summaryrefslogtreecommitdiff
path: root/libgo/runtime/mheap.c
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/runtime/mheap.c')
-rw-r--r--libgo/runtime/mheap.c350
1 files changed, 350 insertions, 0 deletions
diff --git a/libgo/runtime/mheap.c b/libgo/runtime/mheap.c
new file mode 100644
index 000000000..52c6d8c1b
--- /dev/null
+++ b/libgo/runtime/mheap.c
@@ -0,0 +1,350 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Page heap.
+//
+// See malloc.h for overview.
+//
+// When a MSpan is in the heap free list, state == MSpanFree
+// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
+//
+// When a MSpan is allocated, state == MSpanInUse
+// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
+
+#include "runtime.h"
+#include "malloc.h"
+
+static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32);
+static bool MHeap_Grow(MHeap*, uintptr);
+static void MHeap_FreeLocked(MHeap*, MSpan*);
+static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
+static MSpan *BestFit(MSpan*, uintptr, MSpan*);
+
+static void
+RecordSpan(void *vh, byte *p)
+{
+ MHeap *h;
+ MSpan *s;
+
+ h = vh;
+ s = (MSpan*)p;
+ s->allnext = h->allspans;
+ h->allspans = s;
+}
+
+// Initialize the heap; fetch memory using alloc.
+void
+runtime_MHeap_Init(MHeap *h, void *(*alloc)(uintptr))
+{
+ uint32 i;
+
+ runtime_initlock(h);
+ runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), alloc, RecordSpan, h);
+ runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), alloc, nil, nil);
+ runtime_MHeapMap_Init(&h->map, alloc);
+ // h->mapcache needs no init
+ for(i=0; i<nelem(h->free); i++)
+ runtime_MSpanList_Init(&h->free[i]);
+ runtime_MSpanList_Init(&h->large);
+ for(i=0; i<nelem(h->central); i++)
+ runtime_MCentral_Init(&h->central[i], i);
+}
+
+// Allocate a new span of npage pages from the heap
+// and record its size class in the HeapMap and HeapMapCache.
+MSpan*
+runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct)
+{
+ MSpan *s;
+
+ runtime_lock(h);
+ mstats.heap_alloc += m->mcache->local_alloc;
+ m->mcache->local_alloc = 0;
+ mstats.heap_objects += m->mcache->local_objects;
+ m->mcache->local_objects = 0;
+ s = MHeap_AllocLocked(h, npage, sizeclass);
+ if(s != nil) {
+ mstats.heap_inuse += npage<<PageShift;
+ if(acct) {
+ mstats.heap_objects++;
+ mstats.heap_alloc += npage<<PageShift;
+ }
+ }
+ runtime_unlock(h);
+ return s;
+}
+
+static MSpan*
+MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass)
+{
+ uintptr n;
+ MSpan *s, *t;
+
+ // Try in fixed-size lists up to max.
+ for(n=npage; n < nelem(h->free); n++) {
+ if(!runtime_MSpanList_IsEmpty(&h->free[n])) {
+ s = h->free[n].next;
+ goto HaveSpan;
+ }
+ }
+
+ // Best fit in list of large spans.
+ if((s = MHeap_AllocLarge(h, npage)) == nil) {
+ if(!MHeap_Grow(h, npage))
+ return nil;
+ if((s = MHeap_AllocLarge(h, npage)) == nil)
+ return nil;
+ }
+
+HaveSpan:
+ // Mark span in use.
+ if(s->state != MSpanFree)
+ runtime_throw("MHeap_AllocLocked - MSpan not free");
+ if(s->npages < npage)
+ runtime_throw("MHeap_AllocLocked - bad npages");
+ runtime_MSpanList_Remove(s);
+ s->state = MSpanInUse;
+
+ if(s->npages > npage) {
+ // Trim extra and put it back in the heap.
