summaryrefslogtreecommitdiff
path: root/libgo/go/reflect/value.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/reflect/value.go')
-rw-r--r--libgo/go/reflect/value.go1242
1 files changed, 1242 insertions, 0 deletions
diff --git a/libgo/go/reflect/value.go b/libgo/go/reflect/value.go
new file mode 100644
index 000000000..8ef402bbc
--- /dev/null
+++ b/libgo/go/reflect/value.go
@@ -0,0 +1,1242 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflect
+
+import (
+ "math"
+ "runtime"
+ "unsafe"
+)
+
+const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil)))
+const cannotSet = "cannot set value obtained via unexported struct field"
+
+type addr unsafe.Pointer
+
+// TODO: This will have to go away when
+// the new gc goes in.
+func memmove(adst, asrc addr, n uintptr) {
+ dst := uintptr(adst)
+ src := uintptr(asrc)
+ switch {
+ case src < dst && src+n > dst:
+ // byte copy backward
+ // careful: i is unsigned
+ for i := n; i > 0; {
+ i--
+ *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
+ }
+ case (n|src|dst)&(ptrSize-1) != 0:
+ // byte copy forward
+ for i := uintptr(0); i < n; i++ {
+ *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i))
+ }
+ default:
+ // word copy forward
+ for i := uintptr(0); i < n; i += ptrSize {
+ *(*uintptr)(addr(dst + i)) = *(*uintptr)(addr(src + i))
+ }
+ }
+}
+
+// Value is the common interface to reflection values.
+// The implementations of Value (e.g., ArrayValue, StructValue)
+// have additional type-specific methods.
+type Value interface {
+ // Type returns the value's type.
+ Type() Type
+
+ // Interface returns the value as an interface{}.
+ Interface() interface{}
+
+ // CanSet returns whether the value can be changed.
+ // Values obtained by the use of non-exported struct fields
+ // can be used in Get but not Set.
+ // If CanSet() returns false, calling the type-specific Set
+ // will cause a crash.
+ CanSet() bool
+
+ // SetValue assigns v to the value; v must have the same type as the value.
+ SetValue(v Value)
+
+ // Addr returns a pointer to the underlying data.
+ // It is for advanced clients that also
+ // import the "unsafe" package.
+ Addr() uintptr
+
+ // Method returns a FuncValue corresponding to the value's i'th method.
+ // The arguments to a Call on the returned FuncValue
+ // should not include a receiver; the FuncValue will use
+ // the value as the receiver.
+ Method(i int) *FuncValue
+
+ getAddr() addr
+}
+
+// value is the common implementation of most values.
+// It is embedded in other, public struct types, but always
+// with a unique tag like "uint" or "float" so that the client cannot
+// convert from, say, *UintValue to *FloatValue.
+type value struct {
+ typ Type
+ addr addr
+ canSet bool
+}
+
+func (v *value) Type() Type { return v.typ }
+
+func (v *value) Addr() uintptr { return uintptr(v.addr) }
+
+func (v *value) getAddr() addr { return v.addr }
+
+func (v *value) Interface() interface{} {
+ if typ, ok := v.typ.(*InterfaceType); ok {
+ // There are two different representations of interface values,
+ // one if the interface type has methods and one if it doesn't.
+ // These two representations require different expressions
+ // to extract correctly.
+ if typ.NumMethod() == 0 {
+ // Extract as interface value without methods.
+ return *(*interface{})(v.addr)
+ }
+ // Extract from v.addr as interface value with methods.
+ return *(*interface {
+ m()
+ })(v.addr)
+ }
+ return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr))
+}
+
+func (v *value) CanSet() bool { return v.canSet }
+
+/*
+ * basic types
+ */
+
+// BoolValue represents a bool value.
+type BoolValue struct {
+ value "bool"
+}
+
+// Get returns the underlying bool value.
+func (v *BoolValue) Get() bool { return *(*bool)(v.addr) }
+
+// Set sets v to the value x.
+func (v *BoolValue) Set(x bool) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ *(*bool)(v.addr) = x
+}
+
+// Set sets v to the value x.
+func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) }
+
+// FloatValue represents a float value.
+type FloatValue struct {
+ value "float"
+}
+
+// Get returns the underlying int value.
