmt) integer(a int64, base uint64, signedness bool, digits string) {
+ var buf []byte = f.intbuf[0:]
+ negative := signedness == signed && a < 0
+ if negative {
+ a = -a
+ }
+
+ // two ways to ask for extra leading zero digits: %.3d or %03d.
+ // apparently the first cancels the second.
+ prec := 0
+ if f.precPresent {
+ prec = f.prec
+ f.zero = false
+ } else if f.zero && f.widPresent && !f.minus && f.wid > 0 {
+ prec = f.wid
+ if negative || f.plus || f.space {
+ prec-- // leave room for sign
+ }
+ }
+
+ // format a into buf, ending at buf[i]. (printing is easier right-to-left.)
+ // a is made into unsigned ua. we could make things
+ // marginally faster by splitting the 32-bit case out into a separate
+ // block but it's not worth the duplication, so ua has 64 bits.
+ i := len(f.intbuf)
+ ua := uint64(a)
+ for ua >= base {
+ i--
+ buf[i] = digits[ua%base]
+ ua /= base
+ }
+ i--
+ buf[i] = digits[ua]
+ for i > 0 && prec > nByte-i {
+ i--
+ buf[i] = '0'
+ }
+
+ // Various prefixes: 0x, -, etc.
+ if f.sharp {
+ switch base {
+ case 8:
+ if buf[i] != '0' {
+ i--
+ buf[i] = '0'
+ }
+ case 16:
+ i--
+ buf[i] = 'x' + digits[10] - 'a'
+ i--
+ buf[i] = '0'
+ }
+ }
+ if f.unicode {
+ i--
+ buf[i] = '+'
+ i--
+ buf[i] = 'U'
+ }
+
+ if negative {
+ i--
+ buf[i] = '-'
+ } else if f.plus {
+ i--
+ buf[i] = '+'
+ } else if f.space {
+ i--
+ buf[i] = ' '
+ }
+ f.pad(buf[i:])
+}
+
+// fmt_s formats a string.
+func (f *fmt) fmt_s(s string) {
+ if f.precPresent {
+ if f.prec < len(s) {
+ s = s[0:f.prec]
+ }
+ }
+ f.padString(s)
+}
+
+// fmt_sx formats a string as a hexadecimal encoding of its bytes.
+func (f *fmt) fmt_sx(s string) {
+ t := ""
+ for i := 0; i < len(s); i++ {
+ if i > 0 && f.space {
+ t += " "
+ }
+ v := s[i]
+ t += string(ldigits[v>>4])
+ t += string(ldigits[v&0xF])
+ }
+ f.padString(t)
+}
+
+// fmt_sX formats a string as an uppercase hexadecimal encoding of its bytes.
+func (f *fmt) fmt_sX(s string) {
+ t := ""
+ for i := 0; i < len(s); i++ {
+ if i > 0 && f.space {
+ t += " "
+ }
+ v := s[i]
+ t += string(udigits[v>>4])
+ t += string(udigits[v&0xF])
+ }
+ f.padString(t)
+}
+
+// fmt_q formats a string as a double-quoted, escaped Go string constant.
+func (f *fmt) fmt_q(s string) {
+ var quoted string
+ if f.sharp && strconv.CanBackquote(s) {
+ quoted = "`" + s + "`"
+ } else {
+ quoted = strconv.Quote(s)
+ }
+ f.padString(quoted)
+}
+
+// floating-point
+
+func doPrec(f *fmt, def int) int {
+ if f.precPresent {
+ return f.prec
+ }
+ return def
+}
+
+// Add a plus sign or space to the floating-point string representation if missing and required.
+func (f *fmt) plusSpace(s string) {
+ if s[0] != '-' {
+ if f.plus {
+ s = "+" + s
+ } else if f.space {
+ s = " " + s
+ }
+ }
+ f.padString(s)
+}
+
+// fmt_e64 formats a float64 in the form -1.23e+12.
+func (f *fmt) fmt_e64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'e', doPrec(f, 6))) }
+
+// fmt_E64 formats a float64 in the form -1.23E+12.
+func (f *fmt) fmt_E64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'E', doPrec(f, 6))) }
+
+// fmt_f64 formats a float64 in the form -1.23.
+func (f *fmt) fmt_f64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'f', doPrec(f, 6))) }
+
+// fmt_g64 formats a float64 in the 'f' or 'e' form according to size.
+func (f *fmt) fmt_g64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'g', doPrec(f, -1))) }
+
+// fmt_g64 formats a float64 in the 'f' or 'E' form according to size.
+func (f *fmt) fmt_G64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'G', doPrec(f, -1))) }
+
+// fmt_fb64 formats a float64 in the form -123p3 (exponent is power of 2).
+func (f *fmt) fmt_fb64(v float64) { f.plusSpace(strconv.Ftoa64(v, 'b', 0)) }
+
+// float32
+// cannot defer to float64 versions
+// because it will get rounding wrong in corner cases.
+
+// fmt_e32 formats a float32 in the form -1.23e+12.
+func (f *fmt) fmt_e32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'e', doPrec(f, 6))) }
+
+// fmt_E32 formats a float32 in the form -1.23E+12.
+func (f *fmt) fmt_E32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'E', doPrec(f, 6))) }
+
+// fmt_f32 formats a float32 in the form -1.23.
+func (f *fmt) fmt_f32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'f', doPrec(f, 6))) }
+
+// fmt_g32 formats a float32 in the 'f' or 'e' form according to size.
+func (f *fmt) fmt_g32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'g', doPrec(f, -1))) }
+
+// fmt_G32 formats a float32 in the 'f' or 'E' form according to size.
+func (f *fmt) fmt_G32(v float32) { f.plusSpace(strconv.Ftoa32(v, 'G', doPrec(f, -1))) }
+
+// fmt_fb32 formats a float32 in the form -123p3 (exponent is power of 2).
+func (f *fmt) fmt_fb32(v float32) { f.padString(strconv.Ftoa32(v, 'b', 0)) }
+
+// fmt_c64 formats a complex64 according to the verb.
+func (f *fmt) fmt_c64(v complex64, verb int) {
+ f.buf.WriteByte('(')
+ r := real(v)
+ for i := 0; ; i++ {
+ switch verb {
+ case 'e':
+ f.fmt_e32(r)
+ case 'E':
+ f.fmt_E32(r)
+ case 'f':
+ f.fmt_f32(r)
+ case 'g':
+ f.fmt_g32(r)
+ case 'G':
+ f.fmt_G32(r)
+ }
+ if i != 0 {
+ break
+ }
+ f.plus = true
+ r = imag(v)
+ }
+ f.buf.Write(irparenBytes)
+}
+
+// fmt_c128 formats a complex128 according to the verb.
+func (f *fmt) fmt_c128(v complex128, verb int) {
+ f.buf.WriteByte('(')
+ r := real(v)
+ for i := 0; ; i++ {
+ switch verb {
+ case 'e':
+ f.fmt_e64(r)
+ case 'E':
+ f.fmt_E64(r)
+ case 'f':
+ f.fmt_f64(r)
+ case 'g':
+ f.fmt_g64(r)
+ case 'G':
+ f.fmt_G64(r)
+ }
+ if i != 0 {
+ break
+ }
+ f.plus = true
+ r = imag(v)
+ }
+ f.buf.Write(irparenBytes)
+}
diff --git a/libgo/go/fmt/print.go b/libgo/go/fmt/print.go
new file mode 100644
index 000000000..96029a878
--- /dev/null
+++ b/libgo/go/fmt/print.go
@@ -0,0 +1,921 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package fmt
+
+import (
+ "bytes"
+ "io"
+ "os"
+ "reflect"
+ "utf8"
+)
+
+// Some constants in the form of bytes, to avoid string overhead.
+// Needlessly fastidious, I suppose.
+var (
+ commaSpaceBytes = []byte(", ")
+ nilAngleBytes = []byte("<nil>")
+ nilParenBytes = []byte("(nil)")
+ nilBytes = []byte("nil")
+ mapBytes = []byte("map[")
+ missingBytes = []byte("(MISSING)")
+ extraBytes = []byte("%!(EXTRA ")
+ irparenBytes = []byte("i)")
+ bytesBytes = []byte("[]byte{")
+ widthBytes = []byte("%!(BADWIDTH)")
+ precBytes = []byte("%!(BADPREC)")
+ noVerbBytes = []byte("%!(NOVERB)")
+)
+
+// State represents the printer state passed to custom formatters.
+// It provides access to the io.Writer interface plus information about
+// the flags and options for the operand's format specifier.
+type State interface {
+ // Write is the function to call to emit formatted output to be printed.
+ Write(b []byte) (ret int, err os.Error)
+ // Width returns the value of the width option and whether it has been set.
+ Width() (wid int, ok bool)
+ // Precision returns the value of the precision option and whether it has been set.
+ Precision() (prec int, ok bool)
+
+ // Flag returns whether the flag c, a character, has been set.
+ Flag(int) bool
+}
+
+// Formatter is the interface implemented by values with a custom formatter.
+// The implementation of Format may call Sprintf or Fprintf(f) etc.
+// to generate its output.
+type Formatter interface {
+ Format(f State, c int)
+}
+
+// Stringer is implemented by any value that has a String method(),
+// which defines the ``native'' format for that value.
+// The String method is used to print values passed as an operand
+// to a %s or %v format or to an unformatted printer such as Print.
+type Stringer interface {
+ String() string
+}
+
+// GoStringer is implemented by any value that has a GoString() method,
+// which defines the Go syntax for that value.
+// The GoString method is used to print values passed as an operand
+// to a %#v format.
+type GoStringer interface {
+ GoString() string
+}
+
+type pp struct {
+ n int
+ buf bytes.Buffer
+ runeBuf [utf8.UTFMax]byte
+ fmt fmt
+}
+
+// A leaky bucket of reusable pp structures.
+var ppFree = make(chan *pp, 100)
+
+// Allocate a new pp struct. Probably can grab the previous one from ppFree.
+func newPrinter() *pp {
+ p, ok := <-ppFree
+ if !ok {
+ p = new(pp)
+ }
+ p.fmt.init(&p.buf)
+ return p
+}
+
+// Save used pp structs in ppFree; avoids an allocation per invocation.
+func (p *pp) free() {
+ // Don't hold on to pp structs with large buffers.
+ if cap(p.buf.Bytes()) > 1024 {
+ return
+ }
+ p.buf.Reset()
+ _ = ppFree <- p
+}
+
+func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
+
+func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
+
+func (p *pp) Flag(b int) bool {
+ switch b {
+ case '-':
+ return p.fmt.minus
+ case '+':
+ return p.fmt.plus
+ case '#':
+ return p.fmt.sharp
+ case ' ':
+ return p.fmt.space
+ case '0':
+ return p.fmt.zero
+ }
+ return false
+}
+
+func (p *pp) add(c int) {
+ p.buf.WriteRune(c)
+}
+
+// Implement Write so we can call Fprintf on a pp (through State), for
+// recursive use in custom verbs.
+func (p *pp) Write(b []byte) (ret int, err os.Error) {
+ return p.buf.Write(b)
+}
+
+// These routines end in 'f' and take a format string.
+
+// Fprintf formats according to a format specifier and writes to w.
+// It returns the number of bytes written and any write error encountered.
+func Fprintf(w io.Writer, format string, a ...interface{}) (n int, error os.Error) {
+ p := newPrinter()
+ p.doPrintf(format, a)
+ n64, error := p.buf.WriteTo(w)
+ p.free()
+ return int(n64), error
+}
+
+// Printf formats according to a format specifier and writes to standard output.
+// It returns the number of bytes written and any write error encountered.
+func Printf(format string, a ...interface{}) (n int, errno os.Error) {
+ n, errno = Fprintf(os.Stdout, format, a...)
+ return n, errno
+}
+
+// Sprintf formats according to a format specifier and returns the resulting string.