+ t = runtime_FixAlloc_Alloc(&h->spanalloc);
+ mstats.mspan_inuse = h->spanalloc.inuse;
+ mstats.mspan_sys = h->spanalloc.sys;
+ runtime_MSpan_Init(t, s->start + npage, s->npages - npage);
+ s->npages = npage;
+ runtime_MHeapMap_Set(&h->map, t->start - 1, s);
+ runtime_MHeapMap_Set(&h->map, t->start, t);
+ runtime_MHeapMap_Set(&h->map, t->start + t->npages - 1, t);
+ t->state = MSpanInUse;
+ MHeap_FreeLocked(h, t);
+ }
+
+ // Record span info, because gc needs to be
+ // able to map interior pointer to containing span.
+ s->sizeclass = sizeclass;
+ for(n=0; n<npage; n++)
+ runtime_MHeapMap_Set(&h->map, s->start+n, s);
+ return s;
+}
+
+// Allocate a span of exactly npage pages from the list of large spans.
+static MSpan*
+MHeap_AllocLarge(MHeap *h, uintptr npage)
+{
+ return BestFit(&h->large, npage, nil);
+}
+
+// Search list for smallest span with >= npage pages.
+// If there are multiple smallest spans, take the one
+// with the earliest starting address.
+static MSpan*
+BestFit(MSpan *list, uintptr npage, MSpan *best)
+{
+ MSpan *s;
+
+ for(s=list->next; s != list; s=s->next) {
+ if(s->npages < npage)
+ continue;
+ if(best == nil
+ || s->npages < best->npages
+ || (s->npages == best->npages && s->start < best->start))
+ best = s;
+ }
+ return best;
+}
+
+// Try to add at least npage pages of memory to the heap,
+// returning whether it worked.
+static bool
+MHeap_Grow(MHeap *h, uintptr npage)
+{
+ uintptr ask;
+ void *v;
+ MSpan *s;
+
+ // Ask for a big chunk, to reduce the number of mappings
+ // the operating system needs to track; also amortizes
+ // the overhead of an operating system mapping.
+ // Allocate a multiple of 64kB (16 pages).
+ npage = (npage+15)&~15;
+ ask = npage<<PageShift;
+ if(ask < HeapAllocChunk)
+ ask = HeapAllocChunk;
+
+ v = runtime_SysAlloc(ask);
+ if(v == nil) {
+ if(ask > (npage<<PageShift)) {
+ ask = npage<<PageShift;
+ v = runtime_SysAlloc(ask);
+ }
+ if(v == nil)
+ return false;
+ }
+ mstats.heap_sys += ask;
+
+ if((byte*)v < h->min || h->min == nil)
+ h->min = v;
+ if((byte*)v+ask > h->max)
+ h->max = (byte*)v+ask;
+
+ // NOTE(rsc): In tcmalloc, if we've accumulated enough
+ // system allocations, the heap map gets entirely allocated
+ // in 32-bit mode. (In 64-bit mode that's not practical.)
+ if(!runtime_MHeapMap_Preallocate(&h->map, ((uintptr)v>>PageShift) - 1, (ask>>PageShift) + 2)) {
+ runtime_SysFree(v, ask);
+ return false;
+ }
+
+ // Create a fake "in use" span and free it, so that the
+ // right coalescing happens.
+ s = runtime_FixAlloc_Alloc(&h->spanalloc);
+ mstats.mspan_inuse = h->spanalloc.inuse;
+ mstats.mspan_sys = h->spanalloc.sys;
+ runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
+ runtime_MHeapMap_Set(&h->map, s->start, s);
+ runtime_MHeapMap_Set(&h->map, s->start + s->npages - 1, s);
+ s->state = MSpanInUse;
+ MHeap_FreeLocked(h, s);
+ return true;
+}
+
+// Look up the span at the given page number.
+// Page number is guaranteed to be in map
+// and is guaranteed to be start or end of span.
+MSpan*
+runtime_MHeap_Lookup(MHeap *h, PageID p)
+{
+ return runtime_MHeapMap_Get(&h->map, p);
+}
+
+// Look up the span at the given page number.
+// Page number is *not* guaranteed to be in map
+// and may be anywhere in the span.
+// Map entries for the middle of a span are only
+// valid for allocated spans. Free spans may have
+// other garbage in their middles, so we have to
+// check for that.