+func (v *FloatValue) Get() float64 {
+ switch v.typ.Kind() {
+ case Float32:
+ return float64(*(*float32)(v.addr))
+ case Float64:
+ return *(*float64)(v.addr)
+ }
+ panic("reflect: invalid float kind")
+}
+
+// Set sets v to the value x.
+func (v *FloatValue) Set(x float64) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ switch v.typ.Kind() {
+ default:
+ panic("reflect: invalid float kind")
+ case Float32:
+ *(*float32)(v.addr) = float32(x)
+ case Float64:
+ *(*float64)(v.addr) = x
+ }
+}
+
+// Overflow returns true if x cannot be represented by the type of v.
+func (v *FloatValue) Overflow(x float64) bool {
+ if v.typ.Size() == 8 {
+ return false
+ }
+ if x < 0 {
+ x = -x
+ }
+ return math.MaxFloat32 < x && x <= math.MaxFloat64
+}
+
+// Set sets v to the value x.
+func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) }
+
+// ComplexValue represents a complex value.
+type ComplexValue struct {
+ value "complex"
+}
+
+// Get returns the underlying complex value.
+func (v *ComplexValue) Get() complex128 {
+ switch v.typ.Kind() {
+ case Complex64:
+ return complex128(*(*complex64)(v.addr))
+ case Complex128:
+ return *(*complex128)(v.addr)
+ }
+ panic("reflect: invalid complex kind")
+}
+
+// Set sets v to the value x.
+func (v *ComplexValue) Set(x complex128) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ switch v.typ.Kind() {
+ default:
+ panic("reflect: invalid complex kind")
+ case Complex64:
+ *(*complex64)(v.addr) = complex64(x)
+ case Complex128:
+ *(*complex128)(v.addr) = x
+ }
+}
+
+// Set sets v to the value x.
+func (v *ComplexValue) SetValue(x Value) { v.Set(x.(*ComplexValue).Get()) }
+
+// IntValue represents an int value.
+type IntValue struct {
+ value "int"
+}
+
+// Get returns the underlying int value.
+func (v *IntValue) Get() int64 {
+ switch v.typ.Kind() {
+ case Int:
+ return int64(*(*int)(v.addr))
+ case Int8:
+ return int64(*(*int8)(v.addr))
+ case Int16:
+ return int64(*(*int16)(v.addr))
+ case Int32:
+ return int64(*(*int32)(v.addr))
+ case Int64:
+ return *(*int64)(v.addr)
+ }
+ panic("reflect: invalid int kind")
+}
+
+// Set sets v to the value x.
+func (v *IntValue) Set(x int64) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ switch v.typ.Kind() {
+ default:
+ panic("reflect: invalid int kind")
+ case Int:
+ *(*int)(v.addr) = int(x)
+ case Int8:
+ *(*int8)(v.addr) = int8(x)
+ case Int16:
+ *(*int16)(v.addr) = int16(x)
+ case Int32:
+ *(*int32)(v.addr) = int32(x)
+ case Int64:
+ *(*int64)(v.addr) = x
+ }
+}
+
+// Set sets v to the value x.
+func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) }
+
+// Overflow returns true if x cannot be represented by the type of v.
+func (v *IntValue) Overflow(x int64) bool {
+ bitSize := uint(v.typ.Bits())
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
+}
+
+// StringHeader is the runtime representation of a string.
+type StringHeader struct {
+ Data uintptr
+ Len int
+}
+
+// StringValue represents a string value.
+type StringValue struct {
+ value "string"
+}
+
+// Get returns the underlying string value.
+func (v *StringValue) Get() string { return *(*string)(v.addr) }
+
+// Set sets v to the value x.
+func (v *StringValue) Set(x string) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ *(*string)(v.addr) = x
+}
+
+// Set sets v to the value x.
+func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) }
+
+// UintValue represents a uint value.
+type UintValue struct {
+ value "uint"
+}
+
+// Get returns the underlying uuint value.
+func (v *UintValue) Get() uint64 {
+ switch v.typ.Kind() {
+ case Uint:
+ return uint64(*(*uint)(v.addr))
+ case Uint8:
+ return uint64(*(*uint8)(v.addr))
+ case Uint16:
+ return uint64(*(*uint16)(v.addr))
+ case Uint32:
+ return uint64(*(*uint32)(v.addr))
+ case Uint64:
+ return *(*uint64)(v.addr)
+ case Uintptr:
+ return uint64(*(*uintptr)(v.addr))
+ }
+ panic("reflect: invalid uint kind")
+}
+
+// Set sets v to the value x.