+func Sprintf(format string, a ...interface{}) string {
+ p := newPrinter()
+ p.doPrintf(format, a)
+ s := p.buf.String()
+ p.free()
+ return s
+}
+
+// Errorf formats according to a format specifier and returns the string
+// converted to an os.ErrorString, which satisfies the os.Error interface.
+func Errorf(format string, a ...interface{}) os.Error {
+ return os.ErrorString(Sprintf(format, a...))
+}
+
+// These routines do not take a format string
+
+// Fprint formats using the default formats for its operands and writes to w.
+// Spaces are added between operands when neither is a string.
+// It returns the number of bytes written and any write error encountered.
+func Fprint(w io.Writer, a ...interface{}) (n int, error os.Error) {
+ p := newPrinter()
+ p.doPrint(a, false, false)
+ n64, error := p.buf.WriteTo(w)
+ p.free()
+ return int(n64), error
+}
+
+// Print formats using the default formats for its operands and writes to standard output.
+// Spaces are added between operands when neither is a string.
+// It returns the number of bytes written and any write error encountered.
+func Print(a ...interface{}) (n int, errno os.Error) {
+ n, errno = Fprint(os.Stdout, a...)
+ return n, errno
+}
+
+// Sprint formats using the default formats for its operands and returns the resulting string.
+// Spaces are added between operands when neither is a string.
+func Sprint(a ...interface{}) string {
+ p := newPrinter()
+ p.doPrint(a, false, false)
+ s := p.buf.String()
+ p.free()
+ return s
+}
+
+// These routines end in 'ln', do not take a format string,
+// always add spaces between operands, and add a newline
+// after the last operand.
+
+// Fprintln formats using the default formats for its operands and writes to w.
+// Spaces are always added between operands and a newline is appended.
+// It returns the number of bytes written and any write error encountered.
+func Fprintln(w io.Writer, a ...interface{}) (n int, error os.Error) {
+ p := newPrinter()
+ p.doPrint(a, true, true)
+ n64, error := p.buf.WriteTo(w)
+ p.free()
+ return int(n64), error
+}
+
+// Println formats using the default formats for its operands and writes to standard output.
+// Spaces are always added between operands and a newline is appended.
+// It returns the number of bytes written and any write error encountered.
+func Println(a ...interface{}) (n int, errno os.Error) {
+ n, errno = Fprintln(os.Stdout, a...)
+ return n, errno
+}
+
+// Sprintln formats using the default formats for its operands and returns the resulting string.
+// Spaces are always added between operands and a newline is appended.
+func Sprintln(a ...interface{}) string {
+ p := newPrinter()
+ p.doPrint(a, true, true)
+ s := p.buf.String()
+ p.free()
+ return s
+}
+
+
+// Get the i'th arg of the struct value.
+// If the arg itself is an interface, return a value for
+// the thing inside the interface, not the interface itself.
+func getField(v *reflect.StructValue, i int) reflect.Value {
+ val := v.Field(i)
+ if i, ok := val.(*reflect.InterfaceValue); ok {
+ if inter := i.Interface(); inter != nil {
+ return reflect.NewValue(inter)
+ }
+ }
+ return val
+}
+
+// Convert ASCII to integer. n is 0 (and got is false) if no number present.
+func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
+ if start >= end {
+ return 0, false, end
+ }
+ for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
+ num = num*10 + int(s[newi]-'0')
+ isnum = true
+ }
+ return
+}
+
+// Reflection values like reflect.FuncValue implement this method. We use it for %p.
+type uintptrGetter interface {
+ Get() uintptr
+}
+
+func (p *pp) unknownType(v interface{}) {
+ if v == nil {
+ p.buf.Write(nilAngleBytes)
+ return
+ }
+ p.buf.WriteByte('?')
+ p.buf.WriteString(reflect.Typeof(v).String())
+ p.buf.WriteByte('?')
+}
+
+func (p *pp) badVerb(verb int, val interface{}) {
+ p.add('%')
+ p.add('!')
+ p.add(verb)
+ p.add('(')
+ if val == nil {
+ p.buf.Write(nilAngleBytes)
+ } else {
+ p.buf.WriteString(reflect.Typeof(val).String())
+ p.add('=')
+ p.printField(val, 'v', false, false, 0)
+ }
+ p.add(')')
+}
+
+func (p *pp) fmtBool(v bool, verb int, value interface{}) {
+ switch verb {
+ case 't', 'v':
+ p.fmt.fmt_boolean(v)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+// fmtC formats a rune for the 'c' format.
+func (p *pp) fmtC(c int64) {
+ rune := int(c) // Check for overflow.
+ if int64(rune) != c {
+ rune = utf8.RuneError
+ }
+ w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], rune)
+ p.fmt.pad(p.runeBuf[0:w])
+}
+
+func (p *pp) fmtInt64(v int64, verb int, value interface{}) {
+ switch verb {
+ case 'b':
+ p.fmt.integer(v, 2, signed, ldigits)
+ case 'c':
+ p.fmtC(v)
+ case 'd', 'v':
+ p.fmt.integer(v, 10, signed, ldigits)
+ case 'o':
+ p.fmt.integer(v, 8, signed, ldigits)
+ case 'x':
+ p.fmt.integer(v, 16, signed, ldigits)
+ case 'U':
+ p.fmtUnicode(v)
+ case 'X':
+ p.fmt.integer(v, 16, signed, udigits)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x by
+// temporarily turning on the sharp flag.
+func (p *pp) fmt0x64(v uint64) {
+ sharp := p.fmt.sharp
+ p.fmt.sharp = true // turn on 0x
+ p.fmt.integer(int64(v), 16, unsigned, ldigits)
+ p.fmt.sharp = sharp
+}
+
+// fmtUnicode formats a uint64 in U+1234 form by
+// temporarily turning on the unicode flag and tweaking the precision.
+func (p *pp) fmtUnicode(v int64) {
+ precPresent := p.fmt.precPresent
+ prec := p.fmt.prec
+ if !precPresent {
+ // If prec is already set, leave it alone; otherwise 4 is minimum.
+ p.fmt.prec = 4
+ p.fmt.precPresent = true
+ }
+ p.fmt.unicode = true // turn on U+
+ p.fmt.integer(int64(v), 16, unsigned, udigits)
+ p.fmt.unicode = false
+ p.fmt.prec = prec
+ p.fmt.precPresent = precPresent
+}
+
+func (p *pp) fmtUint64(v uint64, verb int, goSyntax bool, value interface{}) {
+ switch verb {
+ case 'b':
+ p.fmt.integer(int64(v), 2, unsigned, ldigits)
+ case 'c':
+ p.fmtC(int64(v))
+ case 'd':
+ p.fmt.integer(int64(v), 10, unsigned, ldigits)
+ case 'v':
+ if goSyntax {
+ p.fmt0x64(v)
+ } else {
+ p.fmt.integer(int64(v), 10, unsigned, ldigits)
+ }
+ case 'o':
+ p.fmt.integer(int64(v), 8, unsigned, ldigits)
+ case 'x':
+ p.fmt.integer(int64(v), 16, unsigned, ldigits)
+ case 'X':
+ p.fmt.integer(int64(v), 16, unsigned, udigits)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtFloat32(v float32, verb int, value interface{}) {
+ switch verb {
+ case 'b':
+ p.fmt.fmt_fb32(v)
+ case 'e':
+ p.fmt.fmt_e32(v)
+ case 'E':
+ p.fmt.fmt_E32(v)
+ case 'f':
+ p.fmt.fmt_f32(v)
+ case 'g', 'v':
+ p.fmt.fmt_g32(v)
+ case 'G':
+ p.fmt.fmt_G32(v)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtFloat64(v float64, verb int, value interface{}) {
+ switch verb {
+ case 'b':
+ p.fmt.fmt_fb64(v)
+ case 'e':
+ p.fmt.fmt_e64(v)
+ case 'E':
+ p.fmt.fmt_E64(v)
+ case 'f':
+ p.fmt.fmt_f64(v)
+ case 'g', 'v':
+ p.fmt.fmt_g64(v)
+ case 'G':
+ p.fmt.fmt_G64(v)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtComplex64(v complex64, verb int, value interface{}) {
+ switch verb {
+ case 'e', 'E', 'f', 'F', 'g', 'G':
+ p.fmt.fmt_c64(v, verb)
+ case 'v':
+ p.fmt.fmt_c64(v, 'g')
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtComplex128(v complex128, verb int, value interface{}) {
+ switch verb {
+ case 'e', 'E', 'f', 'F', 'g', 'G':
+ p.fmt.fmt_c128(v, verb)
+ case 'v':
+ p.fmt.fmt_c128(v, 'g')
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtString(v string, verb int, goSyntax bool, value interface{}) {
+ switch verb {
+ case 'v':
+ if goSyntax {
+ p.fmt.fmt_q(v)
+ } else {
+ p.fmt.fmt_s(v)
+ }
+ case 's':
+ p.fmt.fmt_s(v)
+ case 'x':
+ p.fmt.fmt_sx(v)
+ case 'X':
+ p.fmt.fmt_sX(v)
+ case 'q':
+ p.fmt.fmt_q(v)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtBytes(v []byte, verb int, goSyntax bool, depth int, value interface{}) {
+ if verb == 'v' || verb == 'd' {
+ if goSyntax {
+ p.buf.Write(bytesBytes)
+ } else {
+ p.buf.WriteByte('[')
+ }
+ for i, c := range v {
+ if i > 0 {
+ if goSyntax {
+ p.buf.Write(commaSpaceBytes)
+ } else {
+ p.buf.WriteByte(' ')
+ }
+ }
+ p.printField(c, 'v', p.fmt.plus, goSyntax, depth+1)
+ }
+ if goSyntax {
+ p.buf.WriteByte('}')
+ } else {
+ p.buf.WriteByte(']')
+ }
+ return
+ }
+ s := string(v)
+ switch verb {
+ case 's':
+ p.fmt.fmt_s(s)
+ case 'x':
+ p.fmt.fmt_sx(s)
+ case 'X':
+ p.fmt.fmt_sX(s)
+ case 'q':
+ p.fmt.fmt_q(s)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtPointer(field interface{}, value reflect.Value, verb int, goSyntax bool) {
+ v, ok := value.(uintptrGetter)
+ if !ok { // reflect.PtrValue is a uintptrGetter, so failure means it's not a pointer at all.
+ p.badVerb(verb, field)
+ return
+ }
+ u := v.Get()
+ if goSyntax {
+ p.add('(')
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.add(')')
+ p.add('(')
+ if u == 0 {
+ p.buf.Write(nilBytes)
+ } else {
+ p.fmt0x64(uint64(v.Get()))
+ }
+ p.add(')')
+ } else {
+ p.fmt0x64(uint64(u))
+ }
+}
+
+var (
+ intBits = reflect.Typeof(0).Bits()
+ floatBits = reflect.Typeof(0.0).Bits()
+ complexBits = reflect.Typeof(1i).Bits()
+ uintptrBits = reflect.Typeof(uintptr(0)).Bits()
+)
+
+func (p *pp) printField(field interface{}, verb int, plus, goSyntax bool, depth int) (wasString bool) {
+ if field == nil {
+ if verb == 'T' || verb == 'v' {
+ p.buf.Write(nilAngleBytes)
+ } else {
+ p.badVerb(verb, field)
+ }
+ return false
+ }
+
+ // Special processing considerations.
+ // %T (the value's type) and %p (its address) are special; we always do them first.
+ switch verb {
+ case 'T':
+ p.printField(reflect.Typeof(field).String(), 's', false, false, 0)
+ return false
+ case 'p':
+ p.fmtPointer(field, reflect.NewValue(field), verb, goSyntax)
+ return false
+ }
+ // Is it a Formatter?
+ if formatter, ok := field.(Formatter); ok {
+ formatter.Format(p, verb)
+ return false // this value is not a string
+
+ }
+ // Must not touch flags before Formatter looks at them.
+ if plus {
+ p.fmt.plus = false
+ }
+ // If we're doing Go syntax and the field knows how to supply it, take care of it now.
