summaryrefslogtreecommitdiff
path: root/libgo/go/image/jpeg
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/image/jpeg')
-rw-r--r--libgo/go/image/jpeg/huffman.go190
-rw-r--r--libgo/go/image/jpeg/idct.go190
-rw-r--r--libgo/go/image/jpeg/reader.go455
3 files changed, 835 insertions, 0 deletions
diff --git a/libgo/go/image/jpeg/huffman.go b/libgo/go/image/jpeg/huffman.go
new file mode 100644
index 000000000..0d03a7317
--- /dev/null
+++ b/libgo/go/image/jpeg/huffman.go
@@ -0,0 +1,190 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package jpeg
+
+import (
+ "io"
+ "os"
+)
+
+// Each code is at most 16 bits long.
+const maxCodeLength = 16
+
+// Each decoded value is a uint8, so there are at most 256 such values.
+const maxNumValues = 256
+
+// Bit stream for the Huffman decoder.
+// The n least significant bits of a form the unread bits, to be read in MSB to LSB order.
+type bits struct {
+ a int // accumulator.
+ n int // the number of unread bits in a.
+ m int // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
+}
+
+// Huffman table decoder, specified in section C.
+type huffman struct {
+ l [maxCodeLength]int
+ length int // sum of l[i].
+ val [maxNumValues]uint8 // the decoded values, as sorted by their encoding.
+ size [maxNumValues]int // size[i] is the number of bits to encode val[i].
+ code [maxNumValues]int // code[i] is the encoding of val[i].
+ minCode [maxCodeLength]int // min codes of length i, or -1 if no codes of that length.
+ maxCode [maxCodeLength]int // max codes of length i, or -1 if no codes of that length.
+ valIndex [maxCodeLength]int // index into val of minCode[i].
+}
+
+// Reads bytes from the io.Reader to ensure that bits.n is at least n.
+func (d *decoder) ensureNBits(n int) os.Error {
+ for d.b.n < n {
+ c, err := d.r.ReadByte()
+ if err != nil {
+ return err
+ }
+ d.b.a = d.b.a<<8 | int(c)
+ d.b.n += 8
+ if d.b.m == 0 {
+ d.b.m = 1 << 7
+ } else {
+ d.b.m <<= 8
+ }
+ // Byte stuffing, specified in section F.1.2.3.
+ if c == 0xff {
+ c, err = d.r.ReadByte()
+ if err != nil {
+ return err
+ }
+ if c != 0x00 {
+ return FormatError("missing 0xff00 sequence")
+ }
+ }
+ }
+ return nil
+}
+
+// The composition of RECEIVE and EXTEND, specified in section F.2.2.1.
+func (d *decoder) receiveExtend(t uint8) (int, os.Error) {
+ err := d.ensureNBits(int(t))
+ if err != nil {
+ return 0, err
+ }
+ d.b.n -= int(t)
+ d.b.m >>= t
+ s := 1 << t
+ x := (d.b.a >> uint8(d.b.n)) & (s - 1)
+ if x < s>>1 {
+ x += ((-1) << t) + 1
+ }
+ return x, nil
+}
+
+// Processes a Define Huffman Table marker, and initializes a huffman struct from its contents.
+// Specified in section B.2.4.2.
+func (d *decoder) processDHT(n int) os.Error {
+ for n > 0 {
+ if n < 17 {
+ return FormatError("DHT has wrong length")
+ }
+ _, err := io.ReadFull(d.r, d.tmp[0:17])
+ if err != nil {
+ return err
+ }
+ tc := d.tmp[0] >> 4
+ if tc > maxTc {
+ return FormatError("bad Tc value")
+ }
+ th := d.tmp[0] & 0x0f
+ const isBaseline = true // Progressive mode is not yet supported.
+ if th > maxTh || isBaseline && th > 1 {
+ return FormatError("bad Th value")
+ }
+ h := &d.huff[tc][th]
+
+ // Read l and val (and derive length).