+func (v *UintValue) Set(x uint64) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ switch v.typ.Kind() {
+ default:
+ panic("reflect: invalid uint kind")
+ case Uint:
+ *(*uint)(v.addr) = uint(x)
+ case Uint8:
+ *(*uint8)(v.addr) = uint8(x)
+ case Uint16:
+ *(*uint16)(v.addr) = uint16(x)
+ case Uint32:
+ *(*uint32)(v.addr) = uint32(x)
+ case Uint64:
+ *(*uint64)(v.addr) = x
+ case Uintptr:
+ *(*uintptr)(v.addr) = uintptr(x)
+ }
+}
+
+// Overflow returns true if x cannot be represented by the type of v.
+func (v *UintValue) Overflow(x uint64) bool {
+ bitSize := uint(v.typ.Bits())
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
+}
+
+// Set sets v to the value x.
+func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) }
+
+// UnsafePointerValue represents an unsafe.Pointer value.
+type UnsafePointerValue struct {
+ value "unsafe.Pointer"
+}
+
+// Get returns the underlying uintptr value.
+// Get returns uintptr, not unsafe.Pointer, so that
+// programs that do not import "unsafe" cannot
+// obtain a value of unsafe.Pointer type from "reflect".
+func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) }
+
+// Set sets v to the value x.
+func (v *UnsafePointerValue) Set(x unsafe.Pointer) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ *(*unsafe.Pointer)(v.addr) = x
+}
+
+// Set sets v to the value x.
+func (v *UnsafePointerValue) SetValue(x Value) {
+ v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get()))
+}
+
+func typesMustMatch(t1, t2 Type) {
+ if t1 != t2 {
+ panic("type mismatch: " + t1.String() + " != " + t2.String())
+ }
+}
+
+/*
+ * array
+ */
+
+// ArrayOrSliceValue is the common interface
+// implemented by both ArrayValue and SliceValue.
+type ArrayOrSliceValue interface {
+ Value
+ Len() int
+ Cap() int
+ Elem(i int) Value
+ addr() addr
+}
+
+// grow grows the slice s so that it can hold extra more values, allocating
+// more capacity if needed. It also returns the old and new slice lengths.
+func grow(s *SliceValue, extra int) (*SliceValue, int, int) {
+ i0 := s.Len()
+ i1 := i0 + extra
+ if i1 < i0 {
+ panic("append: slice overflow")
+ }
+ m := s.Cap()
+ if i1 <= m {
+ return s.Slice(0, i1), i0, i1
+ }
+ if m == 0 {
+ m = extra
+ } else {
+ for m < i1 {
+ if i0 < 1024 {
+ m += m
+ } else {
+ m += m / 4
+ }
+ }
+ }
+ t := MakeSlice(s.Type().(*SliceType), i1, m)
+ Copy(t, s)
+ return t, i0, i1
+}
+
+// Append appends the values x to a slice s and returns the resulting slice.
+// Each x must have the same type as s' element type.
+func Append(s *SliceValue, x ...Value) *SliceValue {
+ s, i0, i1 := grow(s, len(x))
+ for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
+ s.Elem(i).SetValue(x[j])
+ }
+ return s
+}
+
+// AppendSlice appends a slice t to a slice s and returns the resulting slice.
+// The slices s and t must have the same element type.
+func AppendSlice(s, t *SliceValue) *SliceValue {
+ s, i0, i1 := grow(s, t.Len())
+ Copy(s.Slice(i0, i1), t)
+ return s
+}
+
+// Copy copies the contents of src into dst until either
+// dst has been filled or src has been exhausted.
+// It returns the number of elements copied.
+// The arrays dst and src must have the same element type.
+func Copy(dst, src ArrayOrSliceValue) int {
+ // TODO: This will have to move into the runtime
+ // once the real gc goes in.
+ de := dst.Type().(ArrayOrSliceType).Elem()
+ se := src.Type().(ArrayOrSliceType).Elem()
+ typesMustMatch(de, se)
+ n := dst.Len()
+ if xn := src.Len(); n > xn {
+ n = xn
+ }
+ memmove(dst.addr(), src.addr(), uintptr(n)*de.Size())
+ return n
+}
+
+// An ArrayValue represents an array.