+ if goSyntax {
+ p.fmt.sharp = false
+ if stringer, ok := field.(GoStringer); ok {
+ // Print the result of GoString unadorned.
+ p.fmtString(stringer.GoString(), 's', false, field)
+ return false // this value is not a string
+ }
+ } else {
+ // Is it a Stringer?
+ if stringer, ok := field.(Stringer); ok {
+ p.printField(stringer.String(), verb, plus, false, depth)
+ return false // this value is not a string
+ }
+ }
+
+ // Some types can be done without reflection.
+ switch f := field.(type) {
+ case bool:
+ p.fmtBool(f, verb, field)
+ return false
+ case float32:
+ p.fmtFloat32(f, verb, field)
+ return false
+ case float64:
+ p.fmtFloat64(f, verb, field)
+ return false
+ case complex64:
+ p.fmtComplex64(complex64(f), verb, field)
+ return false
+ case complex128:
+ p.fmtComplex128(f, verb, field)
+ return false
+ case int:
+ p.fmtInt64(int64(f), verb, field)
+ return false
+ case int8:
+ p.fmtInt64(int64(f), verb, field)
+ return false
+ case int16:
+ p.fmtInt64(int64(f), verb, field)
+ return false
+ case int32:
+ p.fmtInt64(int64(f), verb, field)
+ return false
+ case int64:
+ p.fmtInt64(f, verb, field)
+ return false
+ case uint:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case uint8:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case uint16:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case uint32:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case uint64:
+ p.fmtUint64(f, verb, goSyntax, field)
+ return false
+ case uintptr:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case string:
+ p.fmtString(f, verb, goSyntax, field)
+ return verb == 's' || verb == 'v'
+ case []byte:
+ p.fmtBytes(f, verb, goSyntax, depth, field)
+ return verb == 's'
+ }
+
+ // Need to use reflection
+ value := reflect.NewValue(field)
+
+BigSwitch:
+ switch f := value.(type) {
+ case *reflect.BoolValue:
+ p.fmtBool(f.Get(), verb, field)
+ case *reflect.IntValue:
+ p.fmtInt64(f.Get(), verb, field)
+ case *reflect.UintValue:
+ p.fmtUint64(uint64(f.Get()), verb, goSyntax, field)
+ case *reflect.FloatValue:
+ if f.Type().Size() == 4 {
+ p.fmtFloat32(float32(f.Get()), verb, field)
+ } else {
+ p.fmtFloat64(float64(f.Get()), verb, field)
+ }
+ case *reflect.ComplexValue:
+ if f.Type().Size() == 8 {
+ p.fmtComplex64(complex64(f.Get()), verb, field)
+ } else {
+ p.fmtComplex128(complex128(f.Get()), verb, field)
+ }
+ case *reflect.StringValue:
+ p.fmtString(f.Get(), verb, goSyntax, field)
+ case *reflect.MapValue:
+ if goSyntax {
+ p.buf.WriteString(f.Type().String())
+ p.buf.WriteByte('{')
+ } else {
+ p.buf.Write(mapBytes)
+ }
+ keys := f.Keys()
+ for i, key := range keys {
+ if i > 0 {
+ if goSyntax {
+ p.buf.Write(commaSpaceBytes)
+ } else {
+ p.buf.WriteByte(' ')
+ }
+ }
+ p.printField(key.Interface(), verb, plus, goSyntax, depth+1)
+ p.buf.WriteByte(':')
+ p.printField(f.Elem(key).Interface(), verb, plus, goSyntax, depth+1)
+ }
+ if goSyntax {
+ p.buf.WriteByte('}')
+ } else {
+ p.buf.WriteByte(']')
+ }
+ case *reflect.StructValue:
+ if goSyntax {
+ p.buf.WriteString(reflect.Typeof(field).String())
+ }
+ p.add('{')
+ v := f
+ t := v.Type().(*reflect.StructType)
+ for i := 0; i < v.NumField(); i++ {
+ if i > 0 {
+ if goSyntax {
+ p.buf.Write(commaSpaceBytes)
+ } else {
+ p.buf.WriteByte(' ')
+ }
+ }
+ if plus || goSyntax {
+ if f := t.Field(i); f.Name != "" {
+ p.buf.WriteString(f.Name)
+ p.buf.WriteByte(':')
+ }
+ }
+ p.printField(getField(v, i).Interface(), verb, plus, goSyntax, depth+1)
+ }
+ p.buf.WriteByte('}')
+ case *reflect.InterfaceValue:
+ value := f.Elem()
+ if value == nil {
+ if goSyntax {
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.buf.Write(nilParenBytes)
+ } else {
+ p.buf.Write(nilAngleBytes)
+ }
+ } else {
+ return p.printField(value.Interface(), verb, plus, goSyntax, depth+1)
+ }
+ case reflect.ArrayOrSliceValue:
+ // Byte slices are special.
+ if f.Type().(reflect.ArrayOrSliceType).Elem().Kind() == reflect.Uint8 {
+ // We know it's a slice of bytes, but we also know it does not have static type
+ // []byte, or it would have been caught above. Therefore we cannot convert
+ // it directly in the (slightly) obvious way: f.Interface().([]byte); it doesn't have
+ // that type, and we can't write an expression of the right type and do a
+ // conversion because we don't have a static way to write the right type.
+ // So we build a slice by hand. This is a rare case but it would be nice
+ // if reflection could help a little more.
+ bytes := make([]byte, f.Len())
+ for i := range bytes {
+ bytes[i] = byte(f.Elem(i).(*reflect.UintValue).Get())
+ }
+ p.fmtBytes(bytes, verb, goSyntax, depth, field)
+ return verb == 's'
+ }
+ if goSyntax {
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.buf.WriteByte('{')
+ } else {
+ p.buf.WriteByte('[')
+ }
+ for i := 0; i < f.Len(); i++ {
+ if i > 0 {
+ if goSyntax {
+ p.buf.Write(commaSpaceBytes)
+ } else {
+ p.buf.WriteByte(' ')
+ }
+ }
+ p.printField(f.Elem(i).Interface(), verb, plus, goSyntax, depth+1)
+ }
+ if goSyntax {
+ p.buf.WriteByte('}')
+ } else {
+ p.buf.WriteByte(']')
+ }
+ case *reflect.PtrValue:
+ v := f.Get()
+ // pointer to array or slice or struct? ok at top level
+ // but not embedded (avoid loops)
+ if v != 0 && depth == 0 {
+ switch a := f.Elem().(type) {
+ case reflect.ArrayOrSliceValue:
+ p.buf.WriteByte('&')
+ p.printField(a.Interface(), verb, plus, goSyntax, depth+1)
+ break BigSwitch
+ case *reflect.StructValue:
+ p.buf.WriteByte('&')
+ p.printField(a.Interface(), verb, plus, goSyntax, depth+1)
+ break BigSwitch
+ }
+ }
+ if goSyntax {
+ p.buf.WriteByte('(')
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.buf.WriteByte(')')
+ p.buf.WriteByte('(')
+ if v == 0 {
+ p.buf.Write(nilBytes)
+ } else {
+ p.fmt0x64(uint64(v))
+ }
+ p.buf.WriteByte(')')
+ break
+ }
+ if v == 0 {
+ p.buf.Write(nilAngleBytes)
+ break
+ }
+ p.fmt0x64(uint64(v))
+ case uintptrGetter:
+ p.fmtPointer(field, value, verb, goSyntax)
+ default:
+ p.unknownType(f)
+ }
+ return false
+}
+
+// intFromArg gets the fieldnumth element of a. On return, isInt reports whether the argument has type int.
+func intFromArg(a []interface{}, end, i, fieldnum int) (num int, isInt bool, newi, newfieldnum int) {
+ newi, newfieldnum = end, fieldnum
+ if i < end && fieldnum < len(a) {
+ num, isInt = a[fieldnum].(int)
+ newi, newfieldnum = i+1, fieldnum+1
+ }
+ return
+}
+
+func (p *pp) doPrintf(format string, a []interface{}) {
+ end := len(format)
+ fieldnum := 0 // we process one field per non-trivial format
+ for i := 0; i < end; {
+ lasti := i
+ for i < end && format[i] != '%' {
+ i++
+ }
+ if i > lasti {
+ p.buf.WriteString(format[lasti:i])
+ }
+ if i >= end {
+ // done processing format string
+ break
+ }
+
+ // Process one verb
+ i++
+ // flags and widths
+ p.fmt.clearflags()
+ F:
+ for ; i < end; i++ {
+ switch format[i] {
+ case '#':
+ p.fmt.sharp = true
+ case '0':
+ p.fmt.zero = true
+ case '+':
+ p.fmt.plus = true
+ case '-':
+ p.fmt.minus = true
+ case ' ':
+ p.fmt.space = true
+ default:
+ break F
+ }
+ }
+ // do we have width?
+ if i < end && format[i] == '*' {
+ p.fmt.wid, p.fmt.widPresent, i, fieldnum = intFromArg(a, end, i, fieldnum)
+ if !p.fmt.widPresent {
+ p.buf.Write(widthBytes)
+ }
+ } else {
+ p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
+ }
+ // do we have precision?
+ if i < end && format[i] == '.' {
+ if format[i+1] == '*' {
+ p.fmt.prec, p.fmt.precPresent, i, fieldnum = intFromArg(a, end, i+1, fieldnum)
+ if !p.fmt.precPresent {
+ p.buf.Write(precBytes)
+ }
+ } else {
+ p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i+1, end)
+ }
+ }
+ if i >= end {
+ p.buf.Write(noVerbBytes)
+ continue
+ }
+ c, w := utf8.DecodeRuneInString(format[i:])
+ i += w
+ // percent is special - absorbs no operand
+ if c == '%' {
+ p.buf.WriteByte('%') // We ignore width and prec.
+ continue
+ }
+ if fieldnum >= len(a) { // out of operands
+ p.buf.WriteByte('%')
+ p.add(c)
+ p.buf.Write(missingBytes)
+ continue
+ }
+ field := a[fieldnum]
+ fieldnum++
+
+ goSyntax := c == 'v' && p.fmt.sharp
+ plus := c == 'v' && p.fmt.plus
+ p.printField(field, c, plus, goSyntax, 0)
+ }
+
+ if fieldnum < len(a) {
+ p.buf.Write(extraBytes)
+ for ; fieldnum < len(a); fieldnum++ {
+ field := a[fieldnum]
+ if field != nil {
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.buf.WriteByte('=')
+ }
+ p.printField(field, 'v', false, false, 0)
+ if fieldnum+1 < len(a) {
+ p.buf.Write(commaSpaceBytes)
+ }
+ }
+ p.buf.WriteByte(')')
+ }
+}
+
+func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
+ prevString := false
+ for fieldnum := 0; fieldnum < len(a); fieldnum++ {
+ p.fmt.clearflags()
+ // always add spaces if we're doing println
+ field := a[fieldnum]
+ if fieldnum > 0 {
+ isString := field != nil && reflect.Typeof(field).Kind() == reflect.String
+ if addspace || !isString && !prevString {
+ p.buf.WriteByte(' ')
+ }
+ }
+ prevString = p.printField(field, 'v', false, false, 0)
+ }
+ if addnewline {
+ p.buf.WriteByte('\n')
+ }
+}
diff --git a/libgo/go/fmt/scan.go b/libgo/go/fmt/scan.go
new file mode 100644
index 000000000..ebbb17155
--- /dev/null
+++ b/libgo/go/fmt/scan.go
@@ -0,0 +1,985 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package fmt
+
+import (
+ "bytes"
+ "io"
+ "os"
+ "reflect"
+ "strconv"
+ "strings"
+ "unicode"
+ "utf8"
+)
+
+// readRuner is the interface to something that can read runes. If
+// the object provided to Scan does not satisfy this interface, the
+// object will be wrapped by a readRune object.
+type readRuner interface {
+ ReadRune() (rune int, size int, err os.Error)
+}
+
+// unreadRuner is the interface to something that can unread runes.
