diff options
Diffstat (limited to 'libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java')
-rw-r--r-- | libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java | 290 |
1 files changed, 290 insertions, 0 deletions
diff --git a/libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java b/libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java new file mode 100644 index 000000000..016c1a7a5 --- /dev/null +++ b/libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java @@ -0,0 +1,290 @@ +/* + * Written by Doug Lea with assistance from members of JCP JSR-166 + * Expert Group and released to the public domain, as explained at + * http://creativecommons.org/licenses/publicdomain + */ + +package java.util.concurrent; +import java.util.concurrent.locks.*; +import java.util.concurrent.atomic.*; + +/** + * A synchronization aid that allows one or more threads to wait until + * a set of operations being performed in other threads completes. + * + * <p>A {@code CountDownLatch} is initialized with a given <em>count</em>. + * The {@link #await await} methods block until the current count reaches + * zero due to invocations of the {@link #countDown} method, after which + * all waiting threads are released and any subsequent invocations of + * {@link #await await} return immediately. This is a one-shot phenomenon + * -- the count cannot be reset. If you need a version that resets the + * count, consider using a {@link CyclicBarrier}. + * + * <p>A {@code CountDownLatch} is a versatile synchronization tool + * and can be used for a number of purposes. A + * {@code CountDownLatch} initialized with a count of one serves as a + * simple on/off latch, or gate: all threads invoking {@link #await await} + * wait at the gate until it is opened by a thread invoking {@link + * #countDown}. A {@code CountDownLatch} initialized to <em>N</em> + * can be used to make one thread wait until <em>N</em> threads have + * completed some action, or some action has been completed N times. + * + * <p>A useful property of a {@code CountDownLatch} is that it + * doesn't require that threads calling {@code countDown} wait for + * the count to reach zero before proceeding, it simply prevents any + * thread from proceeding past an {@link #await await} until all + * threads could pass. + * + * <p><b>Sample usage:</b> Here is a pair of classes in which a group + * of worker threads use two countdown latches: + * <ul> + * <li>The first is a start signal that prevents any worker from proceeding + * until the driver is ready for them to proceed; + * <li>The second is a completion signal that allows the driver to wait + * until all workers have completed. + * </ul> + * + * <pre> + * class Driver { // ... + * void main() throws InterruptedException { + * CountDownLatch startSignal = new CountDownLatch(1); + * CountDownLatch doneSignal = new CountDownLatch(N); + * + * for (int i = 0; i < N; ++i) // create and start threads + * new Thread(new Worker(startSignal, doneSignal)).start(); + * + * doSomethingElse(); // don't let run yet + * startSignal.countDown(); // let all threads proceed + * doSomethingElse(); + * doneSignal.await(); // wait for all to finish + * } + * } + * + * class Worker implements Runnable { + * private final CountDownLatch startSignal; + * private final CountDownLatch doneSignal; + * Worker(CountDownLatch startSignal, CountDownLatch doneSignal) { + * this.startSignal = startSignal; + * this.doneSignal = doneSignal; + * } + * public void run() { + * try { + * startSignal.await(); + * doWork(); + * doneSignal.countDown(); + * } catch (InterruptedException ex) {} // return; + * } + * + * void doWork() { ... } + * } + * + * </pre> + * + * <p>Another typical usage would be to divide a problem into N parts, + * describe each part with a Runnable that executes that portion and + * counts down on the latch, and queue all the Runnables to an + * Executor. When all sub-parts are complete, the coordinating thread + * will be able to pass through await. (When threads must repeatedly + * count down in this way, instead use a {@link CyclicBarrier}.) + * + * <pre> + * class Driver2 { // ... + * void main() throws InterruptedException { + * CountDownLatch doneSignal = new CountDownLatch(N); + * Executor e = ... + * + * for (int i = 0; i < N; ++i) // create and start threads + * e.execute(new WorkerRunnable(doneSignal, i)); + * + * doneSignal.await(); // wait for all to finish + * } + * } + * + * class WorkerRunnable implements Runnable { + * private final CountDownLatch doneSignal; + * private final int i; + * WorkerRunnable(CountDownLatch doneSignal, int i) { + * this.doneSignal = doneSignal; + * this.i = i; + * } + * public void run() { + * try { + * doWork(i); + * doneSignal.countDown(); + * } catch (InterruptedException ex) {} // return; + * } + * + * void doWork() { ... } + * } + * + * </pre> + * + * <p>Memory consistency effects: Actions in a thread prior to calling + * {@code countDown()} + * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> + * actions following a successful return from a corresponding + * {@code await()} in another thread. + * + * @since 1.5 + * @author Doug Lea + */ +public class CountDownLatch { + /** + * Synchronization control For CountDownLatch. + * Uses AQS state to represent count. + */ + private static final class Sync extends AbstractQueuedSynchronizer { + private static final long serialVersionUID = 4982264981922014374L; + + Sync(int count) { + setState(count); + } + + int getCount() { + return getState(); + } + + public int tryAcquireShared(int acquires) { + return getState() == 0? 