+ h.length = 0
+ for i := 0; i < maxCodeLength; i++ {
+ h.l[i] = int(d.tmp[i+1])
+ h.length += h.l[i]
+ }
+ if h.length == 0 {
+ return FormatError("Huffman table has zero length")
+ }
+ if h.length > maxNumValues {
+ return FormatError("Huffman table has excessive length")
+ }
+ n -= h.length + 17
+ if n < 0 {
+ return FormatError("DHT has wrong length")
+ }
+ _, err = io.ReadFull(d.r, h.val[0:h.length])
+ if err != nil {
+ return err
+ }
+
+ // Derive size.
+ k := 0
+ for i := 0; i < maxCodeLength; i++ {
+ for j := 0; j < h.l[i]; j++ {
+ h.size[k] = i + 1
+ k++
+ }
+ }
+
+ // Derive code.
+ code := 0
+ size := h.size[0]
+ for i := 0; i < h.length; i++ {
+ if size != h.size[i] {
+ code <<= uint8(h.size[i] - size)
+ size = h.size[i]
+ }
+ h.code[i] = code
+ code++
+ }
+
+ // Derive minCode, maxCode, and valIndex.
+ k = 0
+ index := 0
+ for i := 0; i < maxCodeLength; i++ {
+ if h.l[i] == 0 {
+ h.minCode[i] = -1
+ h.maxCode[i] = -1
+ h.valIndex[i] = -1
+ } else {
+ h.minCode[i] = k
+ h.maxCode[i] = k + h.l[i] - 1
+ h.valIndex[i] = index
+ k += h.l[i]
+ index += h.l[i]
+ }
+ k <<= 1
+ }
+ }
+ return nil
+}
+
+// Returns the next Huffman-coded value from the bit stream, decoded according to h.
+// TODO(nigeltao): This decoding algorithm is simple, but slow. A lookahead table, instead of always
+// peeling off only 1 bit at at time, ought to be faster.
+func (d *decoder) decodeHuffman(h *huffman) (uint8, os.Error) {
+ if h.length == 0 {
+ return 0, FormatError("uninitialized Huffman table")
+ }
+ for i, code := 0, 0; i < maxCodeLength; i++ {
+ err := d.ensureNBits(1)
+ if err != nil {
+ return 0, err
+ }
+ if d.b.a&d.b.m != 0 {
+ code |= 1
+ }
+ d.b.n--
+ d.b.m >>= 1
+ if code <= h.maxCode[i] {
+ return h.val[h.valIndex[i]+code-h.minCode[i]], nil
+ }
+ code <<= 1
+ }
+ return 0, FormatError("bad Huffman code")
+}
diff --git a/libgo/go/image/jpeg/idct.go b/libgo/go/image/jpeg/idct.go
new file mode 100644
index 000000000..518993110
--- /dev/null
+++ b/libgo/go/image/jpeg/idct.go
@@ -0,0 +1,190 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This is a Go translation of idct.c from
+//
+// http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
+//
+// which carries the following notice:
+
+/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
+
+/*
+ * Disclaimer of Warranty
+ *
+ * These software programs are available to the user without any license fee or
+ * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
+ * any and all warranties, whether express, implied, or statuary, including any
+ * implied warranties or merchantability or of fitness for a particular
+ * purpose. In no event shall the copyright-holder be liable for any
+ * incidental, punitive, or consequential damages of any kind whatsoever
+ * arising from the use of these programs.
+ *
+ * This disclaimer of warranty extends to the user of these programs and user's
+ * customers, employees, agents, transferees, successors, and assigns.
+ *
+ * The MPEG Software Simulation Group does not represent or warrant that the
+ * programs furnished hereunder are free of infringement of any third-party
+ * patents.
+ *
+ * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
+ * are subject to royalty fees to patent holders. Many of these patents are
+ * general enough such that they are unavoidable regardless of implementation
+ * design.
+ *
+ */
+
+package jpeg
+
+const (
+ w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
+ w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
+ w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16)
+ w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16)
+ w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16)
+ w7 = 565 // 2048*sqrt(2)*cos(7*pi/16)
+
+ w1pw7 = w1 + w7
+ w1mw7 = w1 - w7
+ w2pw6 = w2 + w6
+ w2mw6 = w2 - w6
+ w3pw5 = w3 + w5
+ w3mw5 = w3 - w5
+
+ r2 = 181 // 256/sqrt(2)
+)
+
+// 2-D Inverse Discrete Cosine Transformation, followed by a +128 level shift.
