summaryrefslogtreecommitdiff
path: root/libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java')
-rw-r--r--libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java2094
1 files changed, 2094 insertions, 0 deletions
diff --git a/libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java b/libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java
new file mode 100644
index 000000000..1334866f2
--- /dev/null
+++ b/libjava/classpath/gnu/java/awt/java2d/AbstractGraphics2D.java
@@ -0,0 +1,2094 @@
+/* AbstractGraphics2D.java -- Abstract Graphics2D implementation
+ Copyright (C) 2006 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package gnu.java.awt.java2d;
+
+import gnu.java.util.LRUCache;
+
+import java.awt.AWTError;
+import java.awt.AlphaComposite;
+import java.awt.AWTPermission;
+import java.awt.BasicStroke;
+import java.awt.Color;
+import java.awt.Composite;
+import java.awt.CompositeContext;
+import java.awt.Dimension;
+import java.awt.Font;
+import java.awt.FontMetrics;
+import java.awt.Graphics;
+import java.awt.Graphics2D;
+import java.awt.Image;
+import java.awt.Paint;
+import java.awt.PaintContext;
+import java.awt.Point;
+import java.awt.Polygon;
+import java.awt.Rectangle;
+import java.awt.RenderingHints;
+import java.awt.Shape;
+import java.awt.Stroke;
+import java.awt.Toolkit;
+import java.awt.RenderingHints.Key;
+import java.awt.font.FontRenderContext;
+import java.awt.font.GlyphVector;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.Arc2D;
+import java.awt.geom.Area;
+import java.awt.geom.Ellipse2D;
+import java.awt.geom.GeneralPath;
+import java.awt.geom.Line2D;
+import java.awt.geom.NoninvertibleTransformException;
+import java.awt.geom.RoundRectangle2D;
+import java.awt.image.BufferedImage;
+import java.awt.image.BufferedImageOp;
+import java.awt.image.ColorModel;
+import java.awt.image.DataBuffer;
+import java.awt.image.FilteredImageSource;
+import java.awt.image.ImageObserver;
+import java.awt.image.ImageProducer;
+import java.awt.image.Raster;
+import java.awt.image.RenderedImage;
+import java.awt.image.ReplicateScaleFilter;
+import java.awt.image.SampleModel;
+import java.awt.image.WritableRaster;
+import java.awt.image.renderable.RenderableImage;
+import java.text.AttributedCharacterIterator;
+import java.util.Collections;
+import java.util.HashMap;
+import java.util.LinkedList;
+import java.util.Map;
+import java.util.WeakHashMap;
+
+/**
+ * This is a 100% Java implementation of the Java2D rendering pipeline. It is
+ * meant as a base class for Graphics2D implementations.
+ *
+ * <h2>Backend interface</h2>
+ * <p>
+ * The backend must at the very least provide a Raster which the the rendering
+ * pipeline can paint into. This must be implemented in
+ * {@link #getDestinationRaster()}. For some backends that might be enough, like
+ * when the target surface can be directly access via the raster (like in
+ * BufferedImages). Other targets need some way to synchronize the raster with
+ * the surface, which can be achieved by implementing the
+ * {@link #updateRaster(Raster, int, int, int, int)} method, which always gets
+ * called after a chunk of data got painted into the raster.
+ * </p>
+ * <p>Alternativly the backend can provide a method for filling Shapes by
+ * overriding the protected method fillShape(). This can be accomplished
+ * by a polygon filling function of the backend. Keep in mind though that
+ * Shapes can be quite complex (i.e. non-convex and containing holes, etc)
+ * which is not supported by all polygon fillers. Also it must be noted
+ * that fillShape() is expected to handle painting and compositing as well as
+ * clipping and transformation. If your backend can't support this natively,
+ * then you can fallback to the implementation in this class. You'll need
+ * to provide a writable Raster then, see above.</p>
+ * <p>Another alternative is to implement fillScanline() which only requires
+ * the backend to be able to draw horizontal lines in device space,
+ * which is usually very cheap.
+ * The implementation should still handle painting and compositing,
+ * but no more clipping and transformation is required by the backend.</p>
+ * <p>The backend is free to provide implementations for the various raw*
+ * methods for optimized AWT 1.1 style painting of some primitives. This should
+ * accelerate painting of Swing greatly. When doing so, the backend must also
+ * keep track of the clip and translation, probably by overriding
+ * some clip and translate methods. Don't forget to message super in such a
+ * case.</p>
+ *
+ * <h2>Acceleration options</h2>
+ * <p>
+ * The fact that it is
+ * pure Java makes it a little slow. However, there are several ways of
+ * accelerating the rendering pipeline:
+ * <ol>
+ * <li><em>Optimization hooks for AWT 1.1 - like graphics operations.</em>
+ * The most important methods from the {@link java.awt.Graphics} class
+ * have a corresponding <code>raw*</code> method, which get called when
+ * several optimization conditions are fullfilled. These conditions are
+ * described below. Subclasses can override these methods and delegate
+ * it directly to a native backend.</li>
+ * <li><em>Native PaintContexts and CompositeContext.</em> The implementations
+ * for the 3 PaintContexts and AlphaCompositeContext can be accelerated
+ * using native code. These have proved to two of the most performance
+ * critical points in the rendering pipeline and cannot really be done quickly
+ * in plain Java because they involve lots of shuffling around with large
+ * arrays. In fact, you really would want to let the graphics card to the
+ * work, they are made for this.</li>
+ * <li>Provide an accelerated implementation for fillShape(). For instance,
+ * OpenGL can fill shapes very efficiently. There are some considerations
+ * to be made though, see above for details.</li>
+ * </ol>
+ * </p>
+ *
+ * @author Roman Kennke (kennke@aicas.com)
+ */
+public abstract class AbstractGraphics2D
+ extends Graphics2D
+ implements Cloneable, Pixelizer
+{
+ /**
+ * Caches scaled versions of an image.