+// If the object provided to Scan does not satisfy this interface,
+// a local buffer will be used to back up the input, but its contents
+// will be lost when Scan returns.
+type unreadRuner interface {
+ UnreadRune() os.Error
+}
+
+// ScanState represents the scanner state passed to custom scanners.
+// Scanners may do rune-at-a-time scanning or ask the ScanState
+// to discover the next space-delimited token.
+type ScanState interface {
+ // GetRune reads the next rune (Unicode code point) from the input.
+ GetRune() (rune int, err os.Error)
+ // UngetRune causes the next call to GetRune to return the rune.
+ UngetRune()
+ // Width returns the value of the width option and whether it has been set.
+ // The unit is Unicode code points.
+ Width() (wid int, ok bool)
+ // Token returns the next space-delimited token from the input. If
+ // a width has been specified, the returned token will be no longer
+ // than the width.
+ Token() (token string, err os.Error)
+}
+
+// Scanner is implemented by any value that has a Scan method, which scans
+// the input for the representation of a value and stores the result in the
+// receiver, which must be a pointer to be useful. The Scan method is called
+// for any argument to Scan or Scanln that implements it.
+type Scanner interface {
+ Scan(state ScanState, verb int) os.Error
+}
+
+// Scan scans text read from standard input, storing successive
+// space-separated values into successive arguments. Newlines count
+// as space. It returns the number of items successfully scanned.
+// If that is less than the number of arguments, err will report why.
+func Scan(a ...interface{}) (n int, err os.Error) {
+ return Fscan(os.Stdin, a...)
+}
+
+// Scanln is similar to Scan, but stops scanning at a newline and
+// after the final item there must be a newline or EOF.
+func Scanln(a ...interface{}) (n int, err os.Error) {
+ return Fscanln(os.Stdin, a...)
+}
+
+// Scanf scans text read from standard input, storing successive
+// space-separated values into successive arguments as determined by
+// the format. It returns the number of items successfully scanned.
+func Scanf(format string, a ...interface{}) (n int, err os.Error) {
+ return Fscanf(os.Stdin, format, a...)
+}
+
+// Sscan scans the argument string, storing successive space-separated
+// values into successive arguments. Newlines count as space. It
+// returns the number of items successfully scanned. If that is less
+// than the number of arguments, err will report why.
+func Sscan(str string, a ...interface{}) (n int, err os.Error) {
+ return Fscan(strings.NewReader(str), a...)
+}
+
+// Sscanln is similar to Sscan, but stops scanning at a newline and
+// after the final item there must be a newline or EOF.
+func Sscanln(str string, a ...interface{}) (n int, err os.Error) {
+ return Fscanln(strings.NewReader(str), a...)
+}
+
+// Sscanf scans the argument string, storing successive space-separated
+// values into successive arguments as determined by the format. It
+// returns the number of items successfully parsed.
+func Sscanf(str string, format string, a ...interface{}) (n int, err os.Error) {
+ return Fscanf(strings.NewReader(str), format, a...)
+}
+
+// Fscan scans text read from r, storing successive space-separated
+// values into successive arguments. Newlines count as space. It
+// returns the number of items successfully scanned. If that is less
+// than the number of arguments, err will report why.
+func Fscan(r io.Reader, a ...interface{}) (n int, err os.Error) {
+ s := newScanState(r, true)
+ n, err = s.doScan(a)
+ s.free()
+ return
+}
+
+// Fscanln is similar to Fscan, but stops scanning at a newline and
+// after the final item there must be a newline or EOF.
+func Fscanln(r io.Reader, a ...interface{}) (n int, err os.Error) {
+ s := newScanState(r, false)
+ n, err = s.doScan(a)
+ s.free()
+ return
+}
+
+// Fscanf scans text read from r, storing successive space-separated
+// values into successive arguments as determined by the format. It
+// returns the number of items successfully parsed.
+func Fscanf(r io.Reader, format string, a ...interface{}) (n int, err os.Error) {
+ s := newScanState(r, false)
+ n, err = s.doScanf(format, a)
+ s.free()
+ return
+}
+
+// scanError represents an error generated by the scanning software.
+// It's used as a unique signature to identify such errors when recovering.
+type scanError struct {
+ err os.Error
+}
+
+const EOF = -1
+
+// ss is the internal implementation of ScanState.
+type ss struct {
+ rr readRuner // where to read input
+ buf bytes.Buffer // token accumulator
+ nlIsSpace bool // whether newline counts as white space
+ peekRune int // one-rune lookahead
+ prevRune int // last rune returned by GetRune
+ atEOF bool // already read EOF
+ maxWid int // max width of field, in runes
+ widPresent bool // width was specified
+ wid int // width consumed so far; used in accept()
+}
+
+func (s *ss) GetRune() (rune int, err os.Error) {
+ if s.peekRune >= 0 {
+ rune = s.peekRune
+ s.prevRune = rune
+ s.peekRune = -1
+ return
+ }
+ rune, _, err = s.rr.ReadRune()
+ if err == nil {
+ s.prevRune = rune
+ }
+ return
+}
+
+func (s *ss) Width() (wid int, ok bool) {
+ return s.maxWid, s.widPresent
+}
+
+// The public method returns an error; this private one panics.
+// If getRune reaches EOF, the return value is EOF (-1).
+func (s *ss) getRune() (rune int) {
+ if s.atEOF {
+ return EOF
+ }
+ if s.peekRune >= 0 {
+ rune = s.peekRune
+ s.prevRune = rune
+ s.peekRune = -1
+ return
+ }
+ rune, _, err := s.rr.ReadRune()
+ if err == nil {
+ s.prevRune = rune
+ } else if err != nil {
+ if err == os.EOF {
+ s.atEOF = true
+ return EOF
+ }
+ s.error(err)
+ }
+ return
+}
+
+// mustGetRune turns os.EOF into a panic(io.ErrUnexpectedEOF).
+// It is called in cases such as string scanning where an EOF is a
+// syntax error.
+func (s *ss) mustGetRune() (rune int) {
+ if s.atEOF {
+ s.error(io.ErrUnexpectedEOF)
+ }
+ if s.peekRune >= 0 {
+ rune = s.peekRune
+ s.peekRune = -1
+ return
+ }
+ rune, _, err := s.rr.ReadRune()
+ if err != nil {
+ if err == os.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ s.error(err)
+ }
+ return
+}
+
+
+func (s *ss) UngetRune() {
+ if u, ok := s.rr.(unreadRuner); ok {
+ u.UnreadRune()
+ } else {
+ s.peekRune = s.prevRune
+ }
+}
+
+func (s *ss) error(err os.Error) {
+ panic(scanError{err})
+}
+
+func (s *ss) errorString(err string) {
+ panic(scanError{os.ErrorString(err)})
+}
+
+func (s *ss) Token() (tok string, err os.Error) {
+ defer func() {
+ if e := recover(); e != nil {
+ if se, ok := e.(scanError); ok {
+ err = se.err
+ } else {
+ panic(e)
+ }
+ }
+ }()
+ tok = s.token()
+ return
+}
+
+// readRune is a structure to enable reading UTF-8 encoded code points
+// from an io.Reader. It is used if the Reader given to the scanner does
+// not already implement ReadRuner.
+type readRune struct {
+ reader io.Reader
+ buf [utf8.UTFMax]byte // used only inside ReadRune
+ pending int // number of bytes in pendBuf; only >0 for bad UTF-8
+ pendBuf [utf8.UTFMax]byte // bytes left over
+}
+
+// readByte returns the next byte from the input, which may be
+// left over from a previous read if the UTF-8 was ill-formed.
+func (r *readRune) readByte() (b byte, err os.Error) {
+ if r.pending > 0 {
+ b = r.pendBuf[0]
+ copy(r.pendBuf[0:], r.pendBuf[1:])
+ r.pending--
+ return
+ }
+ _, err = r.reader.Read(r.pendBuf[0:1])
+ return r.pendBuf[0], err
+}
+
+// unread saves the bytes for the next read.
+func (r *readRune) unread(buf []byte) {
+ copy(r.pendBuf[r.pending:], buf)
+ r.pending += len(buf)
+}
+
+// ReadRune returns the next UTF-8 encoded code point from the
+// io.Reader inside r.
+func (r *readRune) ReadRune() (rune int, size int, err os.Error) {
+ r.buf[0], err = r.readByte()
+ if err != nil {
+ return 0, 0, err
+ }
+ if r.buf[0] < utf8.RuneSelf { // fast check for common ASCII case
+ rune = int(r.buf[0])
+ return
+ }
+ var n int
+ for n = 1; !utf8.FullRune(r.buf[0:n]); n++ {
+ r.buf[n], err = r.readByte()
+ if err != nil {
+ if err == os.EOF {
+ err = nil
+ break
+ }
+ return
+ }
+ }
+ rune, size = utf8.DecodeRune(r.buf[0:n])
+ if size < n { // an error
+ r.unread(r.buf[size:n])
+ }
+ return
+}
+
+
+// A leaky bucket of reusable ss structures.
+var ssFree = make(chan *ss, 100)
+
+// Allocate a new ss struct. Probably can grab the previous one from ssFree.
+func newScanState(r io.Reader, nlIsSpace bool) *ss {
+ s, ok := <-ssFree
+ if !ok {
+ s = new(ss)
+ }
+ if rr, ok := r.(readRuner); ok {
+ s.rr = rr
+ } else {
+ s.rr = &readRune{reader: r}
+ }
+ s.nlIsSpace = nlIsSpace
+ s.peekRune = -1
+ s.atEOF = false
+ s.maxWid = 0
+ s.widPresent = false
+ return s
+}
+
+// Save used ss structs in ssFree; avoid an allocation per invocation.
+func (s *ss) free() {
+ // Don't hold on to ss structs with large buffers.
+ if cap(s.buf.Bytes()) > 1024 {
+ return
+ }
+ s.buf.Reset()
+ s.rr = nil
+ _ = ssFree <- s
+}
+
+// skipSpace skips spaces and maybe newlines.
+func (s *ss) skipSpace(stopAtNewline bool) {
+ for {
+ rune := s.getRune()
+ if rune == EOF {
+ return
+ }
+ if rune == '\n' {
+ if stopAtNewline {
+ break
+ }
+ if s.nlIsSpace {
+ continue
+ }
+ s.errorString("unexpected newline")
+ return
+ }
+ if !unicode.IsSpace(rune) {
+ s.UngetRune()
+ break
+ }
+ }
+}
+
+// token returns the next space-delimited string from the input. It
+// skips white space. For Scanln, it stops at newlines. For Scan,
+// newlines are treated as spaces.
+func (s *ss) token() string {
+ s.skipSpace(false)
+ // read until white space or newline
+ for nrunes := 0; !s.widPresent || nrunes < s.maxWid; nrunes++ {
+ rune := s.getRune()
+ if rune == EOF {
+ break
+ }
+ if unicode.IsSpace(rune) {
+ s.UngetRune()
+ break
+ }
+ s.buf.WriteRune(rune)
+ }
+ return s.buf.String()
+}
+
+// typeError indicates that the type of the operand did not match the format
+func (s *ss) typeError(field interface{}, expected string) {
+ s.errorString("expected field of type pointer to " + expected + "; found " + reflect.Typeof(field).String())
+}
+
+var complexError = os.ErrorString("syntax error scanning complex number")
+var boolError = os.ErrorString("syntax error scanning boolean")
+
+// consume reads the next rune in the input and reports whether it is in the ok string.
+// If accept is true, it puts the character into the input token.
+func (s *ss) consume(ok string, accept bool) bool {
+ if s.wid >= s.maxWid {
+ return false
+ }
+ rune := s.getRune()
+ if rune == EOF {
+ return false
+ }
+ for i := 0; i < len(ok); i++ {
+ if int(ok[i]) == rune {
+ if accept {
+ s.buf.WriteRune(rune)
+ s.wid++
+ }
+ return true
+ }
+ }
+ if rune != EOF && accept {
+ s.UngetRune()
+ }
+ return false
+}
+
+// accept checks the next rune in the input. If it's a byte (sic) in the string, it puts it in the
+// buffer and returns true. Otherwise it return false.