+//
+// The input coefficients should already have been multiplied by the appropriate quantization table.
+// We use fixed-point computation, with the number of bits for the fractional component varying over the
+// intermediate stages. The final values are expected to range within [0, 255], after a +128 level shift.
+//
+// For more on the actual algorithm, see Z. Wang, "Fast algorithms for the discrete W transform and
+// for the discrete Fourier transform", IEEE Trans. on ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
+func idct(b *[blockSize]int) {
+ // Horizontal 1-D IDCT.
+ for y := 0; y < 8; y++ {
+ // If all the AC components are zero, then the IDCT is trivial.
+ if b[y*8+1] == 0 && b[y*8+2] == 0 && b[y*8+3] == 0 &&
+ b[y*8+4] == 0 && b[y*8+5] == 0 && b[y*8+6] == 0 && b[y*8+7] == 0 {
+ dc := b[y*8+0] << 3
+ b[y*8+0] = dc
+ b[y*8+1] = dc
+ b[y*8+2] = dc
+ b[y*8+3] = dc
+ b[y*8+4] = dc
+ b[y*8+5] = dc
+ b[y*8+6] = dc
+ b[y*8+7] = dc
+ continue
+ }
+
+ // Prescale.
+ x0 := (b[y*8+0] << 11) + 128
+ x1 := b[y*8+4] << 11
+ x2 := b[y*8+6]
+ x3 := b[y*8+2]
+ x4 := b[y*8+1]
+ x5 := b[y*8+7]
+ x6 := b[y*8+5]
+ x7 := b[y*8+3]
+
+ // Stage 1.
+ x8 := w7 * (x4 + x5)
+ x4 = x8 + w1mw7*x4
+ x5 = x8 - w1pw7*x5
+ x8 = w3 * (x6 + x7)
+ x6 = x8 - w3mw5*x6
+ x7 = x8 - w3pw5*x7
+
+ // Stage 2.
+ x8 = x0 + x1
+ x0 -= x1
+ x1 = w6 * (x3 + x2)
+ x2 = x1 - w2pw6*x2
+ x3 = x1 + w2mw6*x3
+ x1 = x4 + x6
+ x4 -= x6
+ x6 = x5 + x7
+ x5 -= x7
+
+ // Stage 3.
+ x7 = x8 + x3
+ x8 -= x3
+ x3 = x0 + x2
+ x0 -= x2
+ x2 = (r2*(x4+x5) + 128) >> 8
+ x4 = (r2*(x4-x5) + 128) >> 8
+
+ // Stage 4.
+ b[8*y+0] = (x7 + x1) >> 8
+ b[8*y+1] = (x3 + x2) >> 8
+ b[8*y+2] = (x0 + x4) >> 8
+ b[8*y+3] = (x8 + x6) >> 8
+ b[8*y+4] = (x8 - x6) >> 8
+ b[8*y+5] = (x0 - x4) >> 8
+ b[8*y+6] = (x3 - x2) >> 8
+ b[8*y+7] = (x7 - x1) >> 8
+ }
+
+ // Vertical 1-D IDCT.
+ for x := 0; x < 8; x++ {
+ // Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
+ // However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
+ // we do not bother to check for the all-zero case.
+
+ // Prescale.
+ y0 := (b[8*0+x] << 8) + 8192
+ y1 := b[8*4+x] << 8
+ y2 := b[8*6+x]
+ y3 := b[8*2+x]
+ y4 := b[8*1+x]
+ y5 := b[8*7+x]
+ y6 := b[8*5+x]
+ y7 := b[8*3+x]
+
+ // Stage 1.
+ y8 := w7*(y4+y5) + 4
+ y4 = (y8 + w1mw7*y4) >> 3
+ y5 = (y8 - w1pw7*y5) >> 3
+ y8 = w3*(y6+y7) + 4
+ y6 = (y8 - w3mw5*y6) >> 3
+ y7 = (y8 - w3pw5*y7) >> 3
+
+ // Stage 2.