+type ArrayValue struct {
+ value "array"
+}
+
+// Len returns the length of the array.
+func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() }
+
+// Cap returns the capacity of the array (equal to Len()).
+func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() }
+
+// addr returns the base address of the data in the array.
+func (v *ArrayValue) addr() addr { return v.value.addr }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *ArrayValue) Set(x *ArrayValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ Copy(v, x)
+}
+
+// Set sets v to the value x.
+func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) }
+
+// Elem returns the i'th element of v.
+func (v *ArrayValue) Elem(i int) Value {
+ typ := v.typ.(*ArrayType).Elem()
+ n := v.Len()
+ if i < 0 || i >= n {
+ panic("array index out of bounds")
+ }
+ p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
+ return newValue(typ, p, v.canSet)
+}
+
+/*
+ * slice
+ */
+
+// runtime representation of slice
+type SliceHeader struct {
+ Data uintptr
+ Len int
+ Cap int
+}
+
+// A SliceValue represents a slice.
+type SliceValue struct {
+ value "slice"
+}
+
+func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) }
+
+// IsNil returns whether v is a nil slice.
+func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 }
+
+// Len returns the length of the slice.
+func (v *SliceValue) Len() int { return int(v.slice().Len) }
+
+// Cap returns the capacity of the slice.
+func (v *SliceValue) Cap() int { return int(v.slice().Cap) }
+
+// addr returns the base address of the data in the slice.
+func (v *SliceValue) addr() addr { return addr(v.slice().Data) }
+
+// SetLen changes the length of v.
+// The new length n must be between 0 and the capacity, inclusive.
+func (v *SliceValue) SetLen(n int) {
+ s := v.slice()
+ if n < 0 || n > int(s.Cap) {
+ panic("reflect: slice length out of range in SetLen")
+ }
+ s.Len = n
+}
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *SliceValue) Set(x *SliceValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ *v.slice() = *x.slice()
+}
+
+// Set sets v to the value x.
+func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) }
+
+// Get returns the uintptr address of the v.Cap()'th element. This gives
+// the same result for all slices of the same array.
+// It is mainly useful for printing.
+func (v *SliceValue) Get() uintptr {
+ typ := v.typ.(*SliceType)
+ return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size()
+}
+
+// Slice returns a sub-slice of the slice v.
+func (v *SliceValue) Slice(beg, end int) *SliceValue {
+ cap := v.Cap()
+ if beg < 0 || end < beg || end > cap {
+ panic("slice index out of bounds")
+ }
+ typ := v.typ.(*SliceType)
+ s := new(SliceHeader)
+ s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size()
+ s.Len = end - beg
+ s.Cap = cap - beg
+ return newValue(typ, addr(s), v.canSet).(*SliceValue)
+}
+
+// Elem returns the i'th element of v.
+func (v *SliceValue) Elem(i int) Value {
+ typ := v.typ.(*SliceType).Elem()
+ n := v.Len()
+ if i < 0 || i >= n {
+ panic("reflect: slice index out of range")
+ }
+ p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
+ return newValue(typ, p, v.canSet)
+}
+
+// MakeSlice creates a new zero-initialized slice value
+// for the specified slice type, length, and capacity.
+func MakeSlice(typ *SliceType, len, cap int) *SliceValue {
+ s := &SliceHeader{
+ Data: uintptr(unsafe.NewArray(typ.Elem(), cap)),
+ Len: len,
+ Cap: cap,
+ }
+ return newValue(typ, addr(s), true).(*SliceValue)
+}
+
+/*
+ * chan
+ */
+
+// A ChanValue represents a chan.
+type ChanValue struct {
+ value "chan"
+}
+
+// IsNil returns whether v is a nil channel.
+func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *ChanValue) Set(x *ChanValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
+}
+
+// Set sets v to the value x.
+func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) }
+
+// Get returns the uintptr value of v.
+// It is mainly useful for printing.
+func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) }
+
+// implemented in ../pkg/runtime/reflect.cgo
+func makechan(typ *runtime.ChanType, size uint32) (ch *byte)
+func chansend(ch, val *byte, pres *bool)
+func chanrecv(ch, val *byte, pres *bool)
+func chanclosed(ch *byte) bool
+func chanclose(ch *byte)
+func chanlen(ch *byte) int32
+func chancap(ch *byte) int32
+
+// Closed returns the result of closed(c) on the underlying channel.