+ *
+ * @see #drawImage(Image, int, int, int, int, ImageObserver)
+ */
+ protected static final WeakHashMap<Image, HashMap<Dimension,Image>> imageCache =
+ new WeakHashMap<Image, HashMap<Dimension, Image>>();
+
+ /**
+ * Wether we use anti aliasing for rendering text by default or not.
+ */
+ private static final boolean DEFAULT_TEXT_AA =
+ Boolean.getBoolean("gnu.java2d.default_text_aa");
+
+ /**
+ * The default font to use on the graphics object.
+ */
+ private static final Font FONT = new Font("SansSerif", Font.PLAIN, 12);
+
+ /**
+ * The size of the LRU cache used for caching GlyphVectors.
+ */
+ private static final int GV_CACHE_SIZE = 50;
+
+ /**
+ * Caches certain shapes to avoid massive creation of such Shapes in
+ * the various draw* and fill* methods.
+ */
+ private static final ShapeCache shapeCache = new ShapeCache();
+
+ /**
+ * A pool of scanline converters. It is important to reuse scanline
+ * converters because they keep their datastructures in place. We pool them
+ * for use in multiple threads.
+ */
+ private static final LinkedList<ScanlineConverter> scanlineConverters =
+ new LinkedList<ScanlineConverter>();
+
+ /**
+ * Caches glyph vectors for better drawing performance.
+ */
+ private static final Map<TextCacheKey,GlyphVector> gvCache =
+ Collections.synchronizedMap(new LRUCache<TextCacheKey,GlyphVector>(GV_CACHE_SIZE));
+
+ /**
+ * This key is used to search in the gvCache without allocating a new
+ * key each time.
+ */
+ private static final TextCacheKey searchTextKey = new TextCacheKey();
+
+ /**
+ * The transformation for this Graphics2D instance
+ */
+ protected AffineTransform transform;
+
+ /**
+ * The foreground.
+ */
+ private Paint paint;
+
+ /**
+ * The paint context during rendering.
+ */
+ private PaintContext paintContext = null;
+
+ /**
+ * The background.
+ */
+ private Color background = Color.WHITE;
+
+ /**
+ * Foreground color, as set by setColor.
+ */
+ private Color foreground = Color.BLACK;
+ private boolean isForegroundColorNull = true;
+
+ /**
+ * The current font.
+ */
+ private Font font;
+
+ /**
+ * The current composite setting.
+ */
+ private Composite composite;
+
+ /**
+ * The current stroke setting.
+ */
+ private Stroke stroke;
+
+ /**
+ * The current clip. This clip is in user coordinate space.
+ */
+ private Shape clip;
+
+ /**
+ * The rendering hints.
+ */
+ private RenderingHints renderingHints;
+
+ /**
+ * The raster of the destination surface. This is where the painting is
+ * performed.
+ */
+ private WritableRaster destinationRaster;
+
+ /**
+ * Indicates if certain graphics primitives can be rendered in an optimized
+ * fashion. This will be the case if the following conditions are met:
+ * - The transform may only be a translation, no rotation, shearing or
+ * scaling.
+ * - The paint must be a solid color.
+ * - The composite must be an AlphaComposite.SrcOver.
+ * - The clip must be a Rectangle.
+ * - The stroke must be a plain BasicStroke().
+ *
+ * These conditions represent the standard settings of a new
+ * AbstractGraphics2D object and will be the most commonly used setting
+ * in Swing rendering and should therefore be optimized as much as possible.
+ */
+ private boolean isOptimized = true;
+
+ private static final BasicStroke STANDARD_STROKE = new BasicStroke();
+
+ private static final HashMap<Key, Object> STANDARD_HINTS;
+ static
+ {
+
+ HashMap<Key, Object> hints = new HashMap<Key, Object>();
+ hints.put(RenderingHints.KEY_TEXT_ANTIALIASING,
+ RenderingHints.VALUE_TEXT_ANTIALIAS_DEFAULT);
+ hints.put(RenderingHints.KEY_ANTIALIASING,
+ RenderingHints.VALUE_ANTIALIAS_DEFAULT);
+
+ STANDARD_HINTS = hints;
+ }
+
+ /**
+ * Creates a new AbstractGraphics2D instance.
+ */
+ protected AbstractGraphics2D()
+ {
+ transform = new AffineTransform();
+ background = Color.WHITE;
+ composite = AlphaComposite.SrcOver;
+ stroke = STANDARD_STROKE;
+ renderingHints = new RenderingHints(STANDARD_HINTS);
+ }
+
+ /**
+ * Draws the specified shape. The shape is passed through the current stroke
+ * and is then forwarded to {@link #fillShape}.
+ *
+ * @param shape the shape to draw
+ */
+ public void draw(Shape shape)
+ {
+ // Stroke the shape.
+ Shape strokedShape = stroke.createStrokedShape(shape);
+ // Fill the stroked shape.
+ fillShape(strokedShape, false);
+ }
+
+
+ /**
+ * Draws the specified image and apply the transform for image space ->
+ * user space conversion.
+ *
+ * This method is implemented to special case RenderableImages and
+ * RenderedImages and delegate to
+ * {@link #drawRenderableImage(RenderableImage, AffineTransform)} and
+ * {@link #drawRenderedImage(RenderedImage, AffineTransform)} accordingly.
+ * Other image types are not yet handled.
+ *
+ * @param image the image to be rendered
+ * @param xform the transform from image space to user space
+ * @param obs the image observer to be notified
+ */
+ public boolean drawImage(Image image, AffineTransform xform,
+ ImageObserver obs)
+ {
+ Rectangle areaOfInterest = new Rectangle(0, 0, image.getWidth(obs),
+ image.getHeight(obs));
+ return drawImageImpl(image, xform, obs, areaOfInterest);
+ }
+
+ /**
+ * Draws the specified image and apply the transform for image space ->
+ * user space conversion. This method only draw the part of the image
+ * specified by <code>areaOfInterest</code>.