+ y8 = y0 + y1
+ y0 -= y1
+ y1 = w6*(y3+y2) + 4
+ y2 = (y1 - w2pw6*y2) >> 3
+ y3 = (y1 + w2mw6*y3) >> 3
+ y1 = y4 + y6
+ y4 -= y6
+ y6 = y5 + y7
+ y5 -= y7
+
+ // Stage 3.
+ y7 = y8 + y3
+ y8 -= y3
+ y3 = y0 + y2
+ y0 -= y2
+ y2 = (r2*(y4+y5) + 128) >> 8
+ y4 = (r2*(y4-y5) + 128) >> 8
+
+ // Stage 4.
+ b[8*0+x] = (y7 + y1) >> 14
+ b[8*1+x] = (y3 + y2) >> 14
+ b[8*2+x] = (y0 + y4) >> 14
+ b[8*3+x] = (y8 + y6) >> 14
+ b[8*4+x] = (y8 - y6) >> 14
+ b[8*5+x] = (y0 - y4) >> 14
+ b[8*6+x] = (y3 - y2) >> 14
+ b[8*7+x] = (y7 - y1) >> 14
+ }
+
+ // Level shift.
+ for i := range *b {
+ b[i] += 128
+ }
+}
diff --git a/libgo/go/image/jpeg/reader.go b/libgo/go/image/jpeg/reader.go
new file mode 100644
index 000000000..fb9cb11bb
--- /dev/null
+++ b/libgo/go/image/jpeg/reader.go
@@ -0,0 +1,455 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// The jpeg package implements a decoder for JPEG images, as defined in ITU-T T.81.
+package jpeg
+
+// See http://www.w3.org/Graphics/JPEG/itu-t81.pdf
+
+import (
+ "bufio"
+ "image"
+ "io"
+ "os"
+)
+
+// A FormatError reports that the input is not a valid JPEG.
+type FormatError string
+
+func (e FormatError) String() string { return "invalid JPEG format: " + string(e) }
+
+// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
+type UnsupportedError string
+
+func (e UnsupportedError) String() string { return "unsupported JPEG feature: " + string(e) }
+
+// Component specification, specified in section B.2.2.
+type component struct {
+ c uint8 // Component identifier.
+ h uint8 // Horizontal sampling factor.
+ v uint8 // Vertical sampling factor.
+ tq uint8 // Quantization table destination selector.
+}
+
+const (
+ blockSize = 64 // A DCT block is 8x8.
+
+ dcTableClass = 0
+ acTableClass = 1
+ maxTc = 1
+ maxTh = 3
+ maxTq = 3
+
+ // We only support 4:4:4, 4:2:2 and 4:2:0 downsampling, and assume that the components are Y, Cb, Cr.
+ nComponent = 3
+ maxH = 2
+ maxV = 2
+)
+
+const (
+ soiMarker = 0xd8 // Start Of Image.
+ eoiMarker = 0xd9 // End Of Image.
+ sof0Marker = 0xc0 // Start Of Frame (Baseline).
+ sof2Marker = 0xc2 // Start Of Frame (Progressive).
+ dhtMarker = 0xc4 // Define Huffman Table.
+ dqtMarker = 0xdb // Define Quantization Table.
+ sosMarker = 0xda // Start Of Scan.
+ driMarker = 0xdd // Define Restart Interval.
+ rst0Marker = 0xd0 // ReSTart (0).
+ rst7Marker = 0xd7 // ReSTart (7).
+ app0Marker = 0xe0 // APPlication specific (0).
+ app15Marker = 0xef // APPlication specific (15).
+ comMarker = 0xfe // COMment.
+)
+
+// Maps from the zig-zag ordering to the natural ordering.
+var unzig = [blockSize]int{
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13, 6, 7, 14, 21, 28,
+ 35, 42, 49, 56, 57, 50, 43, 36,
+ 29, 22, 15, 23, 30, 37, 44, 51,
+ 58, 59, 52, 45, 38, 31, 39, 46,
+ 53, 60, 61, 54, 47, 55, 62, 63,
+}
+
+// If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering.
+type Reader interface {
+ io.Reader
+ ReadByte() (c byte, err os.Error)
+}
+
+type decoder struct {
+ r Reader
+ width, height int
+ image *image.RGBA
+ ri int // Restart Interval.