+func (v *ChanValue) Closed() bool {
+ ch := *(**byte)(v.addr)
+ return chanclosed(ch)
+}
+
+// Close closes the channel.
+func (v *ChanValue) Close() {
+ ch := *(**byte)(v.addr)
+ chanclose(ch)
+}
+
+func (v *ChanValue) Len() int {
+ ch := *(**byte)(v.addr)
+ return int(chanlen(ch))
+}
+
+func (v *ChanValue) Cap() int {
+ ch := *(**byte)(v.addr)
+ return int(chancap(ch))
+}
+
+// internal send; non-blocking if b != nil
+func (v *ChanValue) send(x Value, b *bool) {
+ t := v.Type().(*ChanType)
+ if t.Dir()&SendDir == 0 {
+ panic("send on recv-only channel")
+ }
+ typesMustMatch(t.Elem(), x.Type())
+ ch := *(**byte)(v.addr)
+ chansend(ch, (*byte)(x.getAddr()), b)
+}
+
+// internal recv; non-blocking if b != nil
+func (v *ChanValue) recv(b *bool) Value {
+ t := v.Type().(*ChanType)
+ if t.Dir()&RecvDir == 0 {
+ panic("recv on send-only channel")
+ }
+ ch := *(**byte)(v.addr)
+ x := MakeZero(t.Elem())
+ chanrecv(ch, (*byte)(x.getAddr()), b)
+ return x
+}
+
+// Send sends x on the channel v.
+func (v *ChanValue) Send(x Value) { v.send(x, nil) }
+
+// Recv receives and returns a value from the channel v.
+func (v *ChanValue) Recv() Value { return v.recv(nil) }
+
+// TrySend attempts to sends x on the channel v but will not block.
+// It returns true if the value was sent, false otherwise.
+func (v *ChanValue) TrySend(x Value) bool {
+ var ok bool
+ v.send(x, &ok)
+ return ok
+}
+
+// TryRecv attempts to receive a value from the channel v but will not block.
+// It returns the value if one is received, nil otherwise.
+func (v *ChanValue) TryRecv() Value {
+ var ok bool
+ x := v.recv(&ok)
+ if !ok {
+ return nil
+ }
+ return x
+}
+
+// MakeChan creates a new channel with the specified type and buffer size.
+func MakeChan(typ *ChanType, buffer int) *ChanValue {
+ if buffer < 0 {
+ panic("MakeChan: negative buffer size")
+ }
+ if typ.Dir() != BothDir {
+ panic("MakeChan: unidirectional channel type")
+ }
+ v := MakeZero(typ).(*ChanValue)
+ *(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer))
+ return v
+}
+
+/*
+ * func
+ */
+
+// A FuncValue represents a function value.
+type FuncValue struct {
+ value "func"
+ first *value
+ isInterface bool
+}
+
+// IsNil returns whether v is a nil function.
+func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+
+// Get returns the uintptr value of v.
+// It is mainly useful for printing.
+func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *FuncValue) Set(x *FuncValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
+}
+
+// Set sets v to the value x.
+func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) }
+
+// Method returns a FuncValue corresponding to v's i'th method.
+// The arguments to a Call on the returned FuncValue
+// should not include a receiver; the FuncValue will use v
+// as the receiver.
+func (v *value) Method(i int) *FuncValue {
+ t := v.Type().uncommon()
+ if t == nil || i < 0 || i >= len(t.methods) {
+ return nil
+ }
+ p := &t.methods[i]
+ fn := p.tfn
+ fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), true}, first: v, isInterface: false}
+ return fv
+}
+
+// implemented in ../pkg/runtime/*/asm.s
+func call(typ *FuncType, fnaddr *byte, isInterface bool, params *addr, results *addr)
+
+// Call calls the function fv with input parameters in.
+// It returns the function's output parameters as Values.
+func (fv *FuncValue) Call(in []Value) []Value {
+ t := fv.Type().(*FuncType)
+ nin := len(in)
+ if fv.first != nil && !fv.isInterface {
+ nin++
+ }
+ if nin != t.NumIn() {
+ panic("FuncValue: wrong argument count")
+ }
+ if fv.first != nil && fv.isInterface {
+ nin++
+ }
+ nout := t.NumOut()
+
+ params := make([]addr, nin)
+ delta := 0
+ off := 0
+ if v := fv.first; v != nil {
+ // Hard-wired first argument.