+ *
+ * This method is implemented to special case RenderableImages and
+ * RenderedImages and delegate to
+ * {@link #drawRenderableImage(RenderableImage, AffineTransform)} and
+ * {@link #drawRenderedImage(RenderedImage, AffineTransform)} accordingly.
+ * Other image types are not yet handled.
+ *
+ * @param image the image to be rendered
+ * @param xform the transform from image space to user space
+ * @param obs the image observer to be notified
+ * @param areaOfInterest the area in image space that is rendered
+ */
+ private boolean drawImageImpl(Image image, AffineTransform xform,
+ ImageObserver obs, Rectangle areaOfInterest)
+ {
+ boolean ret;
+ if (image == null)
+ {
+ ret = true;
+ }
+ else if (image instanceof RenderedImage)
+ {
+ // FIXME: Handle the ImageObserver.
+ drawRenderedImageImpl((RenderedImage) image, xform, areaOfInterest);
+ ret = true;
+ }
+ else if (image instanceof RenderableImage)
+ {
+ // FIXME: Handle the ImageObserver.
+ drawRenderableImageImpl((RenderableImage) image, xform, areaOfInterest);
+ ret = true;
+ }
+ else
+ {
+ // FIXME: Implement rendering of other Image types.
+ ret = false;
+ }
+ return ret;
+ }
+
+ /**
+ * Renders a BufferedImage and applies the specified BufferedImageOp before
+ * to filter the BufferedImage somehow. The resulting BufferedImage is then
+ * passed on to {@link #drawRenderedImage(RenderedImage, AffineTransform)}
+ * to perform the final rendering.
+ *
+ * @param image the source buffered image
+ * @param op the filter to apply to the buffered image before rendering
+ * @param x the x coordinate to render the image to
+ * @param y the y coordinate to render the image to
+ */
+ public void drawImage(BufferedImage image, BufferedImageOp op, int x, int y)
+ {
+ BufferedImage filtered =
+ op.createCompatibleDestImage(image, image.getColorModel());
+ AffineTransform t = new AffineTransform();
+ t.translate(x, y);
+ drawRenderedImage(filtered, t);
+ }
+
+ /**
+ * Renders the specified image to the destination raster. The specified
+ * transform is used to convert the image into user space. The transform
+ * of this AbstractGraphics2D object is used to transform from user space
+ * to device space.
+ *
+ * The rendering is performed using the scanline algorithm that performs the
+ * rendering of other shapes and a custom Paint implementation, that supplies
+ * the pixel values of the rendered image.
+ *
+ * @param image the image to render to the destination raster
+ * @param xform the transform from image space to user space
+ */
+ public void drawRenderedImage(RenderedImage image, AffineTransform xform)
+ {
+ Rectangle areaOfInterest = new Rectangle(image.getMinX(),
+ image.getHeight(),
+ image.getWidth(),
+ image.getHeight());
+ drawRenderedImageImpl(image, xform, areaOfInterest);
+ }
+
+ /**
+ * Renders the specified image to the destination raster. The specified
+ * transform is used to convert the image into user space. The transform
+ * of this AbstractGraphics2D object is used to transform from user space
+ * to device space. Only the area specified by <code>areaOfInterest</code>
+ * is finally rendered to the target.
+ *
+ * The rendering is performed using the scanline algorithm that performs the
+ * rendering of other shapes and a custom Paint implementation, that supplies
+ * the pixel values of the rendered image.
+ *
+ * @param image the image to render to the destination raster
+ * @param xform the transform from image space to user space
+ */
+ private void drawRenderedImageImpl(RenderedImage image,
+ AffineTransform xform,
+ Rectangle areaOfInterest)
+ {
+ // First we compute the transformation. This is made up of 3 parts:
+ // 1. The areaOfInterest -> image space transform.
+ // 2. The image space -> user space transform.
+ // 3. The user space -> device space transform.
+ AffineTransform t = new AffineTransform();
+ t.translate(- areaOfInterest.x - image.getMinX(),
+ - areaOfInterest.y - image.getMinY());
+ t.concatenate(xform);
+ t.concatenate(transform);
+ AffineTransform it = null;
+ try
+ {
+ it = t.createInverse();
+ }
+ catch (NoninvertibleTransformException ex)
+ {
+ // Ignore -- we return if the transform is not invertible.
+ }
+ if (it != null)
+ {
+ // Transform the area of interest into user space.
+ GeneralPath aoi = new GeneralPath(areaOfInterest);
+ aoi.transform(xform);
+ // Render the shape using the standard renderer, but with a temporary
+ // ImagePaint.
+ ImagePaint p = new ImagePaint(image, it);
+ Paint savedPaint = paint;
+ try
+ {
+ paint = p;
+ fillShape(aoi, false);
+ }
+ finally
+ {
+ paint = savedPaint;
+ }
+ }
+ }
+
+ /**
+ * Renders a renderable image. This produces a RenderedImage, which is
+ * then passed to {@link #drawRenderedImage(RenderedImage, AffineTransform)}
+ * to perform the final rendering.
+ *
+ * @param image the renderable image to be rendered
+ * @param xform the transform from image space to user space
+ */
+ public void drawRenderableImage(RenderableImage image, AffineTransform xform)
+ {
+ Rectangle areaOfInterest = new Rectangle((int) image.getMinX(),
+ (int) image.getHeight(),
+ (int) image.getWidth(),
+ (int) image.getHeight());
+ drawRenderableImageImpl(image, xform, areaOfInterest);
+
+ }
+
+ /**
+ * Renders a renderable image. This produces a RenderedImage, which is
+ * then passed to {@link #drawRenderedImage(RenderedImage, AffineTransform)}
+ * to perform the final rendering. Only the area of the image specified
+ * by <code>areaOfInterest</code> is rendered.