+ comps [nComponent]component
+ huff [maxTc + 1][maxTh + 1]huffman
+ quant [maxTq + 1][blockSize]int
+ b bits
+ blocks [nComponent][maxH * maxV][blockSize]int
+ tmp [1024]byte
+}
+
+// Reads and ignores the next n bytes.
+func (d *decoder) ignore(n int) os.Error {
+ for n > 0 {
+ m := len(d.tmp)
+ if m > n {
+ m = n
+ }
+ _, err := io.ReadFull(d.r, d.tmp[0:m])
+ if err != nil {
+ return err
+ }
+ n -= m
+ }
+ return nil
+}
+
+// Specified in section B.2.2.
+func (d *decoder) processSOF(n int) os.Error {
+ if n != 6+3*nComponent {
+ return UnsupportedError("SOF has wrong length")
+ }
+ _, err := io.ReadFull(d.r, d.tmp[0:6+3*nComponent])
+ if err != nil {
+ return err
+ }
+ // We only support 8-bit precision.
+ if d.tmp[0] != 8 {
+ return UnsupportedError("precision")
+ }
+ d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
+ d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
+ if d.tmp[5] != nComponent {
+ return UnsupportedError("SOF has wrong number of image components")
+ }
+ for i := 0; i < nComponent; i++ {
+ hv := d.tmp[7+3*i]
+ d.comps[i].c = d.tmp[6+3*i]
+ d.comps[i].h = hv >> 4
+ d.comps[i].v = hv & 0x0f
+ d.comps[i].tq = d.tmp[8+3*i]
+ // We only support YCbCr images, and 4:4:4, 4:2:2 or 4:2:0 chroma downsampling ratios. This implies that
+ // the (h, v) values for the Y component are either (1, 1), (2, 1) or (2, 2), and the
+ // (h, v) values for the Cr and Cb components must be (1, 1).
+ if i == 0 {
+ if hv != 0x11 && hv != 0x21 && hv != 0x22 {
+ return UnsupportedError("luma downsample ratio")
+ }
+ } else {
+ if hv != 0x11 {
+ return UnsupportedError("chroma downsample ratio")
+ }
+ }
+ }
+ return nil
+}
+
+// Specified in section B.2.4.1.
+func (d *decoder) processDQT(n int) os.Error {
+ const qtLength = 1 + blockSize
+ for ; n >= qtLength; n -= qtLength {
+ _, err := io.ReadFull(d.r, d.tmp[0:qtLength])
+ if err != nil {
+ return err
+ }
+ pq := d.tmp[0] >> 4
+ if pq != 0 {
+ return UnsupportedError("bad Pq value")
+ }
+ tq := d.tmp[0] & 0x0f
+ if tq > maxTq {
+ return FormatError("bad Tq value")
+ }
+ for i := range d.quant[tq] {
+ d.quant[tq][i] = int(d.tmp[i+1])
+ }
+ }
+ if n != 0 {
+ return FormatError("DQT has wrong length")
+ }
+ return nil
+}
+
+// Set the Pixel (px, py)'s RGB value, based on its YCbCr value.
+func (d *decoder) calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex int) {
+ y, cb, cr := d.blocks[0][lumaBlock][lumaIndex], d.blocks[1][0][chromaIndex], d.blocks[2][0][chromaIndex]
+ // The JFIF specification (http://www.w3.org/Graphics/JPEG/jfif3.pdf, page 3) gives the formula
+ // for translating YCbCr to RGB as:
+ // R = Y + 1.402 (Cr-128)
+ // G = Y - 0.34414 (Cb-128) - 0.71414 (Cr-128)
+ // B = Y + 1.772 (Cb-128)
+ yPlusHalf := 100000*y + 50000
+ cb -= 128
+ cr -= 128
+ r := (yPlusHalf + 140200*cr) / 100000
+ g := (yPlusHalf - 34414*cb - 71414*cr) / 100000
+ b := (yPlusHalf + 177200*cb) / 100000
+ if r < 0 {
+ r = 0
+ } else if r > 255 {
+ r = 255
+ }
+ if g < 0 {
+ g = 0
+ } else if g > 255 {
+ g = 255
+ }
+ if b < 0 {
+ b = 0
+ } else if b > 255 {
+ b = 255
+ }
+ d.image.Pix[py*d.image.Stride+px] = image.RGBAColor{uint8(r), uint8(g), uint8(b), 0xff}
+}
+
+// Convert the MCU from YCbCr to RGB.