+ if fv.isInterface {
+ // v is a single uninterpreted word
+ params[0] = v.getAddr()
+ } else {
+ // v is a real value
+ tv := v.Type()
+
+ // This is a method, so we need to always pass
+ // a pointer.
+ vAddr := v.getAddr()
+ if ptv, ok := tv.(*PtrType); ok {
+ typesMustMatch(t.In(0), tv)
+ } else {
+ p := addr(new(addr))
+ *(*addr)(p) = vAddr
+ vAddr = p
+ typesMustMatch(t.In(0).(*PtrType).Elem(), tv)
+ }
+
+ params[0] = vAddr
+ delta = 1
+ }
+ off = 1
+ }
+ for i, v := range in {
+ tv := v.Type()
+ tf := t.In(i + delta)
+
+ // If this is really a method, and we are explicitly
+ // passing the object, then we need to pass the address
+ // of the object instead. Unfortunately, we don't
+ // have any way to know that this is a method, so we just
+ // check the type. FIXME: This is ugly.
+ vAddr := v.getAddr()
+ if i == 0 && tf != tv {
+ if ptf, ok := tf.(*PtrType); ok {
+ p := addr(new(addr))
+ *(*addr)(p) = vAddr
+ vAddr = p
+ tf = ptf.Elem()
+ }
+ }
+
+ typesMustMatch(tf, tv)
+ params[i+off] = vAddr
+ }
+
+ ret := make([]Value, nout)
+ results := make([]addr, nout)
+ for i := 0; i < nout; i++ {
+ tv := t.Out(i)
+ v := MakeZero(tv)
+ results[i] = v.getAddr()
+ ret[i] = v
+ }
+
+ call(t, *(**byte)(fv.addr), fv.isInterface, &params[0], &results[0])
+
+ return ret
+}
+
+/*
+ * interface
+ */
+
+// An InterfaceValue represents an interface value.
+type InterfaceValue struct {
+ value "interface"
+}
+
+// IsNil returns whether v is a nil interface value.
+func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil }
+
+// No single uinptr Get because v.Interface() is available.
+
+// Get returns the two words that represent an interface in the runtime.
+// Those words are useful only when playing unsafe games.
+func (v *InterfaceValue) Get() [2]uintptr {
+ return *(*[2]uintptr)(v.addr)
+}
+
+// Elem returns the concrete value stored in the interface value v.
+func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) }
+
+// ../runtime/reflect.cgo
+func setiface(typ *InterfaceType, x *interface{}, addr addr)
+
+// Set assigns x to v.
+func (v *InterfaceValue) Set(x Value) {
+ var i interface{}
+ if x != nil {
+ i = x.Interface()
+ }
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ // Two different representations; see comment in Get.
+ // Empty interface is easy.
+ t := v.typ.(*InterfaceType)
+ if t.NumMethod() == 0 {
+ *(*interface{})(v.addr) = i
+ return
+ }
+
+ // Non-empty interface requires a runtime check.
+ setiface(t, &i, v.addr)
+}
+
+// Set sets v to the value x.
+func (v *InterfaceValue) SetValue(x Value) { v.Set(x) }
+
+// Method returns a FuncValue corresponding to v's i'th method.
+// The arguments to a Call on the returned FuncValue
+// should not include a receiver; the FuncValue will use v
+// as the receiver.
+func (v *InterfaceValue) Method(i int) *FuncValue {
+ t := v.Type().(*InterfaceType)
+ if t == nil || i < 0 || i >= len(t.methods) {
+ return nil
+ }
+ p := &t.methods[i]
+
+ // Interface is two words: itable, data.
+ tab := *(**[10000]addr)(v.addr)
+ data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), true}
+
+ fn := tab[i+1]
+ fv := &FuncValue{value: value{runtimeToType(p.typ), addr(&fn), true}, first: data, isInterface: true}
+ return fv
+}
+
+/*
+ * map
+ */
+
+// A MapValue represents a map value.
+type MapValue struct {
+ value "map"
+}
+
+// IsNil returns whether v is a nil map value.