+ *
+ * @param image the renderable image to be rendered
+ * @param xform the transform from image space to user space
+ */
+ private void drawRenderableImageImpl(RenderableImage image,
+ AffineTransform xform,
+ Rectangle areaOfInterest)
+ {
+ // TODO: Maybe make more clever usage of a RenderContext here.
+ RenderedImage rendered = image.createDefaultRendering();
+ drawRenderedImageImpl(rendered, xform, areaOfInterest);
+ }
+
+ /**
+ * Draws the specified string at the specified location.
+ *
+ * @param text the string to draw
+ * @param x the x location, relative to the bounding rectangle of the text
+ * @param y the y location, relative to the bounding rectangle of the text
+ */
+ public void drawString(String text, int x, int y)
+ {
+ GlyphVector gv;
+ synchronized (searchTextKey)
+ {
+ TextCacheKey tck = searchTextKey;
+ FontRenderContext frc = getFontRenderContext();
+ tck.setString(text);
+ tck.setFont(font);
+ tck.setFontRenderContext(frc);
+ if (gvCache.containsKey(tck))
+ {
+ gv = gvCache.get(tck);
+ }
+ else
+ {
+ gv = font.createGlyphVector(frc, text.toCharArray());
+ gvCache.put(new TextCacheKey(text, font, frc), gv);
+ }
+ }
+ drawGlyphVector(gv, x, y);
+ }
+
+ /**
+ * Draws the specified string at the specified location.
+ *
+ * @param text the string to draw
+ * @param x the x location, relative to the bounding rectangle of the text
+ * @param y the y location, relative to the bounding rectangle of the text
+ */
+ public void drawString(String text, float x, float y)
+ {
+ FontRenderContext ctx = getFontRenderContext();
+ GlyphVector gv = font.createGlyphVector(ctx, text.toCharArray());
+ drawGlyphVector(gv, x, y);
+ }
+
+ /**
+ * Draws the specified string (as AttributedCharacterIterator) at the
+ * specified location.
+ *
+ * @param iterator the string to draw
+ * @param x the x location, relative to the bounding rectangle of the text
+ * @param y the y location, relative to the bounding rectangle of the text
+ */
+ public void drawString(AttributedCharacterIterator iterator, int x, int y)
+ {
+ FontRenderContext ctx = getFontRenderContext();
+ GlyphVector gv = font.createGlyphVector(ctx, iterator);
+ drawGlyphVector(gv, x, y);
+ }
+
+ /**
+ * Draws the specified string (as AttributedCharacterIterator) at the
+ * specified location.
+ *
+ * @param iterator the string to draw
+ * @param x the x location, relative to the bounding rectangle of the text
+ * @param y the y location, relative to the bounding rectangle of the text
+ */
+ public void drawString(AttributedCharacterIterator iterator, float x, float y)
+ {
+ FontRenderContext ctx = getFontRenderContext();
+ GlyphVector gv = font.createGlyphVector(ctx, iterator);
+ drawGlyphVector(gv, x, y);
+ }
+
+ /**
+ * Fills the specified shape with the current foreground.
+ *
+ * @param shape the shape to fill
+ */
+ public void fill(Shape shape)
+ {
+ fillShape(shape, false);
+ }
+
+ public boolean hit(Rectangle rect, Shape text, boolean onStroke)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ /**
+ * Sets the composite.
+ *
+ * @param comp the composite to set
+ */
+ public void setComposite(Composite comp)
+ {
+ if (! (comp instanceof AlphaComposite))
+ {
+ // FIXME: this check is only required "if this Graphics2D
+ // context is drawing to a Component on the display screen".
+ SecurityManager sm = System.getSecurityManager();
+ if (sm != null)
+ sm.checkPermission(new AWTPermission("readDisplayPixels"));
+ }
+
+ composite = comp;
+ if (! (comp.equals(AlphaComposite.SrcOver)))
+ isOptimized = false;
+ else
+ updateOptimization();
+ }
+
+ /**
+ * Sets the current foreground.
+ *
+ * @param p the foreground to set.
+ */
+ public void setPaint(Paint p)
+ {
+ if (p != null)
+ {
+ paint = p;
+
+ if (! (paint instanceof Color))
+ {
+ isOptimized = false;
+ }
+ else
+ {
+ this.foreground = (Color) paint;
+ isForegroundColorNull = false;
+ updateOptimization();
+ }
+ }
+ else
+ {
+ this.foreground = Color.BLACK;
+ isForegroundColorNull = true;
+ }
+
+ // free resources if needed, then put the paint context to null
+ if (this.paintContext != null)
+ this.paintContext.dispose();
+
+ this.paintContext = null;
+ }
+
+ /**
+ * Sets the stroke for this graphics object.
+ *
+ * @param s the stroke to set
+ */
+ public void setStroke(Stroke s)
+ {
+ stroke = s;
+ if (! stroke.equals(new BasicStroke()))
+ isOptimized = false;
+ else
+ updateOptimization();
+ }
+
+ /**
+ * Sets the specified rendering hint.
+ *
+ * @param hintKey the key of the rendering hint
+ * @param hintValue the value
+ */
+ public void setRenderingHint(Key hintKey, Object hintValue)
+ {
+ renderingHints.put(hintKey, hintValue);
+ }
+
+ /**
+ * Returns the rendering hint for the specified key.
+ *
+ * @param hintKey the rendering hint key
+ *
+ * @return the rendering hint for the specified key
+ */
+ public Object getRenderingHint(Key hintKey)
+ {
+ return renderingHints.get(hintKey);
+ }
+
+ /**
+ * Sets the specified rendering hints.