+func (d *decoder) convertMCU(mx, my, h0, v0 int) {
+ lumaBlock := 0
+ for v := 0; v < v0; v++ {
+ for h := 0; h < h0; h++ {
+ chromaBase := 8*4*v + 4*h
+ py := 8 * (v0*my + v)
+ for y := 0; y < 8 && py < d.height; y++ {
+ px := 8 * (h0*mx + h)
+ lumaIndex := 8 * y
+ chromaIndex := chromaBase + 8*(y/v0)
+ for x := 0; x < 8 && px < d.width; x++ {
+ d.calcPixel(px, py, lumaBlock, lumaIndex, chromaIndex)
+ if h0 == 1 {
+ chromaIndex += 1
+ } else {
+ chromaIndex += x % 2
+ }
+ lumaIndex++
+ px++
+ }
+ py++
+ }
+ lumaBlock++
+ }
+ }
+}
+
+// Specified in section B.2.3.
+func (d *decoder) processSOS(n int) os.Error {
+ if d.image == nil {
+ d.image = image.NewRGBA(d.width, d.height)
+ }
+ if n != 4+2*nComponent {
+ return UnsupportedError("SOS has wrong length")
+ }
+ _, err := io.ReadFull(d.r, d.tmp[0:4+2*nComponent])
+ if err != nil {
+ return err
+ }
+ if d.tmp[0] != nComponent {
+ return UnsupportedError("SOS has wrong number of image components")
+ }
+ var scanComps [nComponent]struct {
+ td uint8 // DC table selector.
+ ta uint8 // AC table selector.
+ }
+ h0, v0 := int(d.comps[0].h), int(d.comps[0].v) // The h and v values from the Y components.
+ for i := 0; i < nComponent; i++ {
+ cs := d.tmp[1+2*i] // Component selector.
+ if cs != d.comps[i].c {
+ return UnsupportedError("scan components out of order")
+ }
+ scanComps[i].td = d.tmp[2+2*i] >> 4
+ scanComps[i].ta = d.tmp[2+2*i] & 0x0f
+ }
+ // mxx and myy are the number of MCUs (Minimum Coded Units) in the image.
+ mxx := (d.width + 8*int(h0) - 1) / (8 * int(h0))
+ myy := (d.height + 8*int(v0) - 1) / (8 * int(v0))
+
+ mcu, expectedRST := 0, uint8(rst0Marker)
+ var allZeroes [blockSize]int
+ var dc [nComponent]int
+ for my := 0; my < myy; my++ {
+ for mx := 0; mx < mxx; mx++ {
+ for i := 0; i < nComponent; i++ {
+ qt := &d.quant[d.comps[i].tq]
+ for j := 0; j < int(d.comps[i].h*d.comps[i].v); j++ {
+ d.blocks[i][j] = allZeroes
+
+ // Decode the DC coefficient, as specified in section F.2.2.1.
+ value, err := d.decodeHuffman(&d.huff[dcTableClass][scanComps[i].td])
+ if err != nil {
+ return err
+ }
+ if value > 16 {
+ return UnsupportedError("excessive DC component")
+ }
+ dcDelta, err := d.receiveExtend(value)
+ if err != nil {
+ return err
+ }
+ dc[i] += dcDelta
+ d.blocks[i][j][0] = dc[i] * qt[0]
+
+ // Decode the AC coefficients, as specified in section F.2.2.2.
+ for k := 1; k < blockSize; k++ {
+ value, err := d.decodeHuffman(&d.huff[acTableClass][scanComps[i].ta])
+ if err != nil {
+ return err
+ }
+ v0 := value >> 4
+ v1 := value & 0x0f
+ if v1 != 0 {
+ k += int(v0)
+ if k > blockSize {
+ return FormatError("bad DCT index")
+ }
+ ac, err := d.receiveExtend(v1)
+ if err != nil {
+ return err
+ }
+ d.blocks[i][j][unzig[k]] = ac * qt[k]
+ } else {
+ if v0 != 0x0f {
+ break
+ }
+ k += 0x0f
+ }
+ }
+
+ idct(&d.blocks[i][j])
+ } // for j
+ } // for i
+ d.convertMCU(mx, my, int(d.comps[0].h), int(d.comps[0].v))
+ mcu++
+ if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy {
+ // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input,
+ // but this one assumes well-formed input, and hence the restart marker follows immediately.