+func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *MapValue) Set(x *MapValue) {
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ if x == nil {
+ *(**uintptr)(v.addr) = nil
+ return
+ }
+ typesMustMatch(v.typ, x.typ)
+ *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
+}
+
+// Set sets v to the value x.
+func (v *MapValue) SetValue(x Value) {
+ if x == nil {
+ v.Set(nil)
+ return
+ }
+ v.Set(x.(*MapValue))
+}
+
+// Get returns the uintptr value of v.
+// It is mainly useful for printing.
+func (v *MapValue) Get() uintptr { return *(*uintptr)(v.addr) }
+
+// implemented in ../pkg/runtime/reflect.cgo
+func mapaccess(m, key, val *byte) bool
+func mapassign(m, key, val *byte)
+func maplen(m *byte) int32
+func mapiterinit(m *byte) *byte
+func mapiternext(it *byte)
+func mapiterkey(it *byte, key *byte) bool
+func makemap(t *runtime.MapType) *byte
+
+// Elem returns the value associated with key in the map v.
+// It returns nil if key is not found in the map.
+func (v *MapValue) Elem(key Value) Value {
+ t := v.Type().(*MapType)
+ typesMustMatch(t.Key(), key.Type())
+ m := *(**byte)(v.addr)
+ if m == nil {
+ return nil
+ }
+ newval := MakeZero(t.Elem())
+ if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) {
+ return nil
+ }
+ return newval
+}
+
+// SetElem sets the value associated with key in the map v to val.
+// If val is nil, Put deletes the key from map.
+func (v *MapValue) SetElem(key, val Value) {
+ t := v.Type().(*MapType)
+ typesMustMatch(t.Key(), key.Type())
+ var vaddr *byte
+ if val != nil {
+ typesMustMatch(t.Elem(), val.Type())
+ vaddr = (*byte)(val.getAddr())
+ }
+ m := *(**byte)(v.addr)
+ mapassign(m, (*byte)(key.getAddr()), vaddr)
+}
+
+// Len returns the number of keys in the map v.
+func (v *MapValue) Len() int {
+ m := *(**byte)(v.addr)
+ if m == nil {
+ return 0
+ }
+ return int(maplen(m))
+}
+
+// Keys returns a slice containing all the keys present in the map,
+// in unspecified order.
+func (v *MapValue) Keys() []Value {
+ tk := v.Type().(*MapType).Key()
+ m := *(**byte)(v.addr)
+ mlen := int32(0)
+ if m != nil {
+ mlen = maplen(m)
+ }
+ it := mapiterinit(m)
+ a := make([]Value, mlen)
+ var i int
+ for i = 0; i < len(a); i++ {
+ k := MakeZero(tk)
+ if !mapiterkey(it, (*byte)(k.getAddr())) {
+ break
+ }
+ a[i] = k
+ mapiternext(it)
+ }
+ return a[0:i]
+}
+
+// MakeMap creates a new map of the specified type.
+func MakeMap(typ *MapType) *MapValue {
+ v := MakeZero(typ).(*MapValue)
+ *(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ)))
+ return v
+}
+
+/*
+ * ptr
+ */
+
+// A PtrValue represents a pointer.
+type PtrValue struct {
+ value "ptr"
+}
+
+// IsNil returns whether v is a nil pointer.
+func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+
+// Get returns the uintptr value of v.
+// It is mainly useful for printing.
+func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) }
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *PtrValue) Set(x *PtrValue) {
+ if x == nil {
+ *(**uintptr)(v.addr) = nil
+ return
+ }
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ // TODO: This will have to move into the runtime
+ // once the new gc goes in
+ *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
+}
+
+// Set sets v to the value x.
+func (v *PtrValue) SetValue(x Value) {
+ if x == nil {
+ v.Set(nil)
+ return
+ }
+ v.Set(x.(*PtrValue))
+}
+
+// PointTo changes v to point to x.
+// If x is a nil Value, PointTo sets v to nil.
+func (v *PtrValue) PointTo(x Value) {
+ if x == nil {
+ *(**uintptr)(v.addr) = nil
+ return
+ }
+ if !x.CanSet() {
+ panic("cannot set x; cannot point to x")
+ }
+ typesMustMatch(v.typ.(*PtrType).Elem(), x.Type())
+ // TODO: This will have to move into the runtime
+ // once the new gc goes in.
+ *(*uintptr)(v.addr) = x.Addr()
+}
+
+// Elem returns the value that v points to.