+ *
+ * @param hints the rendering hints to set
+ */
+ public void setRenderingHints(Map hints)
+ {
+ renderingHints.clear();
+ renderingHints.putAll(hints);
+ }
+
+ /**
+ * Adds the specified rendering hints.
+ *
+ * @param hints the rendering hints to add
+ */
+ public void addRenderingHints(Map hints)
+ {
+ renderingHints.putAll(hints);
+ }
+
+ /**
+ * Returns the current rendering hints.
+ *
+ * @return the current rendering hints
+ */
+ public RenderingHints getRenderingHints()
+ {
+ return (RenderingHints) renderingHints.clone();
+ }
+
+ /**
+ * Translates the coordinate system by (x, y).
+ *
+ * @param x the translation X coordinate
+ * @param y the translation Y coordinate
+ */
+ public void translate(int x, int y)
+ {
+ transform.translate(x, y);
+
+ // Update the clip. We special-case rectangular clips here, because they
+ // are so common (e.g. in Swing).
+ if (clip != null)
+ {
+ if (clip instanceof Rectangle)
+ {
+ Rectangle r = (Rectangle) clip;
+ r.x -= x;
+ r.y -= y;
+ setClip(r);
+ }
+ else
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.translate(-x, -y);
+ updateClip(clipTransform);
+ }
+ }
+ }
+
+ /**
+ * Translates the coordinate system by (tx, ty).
+ *
+ * @param tx the translation X coordinate
+ * @param ty the translation Y coordinate
+ */
+ public void translate(double tx, double ty)
+ {
+ transform.translate(tx, ty);
+
+ // Update the clip. We special-case rectangular clips here, because they
+ // are so common (e.g. in Swing).
+ if (clip != null)
+ {
+ if (clip instanceof Rectangle)
+ {
+ Rectangle r = (Rectangle) clip;
+ r.x -= tx;
+ r.y -= ty;
+ }
+ else
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.translate(-tx, -ty);
+ updateClip(clipTransform);
+ }
+ }
+ }
+
+ /**
+ * Rotates the coordinate system by <code>theta</code> degrees.
+ *
+ * @param theta the angle be which to rotate the coordinate system
+ */
+ public void rotate(double theta)
+ {
+ transform.rotate(theta);
+ if (clip != null)
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.rotate(-theta);
+ updateClip(clipTransform);
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Rotates the coordinate system by <code>theta</code> around the point
+ * (x, y).
+ *
+ * @param theta the angle by which to rotate the coordinate system
+ * @param x the point around which to rotate, X coordinate
+ * @param y the point around which to rotate, Y coordinate
+ */
+ public void rotate(double theta, double x, double y)
+ {
+ transform.rotate(theta, x, y);
+ if (clip != null)
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.rotate(-theta, x, y);
+ updateClip(clipTransform);
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Scales the coordinate system by the factors <code>scaleX</code> and
+ * <code>scaleY</code>.
+ *
+ * @param scaleX the factor by which to scale the X axis
+ * @param scaleY the factor by which to scale the Y axis
+ */
+ public void scale(double scaleX, double scaleY)
+ {
+ transform.scale(scaleX, scaleY);
+ if (clip != null)
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.scale(1 / scaleX, 1 / scaleY);
+ updateClip(clipTransform);
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Shears the coordinate system by <code>shearX</code> and
+ * <code>shearY</code>.
+ *
+ * @param shearX the X shearing
+ * @param shearY the Y shearing
+ */
+ public void shear(double shearX, double shearY)
+ {
+ transform.shear(shearX, shearY);
+ if (clip != null)
+ {
+ AffineTransform clipTransform = new AffineTransform();
+ clipTransform.shear(-shearX, -shearY);
+ updateClip(clipTransform);
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Transforms the coordinate system using the specified transform
+ * <code>t</code>.
+ *
+ * @param t the transform
+ */
+ public void transform(AffineTransform t)
+ {
+ transform.concatenate(t);
+ try
+ {
+ AffineTransform clipTransform = t.createInverse();
+ updateClip(clipTransform);
+ }
+ catch (NoninvertibleTransformException ex)
+ {
+ // TODO: How can we deal properly with this?
+ ex.printStackTrace();
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Sets the transformation for this Graphics object.
+ *
+ * @param t the transformation to set
+ */
+ public void setTransform(AffineTransform t)
+ {
+ // Transform clip into target space using the old transform.
+ updateClip(transform);
+ transform.setTransform(t);
+ // Transform the clip back into user space using the inverse new transform.
+ try
+ {
+ updateClip(transform.createInverse());
+ }
+ catch (NoninvertibleTransformException ex)
+ {
+ // TODO: How can we deal properly with this?
+ ex.printStackTrace();
+ }
+ updateOptimization();
+ }
+
+ /**
+ * Returns the transformation of this coordinate system.
+ *
+ * @return the transformation of this coordinate system
+ */
+ public AffineTransform getTransform()
+ {
+ return (AffineTransform) transform.clone();
+ }
+
+ /**
+ * Returns the current foreground.
+ *
+ * @return the current foreground
+ */
+ public Paint getPaint()
+ {
+ return paint;
+ }
+
+
+ /**
+ * Returns the current composite.
+ *
+ * @return the current composite
+ */
+ public Composite getComposite()
+ {
+ return composite;
+ }
+
+ /**
+ * Sets the current background.
+ *
+ * @param color the background to set.
+ */
+ public void setBackground(Color color)
+ {
+ background = color;
+ }
+
+ /**
+ * Returns the current background.
+ *
+ * @return the current background
+ */
+ public Color getBackground()
+ {
+ return background;
+ }
+
+ /**
+ * Returns the current stroke.
+ *
+ * @return the current stroke
+ */
+ public Stroke getStroke()
+ {
+ return stroke;
+ }
+
+ /**
+ * Intersects the clip of this graphics object with the specified clip.