+func (s *ss) accept(ok string) bool {
+ return s.consume(ok, true)
+}
+
+// okVerb verifies that the verb is present in the list, setting s.err appropriately if not.
+func (s *ss) okVerb(verb int, okVerbs, typ string) bool {
+ for _, v := range okVerbs {
+ if v == verb {
+ return true
+ }
+ }
+ s.errorString("bad verb %" + string(verb) + " for " + typ)
+ return false
+}
+
+// scanBool returns the value of the boolean represented by the next token.
+func (s *ss) scanBool(verb int) bool {
+ if !s.okVerb(verb, "tv", "boolean") {
+ return false
+ }
+ // Syntax-checking a boolean is annoying. We're not fastidious about case.
+ switch s.mustGetRune() {
+ case '0':
+ return false
+ case '1':
+ return true
+ case 't', 'T':
+ if s.accept("rR") && (!s.accept("uU") || !s.accept("eE")) {
+ s.error(boolError)
+ }
+ return true
+ case 'f', 'F':
+ if s.accept("aL") && (!s.accept("lL") || !s.accept("sS") || !s.accept("eE")) {
+ s.error(boolError)
+ }
+ return false
+ }
+ return false
+}
+
+// Numerical elements
+const (
+ binaryDigits = "01"
+ octalDigits = "01234567"
+ decimalDigits = "0123456789"
+ hexadecimalDigits = "0123456789aAbBcCdDeEfF"
+ sign = "+-"
+ period = "."
+ exponent = "eE"
+)
+
+// getBase returns the numeric base represented by the verb and its digit string.
+func (s *ss) getBase(verb int) (base int, digits string) {
+ s.okVerb(verb, "bdoUxXv", "integer") // sets s.err
+ base = 10
+ digits = decimalDigits
+ switch verb {
+ case 'b':
+ base = 2
+ digits = binaryDigits
+ case 'o':
+ base = 8
+ digits = octalDigits
+ case 'x', 'X', 'U':
+ base = 16
+ digits = hexadecimalDigits
+ }
+ return
+}
+
+// scanNumber returns the numerical string with specified digits starting here.
+func (s *ss) scanNumber(digits string) string {
+ if !s.accept(digits) {
+ s.errorString("expected integer")
+ }
+ for s.accept(digits) {
+ }
+ return s.buf.String()
+}
+
+// scanRune returns the next rune value in the input.
+func (s *ss) scanRune(bitSize int) int64 {
+ rune := int64(s.mustGetRune())
+ n := uint(bitSize)
+ x := (rune << (64 - n)) >> (64 - n)
+ if x != rune {
+ s.errorString("overflow on character value " + string(rune))
+ }
+ return rune
+}
+
+// scanInt returns the value of the integer represented by the next
+// token, checking for overflow. Any error is stored in s.err.
+func (s *ss) scanInt(verb int, bitSize int) int64 {
+ if verb == 'c' {
+ return s.scanRune(bitSize)
+ }
+ base, digits := s.getBase(verb)
+ s.skipSpace(false)
+ if verb == 'U' {
+ if !s.consume("U", false) || !s.consume("+", false) {
+ s.errorString("bad unicode format ")
+ }
+ } else {
+ s.accept(sign) // If there's a sign, it will be left in the token buffer.
+ }
+ tok := s.scanNumber(digits)
+ i, err := strconv.Btoi64(tok, base)
+ if err != nil {
+ s.error(err)
+ }
+ n := uint(bitSize)
+ x := (i << (64 - n)) >> (64 - n)
+ if x != i {
+ s.errorString("integer overflow on token " + tok)
+ }
+ return i
+}
+
+// scanUint returns the value of the unsigned integer represented
+// by the next token, checking for overflow. Any error is stored in s.err.
+func (s *ss) scanUint(verb int, bitSize int) uint64 {
+ if verb == 'c' {
+ return uint64(s.scanRune(bitSize))
+ }
+ base, digits := s.getBase(verb)
+ s.skipSpace(false)
+ if verb == 'U' {
+ if !s.consume("U", false) || !s.consume("+", false) {
+ s.errorString("bad unicode format ")
+ }
+ }
+ tok := s.scanNumber(digits)
+ i, err := strconv.Btoui64(tok, base)
+ if err != nil {
+ s.error(err)
+ }
+ n := uint(bitSize)
+ x := (i << (64 - n)) >> (64 - n)
+ if x != i {
+ s.errorString("unsigned integer overflow on token " + tok)
+ }
+ return i
+}
+
+// floatToken returns the floating-point number starting here, no longer than swid
+// if the width is specified. It's not rigorous about syntax because it doesn't check that
+// we have at least some digits, but Atof will do that.
+func (s *ss) floatToken() string {
+ s.buf.Reset()
+ // NaN?
+ if s.accept("nN") && s.accept("aA") && s.accept("nN") {
+ return s.buf.String()
+ }
+ // leading sign?
+ s.accept(sign)
+ // Inf?
+ if s.accept("iI") && s.accept("nN") && s.accept("fF") {
+ return s.buf.String()
+ }
+ // digits?
+ for s.accept(decimalDigits) {
+ }
+ // decimal point?
+ if s.accept(period) {
+ // fraction?
+ for s.accept(decimalDigits) {
+ }
+ }
+ // exponent?
+ if s.accept(exponent) {
+ // leading sign?
+ s.accept(sign)
+ // digits?
+ for s.accept(decimalDigits) {
+ }
+ }
+ return s.buf.String()
+}
+
+// complexTokens returns the real and imaginary parts of the complex number starting here.
+// The number might be parenthesized and has the format (N+Ni) where N is a floating-point
+// number and there are no spaces within.
+func (s *ss) complexTokens() (real, imag string) {
+ // TODO: accept N and Ni independently?
+ parens := s.accept("(")
+ real = s.floatToken()
+ s.buf.Reset()
+ // Must now have a sign.
+ if !s.accept("+-") {
+ s.error(complexError)
+ }
+ // Sign is now in buffer
+ imagSign := s.buf.String()
+ imag = s.floatToken()
+ if !s.accept("i") {
+ s.error(complexError)
+ }
+ if parens && !s.accept(")") {
+ s.error(complexError)
+ }
+ return real, imagSign + imag
+}
+
+// convertFloat converts the string to a float64value.
+func (s *ss) convertFloat(str string, n int) float64 {
+ f, err := strconv.AtofN(str, n)
+ if err != nil {
+ s.error(err)
+ }
+ return f
+}
+
+// convertComplex converts the next token to a complex128 value.
+// The atof argument is a type-specific reader for the underlying type.
+// If we're reading complex64, atof will parse float32s and convert them
+// to float64's to avoid reproducing this code for each complex type.
+func (s *ss) scanComplex(verb int, n int) complex128 {
+ if !s.okVerb(verb, floatVerbs, "complex") {
+ return 0
+ }
+ s.skipSpace(false)
+ sreal, simag := s.complexTokens()
+ real := s.convertFloat(sreal, n/2)
+ imag := s.convertFloat(simag, n/2)
+ return complex(real, imag)
+}
+
+// convertString returns the string represented by the next input characters.
+// The format of the input is determined by the verb.
+func (s *ss) convertString(verb int) (str string) {
+ if !s.okVerb(verb, "svqx", "string") {
+ return ""
+ }
+ s.skipSpace(false)
+ switch verb {
+ case 'q':
+ str = s.quotedString()
+ case 'x':
+ str = s.hexString()
+ default:
+ str = s.token() // %s and %v just return the next word
+ }
+ // Empty strings other than with %q are not OK.
+ if len(str) == 0 && verb != 'q' && s.maxWid > 0 {
+ s.errorString("Scan: no data for string")
+ }
+ return
+}
+
+// quotedString returns the double- or back-quoted string represented by the next input characters.
+func (s *ss) quotedString() string {
+ quote := s.mustGetRune()
+ switch quote {
+ case '`':
+ // Back-quoted: Anything goes until EOF or back quote.
+ for {
+ rune := s.mustGetRune()
+ if rune == quote {
+ break
+ }
+ s.buf.WriteRune(rune)
+ }
+ return s.buf.String()
+ case '"':
+ // Double-quoted: Include the quotes and let strconv.Unquote do the backslash escapes.
+ s.buf.WriteRune(quote)
+ for {
+ rune := s.mustGetRune()
+ s.buf.WriteRune(rune)
+ if rune == '\\' {
+ // In a legal backslash escape, no matter how long, only the character
+ // immediately after the escape can itself be a backslash or quote.
+ // Thus we only need to protect the first character after the backslash.
+ rune := s.mustGetRune()
+ s.buf.WriteRune(rune)
+ } else if rune == '"' {
+ break
+ }
+ }
+ result, err := strconv.Unquote(s.buf.String())
+ if err != nil {
+ s.error(err)
+ }
+ return result
+ default:
+ s.errorString("expected quoted string")
+ }
+ return ""
+}
+
+// hexDigit returns the value of the hexadecimal digit
+func (s *ss) hexDigit(digit int) int {
+ switch digit {
+ case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
+ return digit - '0'
+ case 'a', 'b', 'c', 'd', 'e', 'f':
+ return 10 + digit - 'a'
+ case 'A', 'B', 'C', 'D', 'E', 'F':
+ return 10 + digit - 'A'
+ }
+ s.errorString("Scan: illegal hex digit")
+ return 0
+}
+
+// hexByte returns the next hex-encoded (two-character) byte from the input.
+// There must be either two hexadecimal digits or a space character in the input.
+func (s *ss) hexByte() (b byte, ok bool) {
+ rune1 := s.getRune()
+ if rune1 == EOF {
+ return
+ }
+ if unicode.IsSpace(rune1) {
+ s.UngetRune()
+ return
+ }
+ rune2 := s.mustGetRune()
+ return byte(s.hexDigit(rune1)<<4 | s.hexDigit(rune2)), true
+}
+
+// hexString returns the space-delimited hexpair-encoded string.
+func (s *ss) hexString() string {
+ for {
+ b, ok := s.hexByte()
+ if !ok {
+ break
+ }
+ s.buf.WriteByte(b)
+ }
+ if s.buf.Len() == 0 {
+ s.errorString("Scan: no hex data for %x string")
+ return ""
+ }
+ return s.buf.String()
+}
+
+const floatVerbs = "eEfFgGv"
+
+// scanOne scans a single value, deriving the scanner from the type of the argument.
+func (s *ss) scanOne(verb int, field interface{}) {
+ s.buf.Reset()
+ var err os.Error
+ // If the parameter has its own Scan method, use that.
+ if v, ok := field.(Scanner); ok {
+ err = v.Scan(s, verb)
+ if err != nil {
+ s.error(err)
+ }
+ return
+ }
+ if !s.widPresent {
+ s.maxWid = 1 << 30 // Huge
+ }
+ s.wid = 0
+ switch v := field.(type) {
+ case *bool:
+ *v = s.scanBool(verb)
+ case *complex64:
+ *v = complex64(s.scanComplex(verb, 64))
+ case *complex128:
+ *v = s.scanComplex(verb, 128)
+ case *int:
+ *v = int(s.scanInt(verb, intBits))
+ case *int8:
+ *v = int8(s.scanInt(verb, 8))
+ case *int16:
+ *v = int16(s.scanInt(verb, 16))
+ case *int32:
+ *v = int32(s.scanInt(verb, 32))
+ case *int64:
+ *v = s.scanInt(verb, 64)
+ case *uint:
+ *v = uint(s.scanUint(verb, intBits))
+ case *uint8:
+ *v = uint8(s.scanUint(verb, 8))
+ case *uint16:
+ *v = uint16(s.scanUint(verb, 16))
+ case *uint32:
+ *v = uint32(s.scanUint(verb, 32))
+ case *uint64:
+ *v = s.scanUint(verb, 64)
+ case *uintptr:
+ *v = uintptr(s.scanUint(verb, uintptrBits))
+ // Floats are tricky because you want to scan in the precision of the result, not
+ // scan in high precision and convert, in order to preserve the correct error condition.