1 : -1; + } + + public boolean tryReleaseShared(int releases) { + // Decrement count; signal when transition to zero + for (;;) { + int c = getState(); + if (c == 0) + return false; + int nextc = c-1; + if (compareAndSetState(c, nextc)) + return nextc == 0; + } + } + } + + private final Sync sync; + + /** + * Constructs a {@code CountDownLatch} initialized with the given count. + * + * @param count the number of times {@link #countDown} must be invoked + * before threads can pass through {@link #await} + * @throws IllegalArgumentException if {@code count} is negative + */ + public CountDownLatch(int count) { + if (count < 0) throw new IllegalArgumentException("count < 0"); + this.sync = new Sync(count); + } + + /** + * Causes the current thread to wait until the latch has counted down to + * zero, unless the thread is {@linkplain Thread#interrupt interrupted}. + * + * <p>If the current count is zero then this method returns immediately. + * + * <p>If the current count is greater than zero then the current + * thread becomes disabled for thread scheduling purposes and lies + * dormant until one of two things happen: + * <ul> + * <li>The count reaches zero due to invocations of the + * {@link #countDown} method; or + * <li>Some other thread {@linkplain Thread#interrupt interrupts} + * the current thread. + * </ul> + * + * <p>If the current thread: + * <ul> + * <li>has its interrupted status set on entry to this method; or + * <li>is {@linkplain Thread#interrupt interrupted} while waiting, + * </ul> + * then {@link InterruptedException} is thrown and the current thread's + * interrupted status is cleared. + * + * @throws InterruptedException if the current thread is interrupted + * while waiting + */ + public void await() throws InterruptedException { + sync.acquireSharedInterruptibly(1); + } + + /** + * Causes the current thread to wait until the latch has counted down to + * zero, unless the thread is {@linkplain Thread#interrupt interrupted}, + * or the specified waiting time elapses. + * + * <p>If the current count is zero then this method returns immediately + * with the value {@code true}. + * + * <p>If the current count is greater than zero then the current + * thread becomes disabled for thread scheduling purposes and lies + * dormant until one of three things happen: + * <ul> + * <li>The count reaches zero due to invocations of the + * {@link #countDown} method; or + * <li>Some other thread {@linkplain Thread#interrupt interrupts} + * the current thread; or + * <li>The specified waiting time elapses. + * </ul> + * + * <p>If the count reaches zero then the method returns with the + * value {@code true}. + * + * <p>If the current thread: + * <ul> + * <li>has its interrupted status set on entry to this method; or + * <li>is {@linkplain Thread#interrupt interrupted} while waiting, + * </ul> + * then {@link InterruptedException} is thrown and the current thread's + * interrupted status is cleared. + * + * <p>If the specified waiting time elapses then the value {@code false} + * is returned. If the time is less than or equal to zero, the method + * will not wait at all. + * + * @param timeout the maximum time to wait + * @param unit the time unit of the {@code timeout} argument + * @return {@code true} if the count reached zero and {@code false} + * if the waiting time elapsed before the count reached zero + * @throws InterruptedException if the current thread is interrupted + * while waiting + */ + public boolean await(long timeout, TimeUnit unit) + throws InterruptedException { + return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); + } + + /** + * Decrements the count of the latch, releasing all waiting threads if + * the count reaches zero. + * + * <p>If the current count is greater than zero then it is decremented. + * If the new count is zero then all waiting threads are re-enabled for + * thread scheduling purposes. + * + * <p>If the current count equals zero then nothing happens. + */ + public void countDown() { + sync.releaseShared(1); + } + + /** + * Returns the current count. + * + * <p>This method is typically used for debugging and testing purposes. + * + * @return the current count + */ + public long getCount() { + return sync.getCount(); + } + + /** + * Returns a string identifying this latch, as well as its state. + * The state, in brackets, includes the String {@code "Count ="} + * followed by the current count. + * + * @return a string identifying this latch, as well as its state + */ + public String toString() { + return super.toString() + "[Count = " + sync.getCount() + "]"; + } +} |