+ *
+ * @param s the clip with which the current clip should be intersected
+ */
+ public void clip(Shape s)
+ {
+ // Initialize clip if not already present.
+ if (clip == null)
+ setClip(s);
+
+ // This is so common, let's optimize this.
+ else if (clip instanceof Rectangle && s instanceof Rectangle)
+ {
+ Rectangle clipRect = (Rectangle) clip;
+ Rectangle r = (Rectangle) s;
+ computeIntersection(r.x, r.y, r.width, r.height, clipRect);
+ // Call setClip so that subclasses get notified.
+ setClip(clipRect);
+ }
+ else
+ {
+ Area current;
+ if (clip instanceof Area)
+ current = (Area) clip;
+ else
+ current = new Area(clip);
+
+ Area intersect;
+ if (s instanceof Area)
+ intersect = (Area) s;
+ else
+ intersect = new Area(s);
+
+ current.intersect(intersect);
+ clip = current;
+ isOptimized = false;
+ // Call setClip so that subclasses get notified.
+ setClip(clip);
+ }
+ }
+
+ public FontRenderContext getFontRenderContext()
+ {
+ // Protect our own transform from beeing modified.
+ AffineTransform tf = new AffineTransform(transform);
+ // TODO: Determine antialias and fractionalmetrics parameters correctly.
+ return new FontRenderContext(tf, false, true);
+ }
+
+ /**
+ * Draws the specified glyph vector at the specified location.
+ *
+ * @param gv the glyph vector to draw
+ * @param x the location, x coordinate
+ * @param y the location, y coordinate
+ */
+ public void drawGlyphVector(GlyphVector gv, float x, float y)
+ {
+ translate(x, y);
+ fillShape(gv.getOutline(), true);
+ translate(-x, -y);
+ }
+
+ /**
+ * Creates a copy of this graphics object.
+ *
+ * @return a copy of this graphics object
+ */
+ public Graphics create()
+ {
+ AbstractGraphics2D copy = (AbstractGraphics2D) clone();
+ return copy;
+ }
+
+ /**
+ * Creates and returns a copy of this Graphics object. This should
+ * be overridden by subclasses if additional state must be handled when
+ * cloning. This is called by {@link #create()}.
+ *
+ * @return a copy of this Graphics object
+ */
+ protected Object clone()
+ {
+ try
+ {
+ AbstractGraphics2D copy = (AbstractGraphics2D) super.clone();
+ // Copy the clip. If it's a Rectangle, preserve that for optimization.
+ if (clip instanceof Rectangle)
+ copy.clip = new Rectangle((Rectangle) clip);
+ else if (clip != null)
+ copy.clip = new GeneralPath(clip);
+ else
+ copy.clip = null;
+
+ copy.renderingHints = new RenderingHints(null);
+ copy.renderingHints.putAll(renderingHints);
+ copy.transform = new AffineTransform(transform);
+ // The remaining state is inmmutable and doesn't need to be copied.
+ return copy;
+ }
+ catch (CloneNotSupportedException ex)
+ {
+ AWTError err = new AWTError("Unexpected exception while cloning");
+ err.initCause(ex);
+ throw err;
+ }
+ }
+
+ /**
+ * Returns the current foreground.
+ */
+ public Color getColor()
+ {
+ if (isForegroundColorNull)
+ return null;
+
+ return this.foreground;
+ }
+
+ /**
+ * Sets the current foreground.
+ *
+ * @param color the foreground to set
+ */
+ public void setColor(Color color)
+ {
+ this.setPaint(color);
+ }
+
+ public void setPaintMode()
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ public void setXORMode(Color color)
+ {
+ // FIXME: Implement this.
+ throw new UnsupportedOperationException("Not yet implemented");
+ }
+
+ /**
+ * Returns the current font.
+ *
+ * @return the current font
+ */
+ public Font getFont()
+ {
+ return font;
+ }
+
+ /**
+ * Sets the font on this graphics object. When <code>f == null</code>, the
+ * current setting is not changed.
+ *
+ * @param f the font to set
+ */
+ public void setFont(Font f)
+ {
+ if (f != null)
+ font = f;
+ }
+
+ /**
+ * Returns the font metrics for the specified font.
+ *
+ * @param font the font for which to fetch the font metrics
+ *
+ * @return the font metrics for the specified font
+ */
+ public FontMetrics getFontMetrics(Font font)
+ {
+ return Toolkit.getDefaultToolkit().getFontMetrics(font);
+ }
+
+ /**
+ * Returns the bounds of the current clip.
+ *
+ * @return the bounds of the current clip
+ */
+ public Rectangle getClipBounds()
+ {
+ Rectangle b = null;
+ if (clip != null)
+ b = clip.getBounds();
+ return b;
+ }
+
+ /**
+ * Intersects the current clipping region with the specified rectangle.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ */
+ public void clipRect(int x, int y, int width, int height)
+ {
+ clip(new Rectangle(x, y, width, height));
+ }
+
+ /**
+ * Sets the clip to the specified rectangle.
+ *
+ * @param x the x coordinate of the clip rectangle
+ * @param y the y coordinate of the clip rectangle
+ * @param width the width of the clip rectangle
+ * @param height the height of the clip rectangle
+ */
+ public void setClip(int x, int y, int width, int height)
+ {
+ setClip(new Rectangle(x, y, width, height));
+ }
+
+ /**
+ * Returns the current clip.
+ *
+ * @return the current clip
+ */
+ public Shape getClip()
+ {
+ return clip;
+ }
+
+ /**
+ * Sets the current clipping area to <code>clip</code>.