+ case *float32:
+ if s.okVerb(verb, floatVerbs, "float32") {
+ s.skipSpace(false)
+ *v = float32(s.convertFloat(s.floatToken(), 32))
+ }
+ case *float64:
+ if s.okVerb(verb, floatVerbs, "float64") {
+ s.skipSpace(false)
+ *v = s.convertFloat(s.floatToken(), 64)
+ }
+ case *string:
+ *v = s.convertString(verb)
+ case *[]byte:
+ // We scan to string and convert so we get a copy of the data.
+ // If we scanned to bytes, the slice would point at the buffer.
+ *v = []byte(s.convertString(verb))
+ default:
+ val := reflect.NewValue(v)
+ ptr, ok := val.(*reflect.PtrValue)
+ if !ok {
+ s.errorString("Scan: type not a pointer: " + val.Type().String())
+ return
+ }
+ switch v := ptr.Elem().(type) {
+ case *reflect.BoolValue:
+ v.Set(s.scanBool(verb))
+ case *reflect.IntValue:
+ v.Set(s.scanInt(verb, v.Type().Bits()))
+ case *reflect.UintValue:
+ v.Set(s.scanUint(verb, v.Type().Bits()))
+ case *reflect.StringValue:
+ v.Set(s.convertString(verb))
+ case *reflect.SliceValue:
+ // For now, can only handle (renamed) []byte.
+ typ := v.Type().(*reflect.SliceType)
+ if typ.Elem().Kind() != reflect.Uint8 {
+ goto CantHandle
+ }
+ str := s.convertString(verb)
+ v.Set(reflect.MakeSlice(typ, len(str), len(str)))
+ for i := 0; i < len(str); i++ {
+ v.Elem(i).(*reflect.UintValue).Set(uint64(str[i]))
+ }
+ case *reflect.FloatValue:
+ s.skipSpace(false)
+ v.Set(s.convertFloat(s.floatToken(), v.Type().Bits()))
+ case *reflect.ComplexValue:
+ v.Set(s.scanComplex(verb, v.Type().Bits()))
+ default:
+ CantHandle:
+ s.errorString("Scan: can't handle type: " + val.Type().String())
+ }
+ }
+}
+
+// errorHandler turns local panics into error returns. EOFs are benign.
+func errorHandler(errp *os.Error) {
+ if e := recover(); e != nil {
+ if se, ok := e.(scanError); ok { // catch local error
+ if se.err != os.EOF {
+ *errp = se.err
+ }
+ } else {
+ panic(e)
+ }
+ }
+}
+
+// doScan does the real work for scanning without a format string.
+// At the moment, it handles only pointers to basic types.
+func (s *ss) doScan(a []interface{}) (numProcessed int, err os.Error) {
+ defer errorHandler(&err)
+ for _, field := range a {
+ s.scanOne('v', field)
+ numProcessed++
+ }
+ // Check for newline if required.
+ if !s.nlIsSpace {
+ for {
+ rune := s.getRune()
+ if rune == '\n' || rune == EOF {
+ break
+ }
+ if !unicode.IsSpace(rune) {
+ s.errorString("Scan: expected newline")
+ break
+ }
+ }
+ }
+ return
+}
+
+// advance determines whether the next characters in the input match
+// those of the format. It returns the number of bytes (sic) consumed
+// in the format. Newlines included, all runs of space characters in
+// either input or format behave as a single space. This routine also
+// handles the %% case. If the return value is zero, either format
+// starts with a % (with no following %) or the input is empty.
+// If it is negative, the input did not match the string.
+func (s *ss) advance(format string) (i int) {
+ for i < len(format) {
+ fmtc, w := utf8.DecodeRuneInString(format[i:])
+ if fmtc == '%' {
+ // %% acts like a real percent
+ nextc, _ := utf8.DecodeRuneInString(format[i+w:]) // will not match % if string is empty
+ if nextc != '%' {
+ return
+ }
+ i += w // skip the first %
+ }
+ sawSpace := false
+ for unicode.IsSpace(fmtc) && i < len(format) {
+ sawSpace = true
+ i += w
+ fmtc, w = utf8.DecodeRuneInString(format[i:])
+ }
+ if sawSpace {
+ // There was space in the format, so there should be space (EOF)
+ // in the input.
+ inputc := s.getRune()
+ if inputc == EOF {
+ return
+ }
+ if !unicode.IsSpace(inputc) {
+ // Space in format but not in input: error
+ s.errorString("expected space in input to match format")
+ }
+ s.skipSpace(true)
+ continue
+ }
+ inputc := s.mustGetRune()
+ if fmtc != inputc {
+ s.UngetRune()
+ return -1
+ }
+ i += w
+ }
+ return
+}
+
+// doScanf does the real work when scanning with a format string.
+// At the moment, it handles only pointers to basic types.
+func (s *ss) doScanf(format string, a []interface{}) (numProcessed int, err os.Error) {
+ defer errorHandler(&err)
+ end := len(format) - 1
+ // We process one item per non-trivial format
+ for i := 0; i <= end; {
+ w := s.advance(format[i:])
+ if w > 0 {
+ i += w
+ continue
+ }
+ // Either we failed to advance, we have a percent character, or we ran out of input.
+ if format[i] != '%' {
+ // Can't advance format. Why not?
+ if w < 0 {
+ s.errorString("input does not match format")
+ }
+ // Otherwise at EOF; "too many operands" error handled below
+ break
+ }
+ i++ // % is one byte
+
+ // do we have 20 (width)?
+ s.maxWid, s.widPresent, i = parsenum(format, i, end)
+
+ c, w := utf8.DecodeRuneInString(format[i:])
+ i += w
+
+ if numProcessed >= len(a) { // out of operands
+ s.errorString("too few operands for format %" + format[i-w:])
+ break
+ }
+ field := a[numProcessed]
+
+ s.scanOne(c, field)
+ numProcessed++
+ }
+ if numProcessed < len(a) {
+ s.errorString("too many operands")
+ }
+ return
+}
diff --git a/libgo/go/fmt/scan_test.go b/libgo/go/fmt/scan_test.go
new file mode 100644
index 000000000..78b9fbb4a
--- /dev/null
+++ b/libgo/go/fmt/scan_test.go
@@ -0,0 +1,659 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package fmt_test
+
+import (
+ "bufio"
+ . "fmt"
+ "io"
+ "math"
+ "os"
+ "reflect"
+ "regexp"
+ "strings"
+ "testing"
+ "utf8"
+)
+
+type ScanTest struct {
+ text string
+ in interface{}
+ out interface{}
+}
+
+type ScanfTest struct {
+ format string
+ text string
+ in interface{}
+ out interface{}
+}
+
+type ScanfMultiTest struct {
+ format string
+ text string
+ in []interface{}
+ out []interface{}
+ err string
+}
+
+var (
+ boolVal bool
+ intVal int
+ int8Val int8
+ int16Val int16
+ int32Val int32
+ int64Val int64
+ uintVal uint
+ uint8Val uint8
+ uint16Val uint16
+ uint32Val uint32
+ uint64Val uint64
+ float32Val float32
+ float64Val float64
+ stringVal string
+ stringVal1 string
+ bytesVal []byte
+ complex64Val complex64
+ complex128Val complex128
+ renamedBoolVal renamedBool
+ renamedIntVal renamedInt
+ renamedInt8Val renamedInt8
+ renamedInt16Val renamedInt16
+ renamedInt32Val renamedInt32
+ renamedInt64Val renamedInt64
+ renamedUintVal renamedUint
+ renamedUint8Val renamedUint8
+ renamedUint16Val renamedUint16
+ renamedUint32Val renamedUint32
+ renamedUint64Val renamedUint64
+ renamedUintptrVal renamedUintptr
+ renamedStringVal renamedString
+ renamedBytesVal renamedBytes
+ renamedFloat32Val renamedFloat32
+ renamedFloat64Val renamedFloat64
+ renamedComplex64Val renamedComplex64
+ renamedComplex128Val renamedComplex128
+)
+
+type FloatTest struct {
+ text string
+ in float64
+ out float64
+}
+
+// Xs accepts any non-empty run of the verb character
+type Xs string
+
+func (x *Xs) Scan(state ScanState, verb int) os.Error {
+ var tok string
+ var c int
+ var err os.Error
+ wid, present := state.Width()
+ if !present {
+ tok, err = state.Token()
+ } else {
+ for i := 0; i < wid; i++ {
+ c, err = state.GetRune()
+ if err != nil {
+ break
+ }
+ tok += string(c)
+ }
+ }
+ if err != nil {
+ return err
+ }
+ if !regexp.MustCompile("^" + string(verb) + "+$").MatchString(tok) {
+ return os.ErrorString("syntax error for xs")
+ }
+ *x = Xs(tok)
+ return nil
+}
+
+var xVal Xs
+
+// myStringReader implements Read but not ReadRune, allowing us to test our readRune wrapper
+// type that creates something that can read runes given only Read().
+type myStringReader struct {
+ r *strings.Reader
+}
+
+func (s *myStringReader) Read(p []byte) (n int, err os.Error) {
+ return s.r.Read(p)
+}
+
+func newReader(s string) *myStringReader {
+ return &myStringReader{strings.NewReader(s)}
+}
+
+var scanTests = []ScanTest{
+ // Numbers
+ {"T\n", &boolVal, true}, // boolean test vals toggle to be sure they are written
+ {"F\n", &boolVal, false}, // restored to zero value
+ {"21\n", &intVal, 21},
+ {"22\n", &int8Val, int8(22)},
+ {"23\n", &int16Val, int16(23)},
+ {"24\n", &int32Val, int32(24)},
+ {"25\n", &int64Val, int64(25)},
+ {"127\n", &int8Val, int8(127)},
+ {"-21\n", &intVal, -21},
+ {"-22\n", &int8Val, int8(-22)},
+ {"-23\n", &int16Val, int16(-23)},
+ {"-24\n", &int32Val, int32(-24)},
+ {"-25\n", &int64Val, int64(-25)},
+ {"-128\n", &int8Val, int8(-128)},
+ {"+21\n", &intVal, +21},
+ {"+22\n", &int8Val, int8(+22)},
+ {"+23\n", &int16Val, int16(+23)},
+ {"+24\n", &int32Val, int32(+24)},
+ {"+25\n", &int64Val, int64(+25)},
+ {"+127\n", &int8Val, int8(+127)},
+ {"26\n", &uintVal, uint(26)},
+ {"27\n", &uint8Val, uint8(27)},
+ {"28\n", &uint16Val, uint16(28)},
+ {"29\n", &uint32Val, uint32(29)},
+ {"30\n", &uint64Val, uint64(30)},
+ {"255\n", &uint8Val, uint8(255)},
+ {"32767\n", &int16Val, int16(32767)},
+ {"2.3\n", &float64Val, 2.3},
+ {"2.3e1\n", &float32Val, float32(2.3e1)},
+ {"2.3e2\n", &float64Val, 2.3e2},
+ {"2.35\n", &stringVal, "2.35"},
+ {"2345678\n", &bytesVal, []byte("2345678")},
+ {"(3.4e1-2i)\n", &complex128Val, 3.4e1 - 2i},
+ {"-3.45e1-3i\n", &complex64Val, complex64(-3.45e1 - 3i)},
+ {"-.45e1-1e2i\n", &complex128Val, complex128(-.45e1 - 100i)},
+ {"hello\n", &stringVal, "hello"},
+
+ // Renamed types
+ {"true\n", &renamedBoolVal, renamedBool(true)},
+ {"F\n", &renamedBoolVal, renamedBool(false)},
+ {"101\n", &renamedIntVal, renamedInt(101)},
+ {"102\n", &renamedIntVal, renamedInt(102)},
+ {"103\n", &renamedUintVal, renamedUint(103)},
+ {"104\n", &renamedUintVal, renamedUint(104)},
+ {"105\n", &renamedInt8Val, renamedInt8(105)},
+ {"106\n", &renamedInt16Val, renamedInt16(106)},
+ {"107\n", &renamedInt32Val, renamedInt32(107)},
+ {"108\n", &renamedInt64Val, renamedInt64(108)},
+ {"109\n", &renamedUint8Val, renamedUint8(109)},
+ {"110\n", &renamedUint16Val, renamedUint16(110)},
+ {"111\n", &renamedUint32Val, renamedUint32(111)},
+ {"112\n", &renamedUint64Val, renamedUint64(112)},
+ {"113\n", &renamedUintptrVal, renamedUintptr(113)},
+ {"114\n", &renamedStringVal, renamedString("114")},
+ {"115\n", &renamedBytesVal, renamedBytes([]byte("115"))},
+
+ // Custom scanner.