+// If v is a nil pointer, Elem returns a nil Value.
+func (v *PtrValue) Elem() Value {
+ if v.IsNil() {
+ return nil
+ }
+ return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), v.canSet)
+}
+
+// Indirect returns the value that v points to.
+// If v is a nil pointer, Indirect returns a nil Value.
+// If v is not a pointer, Indirect returns v.
+func Indirect(v Value) Value {
+ if pv, ok := v.(*PtrValue); ok {
+ return pv.Elem()
+ }
+ return v
+}
+
+/*
+ * struct
+ */
+
+// A StructValue represents a struct value.
+type StructValue struct {
+ value "struct"
+}
+
+// Set assigns x to v.
+// The new value x must have the same type as v.
+func (v *StructValue) Set(x *StructValue) {
+ // TODO: This will have to move into the runtime
+ // once the gc goes in.
+ if !v.canSet {
+ panic(cannotSet)
+ }
+ typesMustMatch(v.typ, x.typ)
+ memmove(v.addr, x.addr, v.typ.Size())
+}
+
+// Set sets v to the value x.
+func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) }
+
+// Field returns the i'th field of the struct.
+func (v *StructValue) Field(i int) Value {
+ t := v.typ.(*StructType)
+ if i < 0 || i >= t.NumField() {
+ return nil
+ }
+ f := t.Field(i)
+ return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), v.canSet && f.PkgPath == "")
+}
+
+// FieldByIndex returns the nested field corresponding to index.
+func (t *StructValue) FieldByIndex(index []int) (v Value) {
+ v = t
+ for i, x := range index {
+ if i > 0 {
+ if p, ok := v.(*PtrValue); ok {
+ v = p.Elem()
+ }
+ if s, ok := v.(*StructValue); ok {
+ t = s
+ } else {
+ v = nil
+ return
+ }
+ }
+ v = t.Field(x)
+ }
+ return
+}
+
+// FieldByName returns the struct field with the given name.
+// The result is nil if no field was found.
+func (t *StructValue) FieldByName(name string) Value {
+ if f, ok := t.Type().(*StructType).FieldByName(name); ok {
+ return t.FieldByIndex(f.Index)
+ }
+ return nil
+}
+
+// FieldByNameFunc returns the struct field with a name that satisfies the
+// match function.
+// The result is nil if no field was found.
+func (t *StructValue) FieldByNameFunc(match func(string) bool) Value {
+ if f, ok := t.Type().(*StructType).FieldByNameFunc(match); ok {
+ return t.FieldByIndex(f.Index)
+ }
+ return nil
+}
+
+// NumField returns the number of fields in the struct.
+func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() }
+
+/*
+ * constructors
+ */
+
+// NewValue returns a new Value initialized to the concrete value
+// stored in the interface i. NewValue(nil) returns nil.
+func NewValue(i interface{}) Value {
+ if i == nil {
+ return nil
+ }
+ t, a := unsafe.Reflect(i)
+ return newValue(canonicalize(toType(t)), addr(a), true)
+}
+
+func newValue(typ Type, addr addr, canSet bool) Value {
+ v := value{typ, addr, canSet}
+ switch typ.(type) {
+ case *ArrayType:
+ return &ArrayValue{v}
+ case *BoolType:
+ return &BoolValue{v}
+ case *ChanType:
+ return &ChanValue{v}
+ case *FloatType:
+ return &FloatValue{v}
+ case *FuncType:
+ return &FuncValue{value: v}
+ case *ComplexType:
+ return &ComplexValue{v}
+ case *IntType:
+ return &IntValue{v}
+ case *InterfaceType:
+ return &InterfaceValue{v}
+ case *MapType:
+ return &MapValue{v}
+ case *PtrType:
+ return &PtrValue{v}
+ case *SliceType:
+ return &SliceValue{v}
+ case *StringType:
+ return &StringValue{v}
+ case *StructType:
+ return &StructValue{v}
+ case *UintType:
+ return &UintValue{v}
+ case *UnsafePointerType:
+ return &UnsafePointerValue{v}
+ }
+ panic("newValue" + typ.String())
+}
+
+// MakeZero returns a zero Value for the specified Type.
+func MakeZero(typ Type) Value {
+ if typ == nil {
+ return nil
+ }
+ return newValue(typ, addr(unsafe.New(typ)), true)
+}