+ *
+ * @param c the clip to set
+ */
+ public void setClip(Shape c)
+ {
+ clip = c;
+ if (! (clip instanceof Rectangle))
+ isOptimized = false;
+ else
+ updateOptimization();
+ }
+
+ public void copyArea(int x, int y, int width, int height, int dx, int dy)
+ {
+ if (isOptimized)
+ rawCopyArea(x, y, width, height, dx, dy);
+ else
+ copyAreaImpl(x, y, width, height, dx, dy);
+ }
+
+ /**
+ * Draws a line from (x1, y1) to (x2, y2).
+ *
+ * This implementation transforms the coordinates and forwards the call to
+ * {@link #rawDrawLine}.
+ */
+ public void drawLine(int x1, int y1, int x2, int y2)
+ {
+ if (isOptimized)
+ {
+ int tx = (int) transform.getTranslateX();
+ int ty = (int) transform.getTranslateY();
+ rawDrawLine(x1 + tx, y1 + ty, x2 + tx, y2 + ty);
+ }
+ else
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.line == null)
+ sc.line = new Line2D.Float();
+ sc.line.setLine(x1, y1, x2, y2);
+ draw(sc.line);
+ }
+ }
+
+ public void drawRect(int x, int y, int w, int h)
+ {
+ if (isOptimized)
+ {
+ int tx = (int) transform.getTranslateX();
+ int ty = (int) transform.getTranslateY();
+ rawDrawRect(x + tx, y + ty, w, h);
+ }
+ else
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.rect == null)
+ sc.rect = new Rectangle();
+ sc.rect.setBounds(x, y, w, h);
+ draw(sc.rect);
+ }
+ }
+
+ /**
+ * Fills a rectangle with the current paint.
+ *
+ * @param x the upper left corner, X coordinate
+ * @param y the upper left corner, Y coordinate
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ */
+ public void fillRect(int x, int y, int width, int height)
+ {
+ if (isOptimized)
+ {
+ rawFillRect(x + (int) transform.getTranslateX(),
+ y + (int) transform.getTranslateY(), width, height);
+ }
+ else
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.rect == null)
+ sc.rect = new Rectangle();
+ sc.rect.setBounds(x, y, width, height);
+ fill(sc.rect);
+ }
+ }
+
+ /**
+ * Fills a rectangle with the current background color.
+ *
+ * This implementation temporarily sets the foreground color to the
+ * background and forwards the call to {@link #fillRect(int, int, int, int)}.
+ *
+ * @param x the upper left corner, X coordinate
+ * @param y the upper left corner, Y coordinate
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ */
+ public void clearRect(int x, int y, int width, int height)
+ {
+ if (isOptimized)
+ rawClearRect(x, y, width, height);
+ else
+ {
+ Paint savedForeground = getPaint();
+ setPaint(getBackground());
+ fillRect(x, y, width, height);
+ setPaint(savedForeground);
+ }
+ }
+
+ /**
+ * Draws a rounded rectangle.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ * @param arcWidth the width of the arcs
+ * @param arcHeight the height of the arcs
+ */
+ public void drawRoundRect(int x, int y, int width, int height, int arcWidth,
+ int arcHeight)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.roundRect == null)
+ sc.roundRect = new RoundRectangle2D.Float();
+ sc.roundRect.setRoundRect(x, y, width, height, arcWidth, arcHeight);
+ draw(sc.roundRect);
+ }
+
+ /**
+ * Fills a rounded rectangle.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param width the width of the rectangle
+ * @param height the height of the rectangle
+ * @param arcWidth the width of the arcs
+ * @param arcHeight the height of the arcs
+ */
+ public void fillRoundRect(int x, int y, int width, int height, int arcWidth,
+ int arcHeight)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.roundRect == null)
+ sc.roundRect = new RoundRectangle2D.Float();
+ sc.roundRect.setRoundRect(x, y, width, height, arcWidth, arcHeight);
+ fill(sc.roundRect);
+ }
+
+ /**
+ * Draws the outline of an oval.
+ *
+ * @param x the upper left corner of the bounding rectangle of the ellipse
+ * @param y the upper left corner of the bounding rectangle of the ellipse
+ * @param width the width of the ellipse
+ * @param height the height of the ellipse
+ */
+ public void drawOval(int x, int y, int width, int height)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.ellipse == null)
+ sc.ellipse = new Ellipse2D.Float();
+ sc.ellipse.setFrame(x, y, width, height);
+ draw(sc.ellipse);
+ }
+
+ /**
+ * Fills an oval.
+ *
+ * @param x the upper left corner of the bounding rectangle of the ellipse
+ * @param y the upper left corner of the bounding rectangle of the ellipse
+ * @param width the width of the ellipse
+ * @param height the height of the ellipse
+ */
+ public void fillOval(int x, int y, int width, int height)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.ellipse == null)
+ sc.ellipse = new Ellipse2D.Float();
+ sc.ellipse.setFrame(x, y, width, height);
+ fill(sc.ellipse);
+ }
+
+ /**
+ * Draws an arc.
+ */
+ public void drawArc(int x, int y, int width, int height, int arcStart,
+ int arcAngle)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.arc == null)
+ sc.arc = new Arc2D.Float();
+ sc.arc.setArc(x, y, width, height, arcStart, arcAngle, Arc2D.OPEN);
+ draw(sc.arc);
+ }
+
+ /**
+ * Fills an arc.
+ */
+ public void fillArc(int x, int y, int width, int height, int arcStart,
+ int arcAngle)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.arc == null)
+ sc.arc = new Arc2D.Float();
+ sc.arc.setArc(x, y, width, height, arcStart, arcAngle, Arc2D.PIE);
+ draw(sc.arc);
+ }
+
+ public void drawPolyline(int[] xPoints, int[] yPoints, int npoints)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.polyline == null)
+ sc.polyline = new GeneralPath();
+ GeneralPath p = sc.polyline;
+ p.reset();
+ if (npoints > 0)
+ p.moveTo(xPoints[0], yPoints[0]);
+ for (int i = 1; i < npoints; i++)
+ p.lineTo(xPoints[i], yPoints[i]);
+ fill(p);
+ }
+
+ /**
+ * Draws the outline of a polygon.