+ {" vvv ", &xVal, Xs("vvv")},
+
+ // Fixed bugs
+ {"2147483648\n", &int64Val, int64(2147483648)}, // was: integer overflow
+}
+
+var scanfTests = []ScanfTest{
+ {"%v", "TRUE\n", &boolVal, true},
+ {"%t", "false\n", &boolVal, false},
+ {"%v", "-71\n", &intVal, -71},
+ {"%d", "72\n", &intVal, 72},
+ {"%c", "a\n", &intVal, 'a'},
+ {"%c", "\u5072\n", &intVal, 0x5072},
+ {"%c", "\u1234\n", &intVal, '\u1234'},
+ {"%d", "73\n", &int8Val, int8(73)},
+ {"%d", "+74\n", &int16Val, int16(74)},
+ {"%d", "75\n", &int32Val, int32(75)},
+ {"%d", "76\n", &int64Val, int64(76)},
+ {"%b", "1001001\n", &intVal, 73},
+ {"%o", "075\n", &intVal, 075},
+ {"%x", "a75\n", &intVal, 0xa75},
+ {"%v", "71\n", &uintVal, uint(71)},
+ {"%d", "72\n", &uintVal, uint(72)},
+ {"%d", "73\n", &uint8Val, uint8(73)},
+ {"%d", "74\n", &uint16Val, uint16(74)},
+ {"%d", "75\n", &uint32Val, uint32(75)},
+ {"%d", "76\n", &uint64Val, uint64(76)},
+ {"%b", "1001001\n", &uintVal, uint(73)},
+ {"%o", "075\n", &uintVal, uint(075)},
+ {"%x", "a75\n", &uintVal, uint(0xa75)},
+ {"%x", "A75\n", &uintVal, uint(0xa75)},
+ {"%U", "U+1234\n", &intVal, int(0x1234)},
+ {"%U", "U+4567\n", &uintVal, uint(0x4567)},
+
+ // Strings
+ {"%s", "using-%s\n", &stringVal, "using-%s"},
+ {"%x", "7573696e672d2578\n", &stringVal, "using-%x"},
+ {"%q", `"quoted\twith\\do\u0075bl\x65s"` + "\n", &stringVal, "quoted\twith\\doubles"},
+ {"%q", "`quoted with backs`\n", &stringVal, "quoted with backs"},
+
+ // Byte slices
+ {"%s", "bytes-%s\n", &bytesVal, []byte("bytes-%s")},
+ {"%x", "62797465732d2578\n", &bytesVal, []byte("bytes-%x")},
+ {"%q", `"bytes\rwith\vdo\u0075bl\x65s"` + "\n", &bytesVal, []byte("bytes\rwith\vdoubles")},
+ {"%q", "`bytes with backs`\n", &bytesVal, []byte("bytes with backs")},
+
+ // Renamed types
+ {"%v\n", "true\n", &renamedBoolVal, renamedBool(true)},
+ {"%t\n", "F\n", &renamedBoolVal, renamedBool(false)},
+ {"%v", "101\n", &renamedIntVal, renamedInt(101)},
+ {"%c", "\u0101\n", &renamedIntVal, renamedInt('\u0101')},
+ {"%o", "0146\n", &renamedIntVal, renamedInt(102)},
+ {"%v", "103\n", &renamedUintVal, renamedUint(103)},
+ {"%d", "104\n", &renamedUintVal, renamedUint(104)},
+ {"%d", "105\n", &renamedInt8Val, renamedInt8(105)},
+ {"%d", "106\n", &renamedInt16Val, renamedInt16(106)},
+ {"%d", "107\n", &renamedInt32Val, renamedInt32(107)},
+ {"%d", "108\n", &renamedInt64Val, renamedInt64(108)},
+ {"%x", "6D\n", &renamedUint8Val, renamedUint8(109)},
+ {"%o", "0156\n", &renamedUint16Val, renamedUint16(110)},
+ {"%d", "111\n", &renamedUint32Val, renamedUint32(111)},
+ {"%d", "112\n", &renamedUint64Val, renamedUint64(112)},
+ {"%d", "113\n", &renamedUintptrVal, renamedUintptr(113)},
+ {"%s", "114\n", &renamedStringVal, renamedString("114")},
+ {"%q", "\"1155\"\n", &renamedBytesVal, renamedBytes([]byte("1155"))},
+ {"%g", "116e1\n", &renamedFloat32Val, renamedFloat32(116e1)},
+ {"%g", "-11.7e+1", &renamedFloat64Val, renamedFloat64(-11.7e+1)},
+ {"%g", "11+6e1i\n", &renamedComplex64Val, renamedComplex64(11 + 6e1i)},
+ {"%g", "-11.+7e+1i", &renamedComplex128Val, renamedComplex128(-11. + 7e+1i)},
+
+ // Interesting formats
+ {"here is\tthe value:%d", "here is the\tvalue:118\n", &intVal, 118},
+ {"%% %%:%d", "% %:119\n", &intVal, 119},
+
+ // Corner cases
+ {"%x", "FFFFFFFF\n", &uint32Val, uint32(0xFFFFFFFF)},
+
+ // Custom scanner.
+ {"%s", " sss ", &xVal, Xs("sss")},
+ {"%2s", "sssss", &xVal, Xs("ss")},
+
+ // Fixed bugs
+ {"%d\n", "27\n", &intVal, 27}, // ok
+ {"%d\n", "28 \n", &intVal, 28}, // was: "unexpected newline"
+}
+
+var overflowTests = []ScanTest{
+ {"128", &int8Val, 0},
+ {"32768", &int16Val, 0},
+ {"-129", &int8Val, 0},
+ {"-32769", &int16Val, 0},
+ {"256", &uint8Val, 0},
+ {"65536", &uint16Val, 0},
+ {"1e100", &float32Val, 0},
+ {"1e500", &float64Val, 0},
+ {"(1e100+0i)", &complex64Val, 0},
+ {"(1+1e100i)", &complex64Val, 0},
+ {"(1-1e500i)", &complex128Val, 0},
+}
+
+var i, j, k int
+var f float64
+var s, t string
+var c complex128
+var x, y Xs
+
+var multiTests = []ScanfMultiTest{
+ {"", "", nil, nil, ""},
+ {"%d", "23", args(&i), args(23), ""},
+ {"%2s%3s", "22333", args(&s, &t), args("22", "333"), ""},
+ {"%2d%3d", "44555", args(&i, &j), args(44, 555), ""},
+ {"%2d.%3d", "66.777", args(&i, &j), args(66, 777), ""},
+ {"%d, %d", "23, 18", args(&i, &j), args(23, 18), ""},
+ {"%3d22%3d", "33322333", args(&i, &j), args(333, 333), ""},
+ {"%6vX=%3fY", "3+2iX=2.5Y", args(&c, &f), args((3 + 2i), 2.5), ""},
+ {"%d%s", "123abc", args(&i, &s), args(123, "abc"), ""},
+ {"%c%c%c", "2\u50c2X", args(&i, &j, &k), args('2', '\u50c2', 'X'), ""},
+
+ // Custom scanner.
+ {"%2e%f", "eefffff", args(&x, &y), args(Xs("ee"), Xs("fffff")), ""},
+
+ // Errors
+ {"%t", "23 18", args(&i), nil, "bad verb"},
+ {"%d %d %d", "23 18", args(&i, &j), args(23, 18), "too few operands"},
+ {"%d %d", "23 18 27", args(&i, &j, &k), args(23, 18), "too many operands"},
+ {"%c", "\u0100", args(&int8Val), nil, "overflow"},
+ {"X%d", "10X", args(&intVal), nil, "input does not match format"},
+
+ // Bad UTF-8: should see every byte.
+ {"%c%c%c", "\xc2X\xc2", args(&i, &j, &k), args(utf8.RuneError, 'X', utf8.RuneError), ""},
+}
+
+func testScan(name string, t *testing.T, scan func(r io.Reader, a ...interface{}) (int, os.Error)) {
+ for _, test := range scanTests {
+ var r io.Reader
+ if name == "StringReader" {
+ r = strings.NewReader(test.text)
+ } else {
+ r = newReader(test.text)
+ }
+ n, err := scan(r, test.in)
+ if err != nil {
+ t.Errorf("%s got error scanning %q: %s", name, test.text, err)
+ continue
+ }
+ if n != 1 {
+ t.Errorf("%s count error on entry %q: got %d", name, test.text, n)
+ continue
+ }
+ // The incoming value may be a pointer
+ v := reflect.NewValue(test.in)
+ if p, ok := v.(*reflect.PtrValue); ok {
+ v = p.Elem()
+ }
+ val := v.Interface()
+ if !reflect.DeepEqual(val, test.out) {
+ t.Errorf("%s scanning %q: expected %v got %v, type %T", name, test.text, test.out, val, val)
+ }
+ }
+}
+
+func TestScan(t *testing.T) {
+ testScan("StringReader", t, Fscan)
+}
+
+func TestMyReaderScan(t *testing.T) {
+ testScan("myStringReader", t, Fscan)
+}
+
+func TestScanln(t *testing.T) {
+ testScan("StringReader", t, Fscanln)
+}
+
+func TestMyReaderScanln(t *testing.T) {
+ testScan("myStringReader", t, Fscanln)
+}
+
+func TestScanf(t *testing.T) {
+ for _, test := range scanfTests {
+ n, err := Sscanf(test.text, test.format, test.in)
+ if err != nil {
+ t.Errorf("got error scanning (%q, %q): %s", test.format, test.text, err)
+ continue
+ }
+ if n != 1 {
+ t.Errorf("count error on entry (%q, %q): got %d", test.format, test.text, n)
+ continue
+ }
+ // The incoming value may be a pointer
+ v := reflect.NewValue(test.in)
+ if p, ok := v.(*reflect.PtrValue); ok {
+ v = p.Elem()
+ }
+ val := v.Interface()
+ if !reflect.DeepEqual(val, test.out) {
+ t.Errorf("scanning (%q, %q): expected %v got %v, type %T", test.format, test.text, test.out, val, val)
+ }
+ }
+}
+
+func TestScanOverflow(t *testing.T) {
+ // different machines and different types report errors with different strings.