+ _, err := io.ReadFull(d.r, d.tmp[0:2])
+ if err != nil {
+ return err
+ }
+ if d.tmp[0] != 0xff || d.tmp[1] != expectedRST {
+ return FormatError("bad RST marker")
+ }
+ expectedRST++
+ if expectedRST == rst7Marker+1 {
+ expectedRST = rst0Marker
+ }
+ // Reset the Huffman decoder.
+ d.b = bits{}
+ // Reset the DC components, as per section F.2.1.3.1.
+ for i := 0; i < nComponent; i++ {
+ dc[i] = 0
+ }
+ }
+ } // for mx
+ } // for my
+
+ return nil
+}
+
+// Specified in section B.2.4.4.
+func (d *decoder) processDRI(n int) os.Error {
+ if n != 2 {
+ return FormatError("DRI has wrong length")
+ }
+ _, err := io.ReadFull(d.r, d.tmp[0:2])
+ if err != nil {
+ return err
+ }
+ d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
+ return nil
+}
+
+// decode reads a JPEG image from r and returns it as an image.Image.
+func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, os.Error) {
+ if rr, ok := r.(Reader); ok {
+ d.r = rr
+ } else {
+ d.r = bufio.NewReader(r)
+ }
+
+ // Check for the Start Of Image marker.
+ _, err := io.ReadFull(d.r, d.tmp[0:2])
+ if err != nil {
+ return nil, err
+ }
+ if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
+ return nil, FormatError("missing SOI marker")
+ }
+
+ // Process the remaining segments until the End Of Image marker.
+ for {
+ _, err := io.ReadFull(d.r, d.tmp[0:2])
+ if err != nil {
+ return nil, err
+ }
+ if d.tmp[0] != 0xff {
+ return nil, FormatError("missing 0xff marker start")
+ }
+ marker := d.tmp[1]
+ if marker == eoiMarker { // End Of Image.
+ break
+ }
+
+ // Read the 16-bit length of the segment. The value includes the 2 bytes for the
+ // length itself, so we subtract 2 to get the number of remaining bytes.
+ _, err = io.ReadFull(d.r, d.tmp[0:2])
+ if err != nil {
+ return nil, err
+ }
+ n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
+ if n < 0 {
+ return nil, FormatError("short segment length")
+ }
+
+ switch {
+ case marker == sof0Marker: // Start Of Frame (Baseline).
+ err = d.processSOF(n)
+ if configOnly {
+ return nil, err
+ }
+ case marker == sof2Marker: // Start Of Frame (Progressive).
+ err = UnsupportedError("progressive mode")
+ case marker == dhtMarker: // Define Huffman Table.
+ err = d.processDHT(n)
+ case marker == dqtMarker: // Define Quantization Table.
+ err = d.processDQT(n)
+ case marker == sosMarker: // Start Of Scan.
+ err = d.processSOS(n)
+ case marker == driMarker: // Define Restart Interval.
+ err = d.processDRI(n)
+ case marker >= app0Marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment.
+ err = d.ignore(n)
+ default:
+ err = UnsupportedError("unknown marker")
+ }
+ if err != nil {
+ return nil, err
+ }
+ }
+ return d.image, nil
+}
+
+// Decode reads a JPEG image from r and returns it as an image.Image.
+func Decode(r io.Reader) (image.Image, os.Error) {
+ var d decoder
+ return d.decode(r, false)
+}
+
+// DecodeConfig returns the color model and dimensions of a JPEG image without
+// decoding the entire image.
+func DecodeConfig(r io.Reader) (image.Config, os.Error) {
+ var d decoder
+ if _, err := d.decode(r, true); err != nil {
+ return image.Config{}, err
+ }
+ return image.Config{image.RGBAColorModel, d.width, d.height}, nil
+}
+
+func init() {
+ image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
+}