+MSpan*
+runtime_MHeap_LookupMaybe(MHeap *h, PageID p)
+{
+ MSpan *s;
+
+ s = runtime_MHeapMap_GetMaybe(&h->map, p);
+ if(s == nil || p < s->start || p - s->start >= s->npages)
+ return nil;
+ if(s->state != MSpanInUse)
+ return nil;
+ return s;
+}
+
+// Free the span back into the heap.
+void
+runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct)
+{
+ runtime_lock(h);
+ mstats.heap_alloc += m->mcache->local_alloc;
+ m->mcache->local_alloc = 0;
+ mstats.heap_objects += m->mcache->local_objects;
+ m->mcache->local_objects = 0;
+ mstats.heap_inuse -= s->npages<<PageShift;
+ if(acct) {
+ mstats.heap_alloc -= s->npages<<PageShift;
+ mstats.heap_objects--;
+ }
+ MHeap_FreeLocked(h, s);
+ runtime_unlock(h);
+}
+
+static void
+MHeap_FreeLocked(MHeap *h, MSpan *s)
+{
+ MSpan *t;
+
+ if(s->state != MSpanInUse || s->ref != 0) {
+ // runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d\n", s, s->start<<PageShift, s->state, s->ref);
+ runtime_throw("MHeap_FreeLocked - invalid free");
+ }
+ s->state = MSpanFree;
+ runtime_MSpanList_Remove(s);
+
+ // Coalesce with earlier, later spans.
+ if((t = runtime_MHeapMap_Get(&h->map, s->start - 1)) != nil && t->state != MSpanInUse) {
+ s->start = t->start;
+ s->npages += t->npages;
+ runtime_MHeapMap_Set(&h->map, s->start, s);
+ runtime_MSpanList_Remove(t);
+ t->state = MSpanDead;
+ runtime_FixAlloc_Free(&h->spanalloc, t);
+ mstats.mspan_inuse = h->spanalloc.inuse;
+ mstats.mspan_sys = h->spanalloc.sys;
+ }
+ if((t = runtime_MHeapMap_Get(&h->map, s->start + s->npages)) != nil && t->state != MSpanInUse) {
+ s->npages += t->npages;
+ runtime_MHeapMap_Set(&h->map, s->start + s->npages - 1, s);
+ runtime_MSpanList_Remove(t);
+ t->state = MSpanDead;
+ runtime_FixAlloc_Free(&h->spanalloc, t);
+ mstats.mspan_inuse = h->spanalloc.inuse;
+ mstats.mspan_sys = h->spanalloc.sys;
+ }
+
+ // Insert s into appropriate list.
+ if(s->npages < nelem(h->free))
+ runtime_MSpanList_Insert(&h->free[s->npages], s);
+ else
+ runtime_MSpanList_Insert(&h->large, s);
+
+ // TODO(rsc): IncrementalScavenge() to return memory to OS.
+}
+
+// Initialize a new span with the given start and npages.
+void
+runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages)
+{
+ span->next = nil;
+ span->prev = nil;
+ span->start = start;
+ span->npages = npages;
+ span->freelist = nil;
+ span->ref = 0;
+ span->sizeclass = 0;
+ span->state = 0;
+}
+
+// Initialize an empty doubly-linked list.
+void
+runtime_MSpanList_Init(MSpan *list)
+{
+ list->state = MSpanListHead;
+ list->next = list;
+ list->prev = list;
+}
+
+void
+runtime_MSpanList_Remove(MSpan *span)
+{
+ if(span->prev == nil && span->next == nil)
+ return;
+ span->prev->next = span->next;
+ span->next->prev = span->prev;
+ span->prev = nil;
+ span->next = nil;
+}
+
+bool
+runtime_MSpanList_IsEmpty(MSpan *list)
+{
+ return list->next == list;
+}
+
+void
+runtime_MSpanList_Insert(MSpan *list, MSpan *span)
+{
+ if(span->next != nil || span->prev != nil)
+ runtime_throw("MSpanList_Insert");
+ span->next = list->next;
+ span->prev = list;
+ span->next->prev = span;
+ span->prev->next = span;
+}