+ re := regexp.MustCompile("overflow|too large|out of range|not representable")
+ for _, test := range overflowTests {
+ _, err := Sscan(test.text, test.in)
+ if err == nil {
+ t.Errorf("expected overflow scanning %q", test.text)
+ continue
+ }
+ if !re.MatchString(err.String()) {
+ t.Errorf("expected overflow error scanning %q: %s", test.text, err)
+ }
+ }
+}
+
+func verifyNaN(str string, t *testing.T) {
+ var f float64
+ var f32 float32
+ var f64 float64
+ text := str + " " + str + " " + str
+ n, err := Fscan(strings.NewReader(text), &f, &f32, &f64)
+ if err != nil {
+ t.Errorf("got error scanning %q: %s", text, err)
+ }
+ if n != 3 {
+ t.Errorf("count error scanning %q: got %d", text, n)
+ }
+ if !math.IsNaN(float64(f)) || !math.IsNaN(float64(f32)) || !math.IsNaN(f64) {
+ t.Errorf("didn't get NaNs scanning %q: got %g %g %g", text, f, f32, f64)
+ }
+}
+
+func TestNaN(t *testing.T) {
+ for _, s := range []string{"nan", "NAN", "NaN"} {
+ verifyNaN(s, t)
+ }
+}
+
+func verifyInf(str string, t *testing.T) {
+ var f float64
+ var f32 float32
+ var f64 float64
+ text := str + " " + str + " " + str
+ n, err := Fscan(strings.NewReader(text), &f, &f32, &f64)
+ if err != nil {
+ t.Errorf("got error scanning %q: %s", text, err)
+ }
+ if n != 3 {
+ t.Errorf("count error scanning %q: got %d", text, n)
+ }
+ sign := 1
+ if str[0] == '-' {
+ sign = -1
+ }
+ if !math.IsInf(float64(f), sign) || !math.IsInf(float64(f32), sign) || !math.IsInf(f64, sign) {
+ t.Errorf("didn't get right Infs scanning %q: got %g %g %g", text, f, f32, f64)
+ }
+}
+
+
+func TestInf(t *testing.T) {
+ for _, s := range []string{"inf", "+inf", "-inf", "INF", "-INF", "+INF", "Inf", "-Inf", "+Inf"} {
+ verifyInf(s, t)
+ }
+}
+
+// TODO: there's no conversion from []T to ...T, but we can fake it. These
+// functions do the faking. We index the table by the length of the param list.
+var fscanf = []func(io.Reader, string, []interface{}) (int, os.Error){
+ 0: func(r io.Reader, f string, i []interface{}) (int, os.Error) { return Fscanf(r, f) },
+ 1: func(r io.Reader, f string, i []interface{}) (int, os.Error) { return Fscanf(r, f, i[0]) },
+ 2: func(r io.Reader, f string, i []interface{}) (int, os.Error) { return Fscanf(r, f, i[0], i[1]) },
+ 3: func(r io.Reader, f string, i []interface{}) (int, os.Error) { return Fscanf(r, f, i[0], i[1], i[2]) },
+}
+
+func testScanfMulti(name string, t *testing.T) {
+ sliceType := reflect.Typeof(make([]interface{}, 1)).(*reflect.SliceType)
+ for _, test := range multiTests {
+ var r io.Reader
+ if name == "StringReader" {
+ r = strings.NewReader(test.text)
+ } else {
+ r = newReader(test.text)
+ }
+ n, err := fscanf[len(test.in)](r, test.format, test.in)
+ if err != nil {
+ if test.err == "" {
+ t.Errorf("got error scanning (%q, %q): %q", test.format, test.text, err)
+ } else if strings.Index(err.String(), test.err) < 0 {
+ t.Errorf("got wrong error scanning (%q, %q): %q; expected %q", test.format, test.text, err, test.err)
+ }
+ continue
+ }
+ if test.err != "" {
+ t.Errorf("expected error %q error scanning (%q, %q)", test.err, test.format, test.text)
+ }
+ if n != len(test.out) {
+ t.Errorf("count error on entry (%q, %q): expected %d got %d", test.format, test.text, len(test.out), n)
+ continue
+ }
+ // Convert the slice of pointers into a slice of values
+ resultVal := reflect.MakeSlice(sliceType, n, n)
+ for i := 0; i < n; i++ {
+ v := reflect.NewValue(test.in[i]).(*reflect.PtrValue).Elem()
+ resultVal.Elem(i).(*reflect.InterfaceValue).Set(v)
+ }
+ result := resultVal.Interface()
+ if !reflect.DeepEqual(result, test.out) {
+ t.Errorf("scanning (%q, %q): expected %v got %v", test.format, test.text, test.out, result)
+ }
+ }
+}
+
+func TestScanfMulti(t *testing.T) {
+ testScanfMulti("StringReader", t)
+}
+
+func TestMyReaderScanfMulti(t *testing.T) {
+ testScanfMulti("myStringReader", t)
+}
+
+func TestScanMultiple(t *testing.T) {
+ var a int
+ var s string
+ n, err := Sscan("123abc", &a, &s)
+ if n != 2 {
+ t.Errorf("Sscan count error: expected 2: got %d", n)
+ }
+ if err != nil {
+ t.Errorf("Sscan expected no error; got %s", err)
+ }
+ if a != 123 || s != "abc" {
+ t.Errorf("Sscan wrong values: got (%d %q) expected (123 \"abc\")", a, s)
+ }
+ n, err = Sscan("asdf", &s, &a)
+ if n != 1 {
+ t.Errorf("Sscan count error: expected 1: got %d", n)
+ }
+ if err == nil {
+ t.Errorf("Sscan expected error; got none: %s", err)
+ }
+ if s != "asdf" {
+ t.Errorf("Sscan wrong values: got %q expected \"asdf\"", s)
+ }
+}
+
+// Empty strings are not valid input when scanning a string.
+func TestScanEmpty(t *testing.T) {
+ var s1, s2 string
+ n, err := Sscan("abc", &s1, &s2)
+ if n != 1 {
+ t.Errorf("Sscan count error: expected 1: got %d", n)
+ }
+ if err == nil {
+ t.Error("Sscan <one item> expected error; got none")
+ }
+ if s1 != "abc" {
+ t.Errorf("Sscan wrong values: got %q expected \"abc\"", s1)
+ }
+ n, err = Sscan("", &s1, &s2)
+ if n != 0 {
+ t.Errorf("Sscan count error: expected 0: got %d", n)
+ }
+ if err == nil {
+ t.Error("Sscan <empty> expected error; got none")
+ }
+ // Quoted empty string is OK.
+ n, err = Sscanf(`""`, "%q", &s1)
+ if n != 1 {
+ t.Errorf("Sscanf count error: expected 1: got %d", n)
+ }
+ if err != nil {
+ t.Errorf("Sscanf <empty> expected no error with quoted string; got %s", err)
+ }
+}
+
+func TestScanNotPointer(t *testing.T) {
+ r := strings.NewReader("1")
+ var a int
+ _, err := Fscan(r, a)
+ if err == nil {
+ t.Error("expected error scanning non-pointer")
+ } else if strings.Index(err.String(), "pointer") < 0 {
+ t.Errorf("expected pointer error scanning non-pointer, got: %s", err)
+ }
+}
+
+func TestScanlnNoNewline(t *testing.T) {
+ var a int
+ _, err := Sscanln("1 x\n", &a)
+ if err == nil {
+ t.Error("expected error scanning string missing newline")
+ } else if strings.Index(err.String(), "newline") < 0 {
+ t.Errorf("expected newline error scanning string missing newline, got: %s", err)
+ }
+}
+
+func TestScanlnWithMiddleNewline(t *testing.T) {
+ r := strings.NewReader("123\n456\n")
+ var a, b int
+ _, err := Fscanln(r, &a, &b)
+ if err == nil {
+ t.Error("expected error scanning string with extra newline")
+ } else if strings.Index(err.String(), "newline") < 0 {
+ t.Errorf("expected newline error scanning string with extra newline, got: %s", err)
+ }
+}
+
+// Special Reader that counts reads at end of file.
+type eofCounter struct {
+ reader *strings.Reader
+ eofCount int
+}
+
+func (ec *eofCounter) Read(b []byte) (n int, err os.Error) {
+ n, err = ec.reader.Read(b)
+ if n == 0 {
+ ec.eofCount++
+ }
+ return
+}
+
+// Verify that when we scan, we see at most EOF once per call to a Scan function,
+// and then only when it's really an EOF
+func TestEOF(t *testing.T) {
+ ec := &eofCounter{strings.NewReader("123\n"), 0}
+ var a int
+ n, err := Fscanln(ec, &a)
+ if err != nil {
+ t.Error("unexpected error", err)
+ }
+ if n != 1 {
+ t.Error("expected to scan one item, got", n)
+ }
+ if ec.eofCount != 0 {
+ t.Error("expected zero EOFs", ec.eofCount)
+ ec.eofCount = 0 // reset for next test
+ }
+ n, err = Fscanln(ec, &a)
+ if err == nil {
+ t.Error("expected error scanning empty string")
+ }
+ if n != 0 {
+ t.Error("expected to scan zero items, got", n)
+ }
+ if ec.eofCount != 1 {
+ t.Error("expected one EOF, got", ec.eofCount)
+ }
+}
+
+// Verify that, at least when using bufio, successive calls to Fscan do not lose runes.
+func TestUnreadRuneWithBufio(t *testing.T) {
+ r := bufio.NewReader(strings.NewReader("123αb"))
+ var i int
+ var a string
+ n, err := Fscanf(r, "%d", &i)
+ if n != 1 || err != nil {
+ t.Errorf("reading int expected one item, no errors; got %d %q", n, err)
+ }
+ if i != 123 {
+ t.Errorf("expected 123; got %d", i)
+ }
+ n, err = Fscanf(r, "%s", &a)
+ if n != 1 || err != nil {
+ t.Errorf("reading string expected one item, no errors; got %d %q", n, err)
+ }
+ if a != "αb" {
+ t.Errorf("expected αb; got %q", a)
+ }
+}
diff --git a/libgo/go/fmt/stringer_test.go b/libgo/go/fmt/stringer_test.go
new file mode 100644
index 000000000..0ca3f522d
--- /dev/null
+++ b/libgo/go/fmt/stringer_test.go
@@ -0,0 +1,61 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package fmt_test
+
+import (
+ . "fmt"
+ "testing"
+)
+
+type TI int
+type TI8 int8
+type TI16 int16
+type TI32 int32
+type TI64 int64
+type TU uint
+type TU8 uint8
+type TU16 uint16
+type TU32 uint32
+type TU64 uint64
+type TUI uintptr
+type TF float64
+type TF32 float32
+type TF64 float64
+type TB bool
+type TS string
+
+func (v TI) String() string { return Sprintf("I: %d", int(v)) }
+func (v TI8) String() string { return Sprintf("I8: %d", int8(v)) }
+func (v TI16) String() string { return Sprintf("I16: %d", int16(v)) }
+func (v TI32) String() string { return Sprintf("I32: %d", int32(v)) }
+func (v TI64) String() string { return Sprintf("I64: %d", int64(v)) }
+func (v TU) String() string { return Sprintf("U: %d", uint(v)) }
+func (v TU8) String() string { return Sprintf("U8: %d", uint8(v)) }
+func (v TU16) String() string { return Sprintf("U16: %d", uint16(v)) }
+func (v TU32) String() string { return Sprintf("U32: %d", uint32(v)) }
+func (v TU64) String() string { return Sprintf("U64: %d", uint64(v)) }
+func (v TUI) String() string { return Sprintf("UI: %d", uintptr(v)) }
+func (v TF) String() string { return Sprintf("F: %f", float64(v)) }
+func (v TF32) String() string { return Sprintf("F32: %f", float32(v)) }
+func (v TF64) String() string { return Sprintf("F64: %f", float64(v)) }
+func (v TB) String() string { return Sprintf("B: %t", bool(v)) }
+func (v TS) String() string { return Sprintf("S: %q", string(v)) }
+
+func check(t *testing.T, got, want string) {
+ if got != want {
+ t.Error(got, "!=", want)
+ }
+}
+
+func TestStringer(t *testing.T) {
+ s := Sprintf("%v %v %v %v %v", TI(0), TI8(1), TI16(2), TI32(3), TI64(4))
+ check(t, s, "I: 0 I8: 1 I16: 2 I32: 3 I64: 4")
+ s = Sprintf("%v %v %v %v %v %v", TU(5), TU8(6), TU16(7), TU32(8), TU64(9), TUI(10))
+ check(t, s, "U: 5 U8: 6 U16: 7 U32: 8 U64: 9 UI: 10")
+ s = Sprintf("%v %v %v", TF(1.0), TF32(2.0), TF64(3.0))
+ check(t, s, "F: 1.000000 F32: 2.000000 F64: 3.000000")
+ s = Sprintf("%v %v", TB(true), TS("x"))
+ check(t, s, "B: true S: \"x\"")
+}