+ */
+ public void drawPolygon(int[] xPoints, int[] yPoints, int npoints)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.polygon == null)
+ sc.polygon = new Polygon();
+ sc.polygon.reset();
+ sc.polygon.xpoints = xPoints;
+ sc.polygon.ypoints = yPoints;
+ sc.polygon.npoints = npoints;
+ draw(sc.polygon);
+ }
+
+ /**
+ * Fills the outline of a polygon.
+ */
+ public void fillPolygon(int[] xPoints, int[] yPoints, int npoints)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.polygon == null)
+ sc.polygon = new Polygon();
+ sc.polygon.reset();
+ sc.polygon.xpoints = xPoints;
+ sc.polygon.ypoints = yPoints;
+ sc.polygon.npoints = npoints;
+ fill(sc.polygon);
+ }
+
+ /**
+ * Draws the specified image at the specified location. This forwards
+ * to {@link #drawImage(Image, AffineTransform, ImageObserver)}.
+ *
+ * @param image the image to render
+ * @param x the x location to render to
+ * @param y the y location to render to
+ * @param observer the image observer to receive notification
+ */
+ public boolean drawImage(Image image, int x, int y, ImageObserver observer)
+ {
+ boolean ret;
+ if (isOptimized)
+ {
+ ret = rawDrawImage(image, x + (int) transform.getTranslateX(),
+ y + (int) transform.getTranslateY(), observer);
+ }
+ else
+ {
+ AffineTransform t = new AffineTransform();
+ t.translate(x, y);
+ ret = drawImage(image, t, observer);
+ }
+ return ret;
+ }
+
+ /**
+ * Draws the specified image at the specified location. The image
+ * is scaled to the specified width and height. This forwards
+ * to {@link #drawImage(Image, AffineTransform, ImageObserver)}.
+ *
+ * @param image the image to render
+ * @param x the x location to render to
+ * @param y the y location to render to
+ * @param width the target width of the image
+ * @param height the target height of the image
+ * @param observer the image observer to receive notification
+ */
+ public boolean drawImage(Image image, int x, int y, int width, int height,
+ ImageObserver observer)
+ {
+ AffineTransform t = new AffineTransform();
+ int imWidth = image.getWidth(observer);
+ int imHeight = image.getHeight(observer);
+ if (imWidth == width && imHeight == height)
+ {
+ // No need to scale, fall back to non-scaling loops.
+ return drawImage(image, x, y, observer);
+ }
+ else
+ {
+ Image scaled = prepareImage(image, width, height);
+ // Ideally, this should notify the observer about the scaling progress.
+ return drawImage(scaled, x, y, observer);
+ }
+ }
+
+ /**
+ * Draws the specified image at the specified location. This forwards
+ * to {@link #drawImage(Image, AffineTransform, ImageObserver)}.
+ *
+ * @param image the image to render
+ * @param x the x location to render to
+ * @param y the y location to render to
+ * @param bgcolor the background color to use for transparent pixels
+ * @param observer the image observer to receive notification
+ */
+ public boolean drawImage(Image image, int x, int y, Color bgcolor,
+ ImageObserver observer)
+ {
+ AffineTransform t = new AffineTransform();
+ t.translate(x, y);
+ // TODO: Somehow implement the background option.
+ return drawImage(image, t, observer);
+ }
+
+ /**
+ * Draws the specified image at the specified location. The image
+ * is scaled to the specified width and height. This forwards
+ * to {@link #drawImage(Image, AffineTransform, ImageObserver)}.
+ *
+ * @param image the image to render
+ * @param x the x location to render to
+ * @param y the y location to render to
+ * @param width the target width of the image
+ * @param height the target height of the image
+ * @param bgcolor the background color to use for transparent pixels
+ * @param observer the image observer to receive notification
+ */
+ public boolean drawImage(Image image, int x, int y, int width, int height,
+ Color bgcolor, ImageObserver observer)
+ {
+ AffineTransform t = new AffineTransform();
+ t.translate(x, y);
+ double scaleX = (double) image.getWidth(observer) / (double) width;
+ double scaleY = (double) image.getHeight(observer) / (double) height;
+ t.scale(scaleX, scaleY);
+ // TODO: Somehow implement the background option.
+ return drawImage(image, t, observer);
+ }
+
+ /**
+ * Draws an image fragment to a rectangular area of the target.
+ *
+ * @param image the image to render
+ * @param dx1 the first corner of the destination rectangle
+ * @param dy1 the first corner of the destination rectangle
+ * @param dx2 the second corner of the destination rectangle
+ * @param dy2 the second corner of the destination rectangle
+ * @param sx1 the first corner of the source rectangle
+ * @param sy1 the first corner of the source rectangle
+ * @param sx2 the second corner of the source rectangle
+ * @param sy2 the second corner of the source rectangle
+ * @param observer the image observer to be notified
+ */
+ public boolean drawImage(Image image, int dx1, int dy1, int dx2, int dy2,
+ int sx1, int sy1, int sx2, int sy2,
+ ImageObserver observer)
+ {
+ int sx = Math.min(sx1, sx1);
+ int sy = Math.min(sy1, sy2);
+ int sw = Math.abs(sx1 - sx2);
+ int sh = Math.abs(sy1 - sy2);
+ int dx = Math.min(dx1, dx1);
+ int dy = Math.min(dy1, dy2);
+ int dw = Math.abs(dx1 - dx2);
+ int dh = Math.abs(dy1 - dy2);
+
+ AffineTransform t = new AffineTransform();
+ t.translate(sx - dx, sy - dy);
+ double scaleX = (double) sw / (double) dw;
+ double scaleY = (double) sh / (double) dh;
+ t.scale(scaleX, scaleY);
+ Rectangle areaOfInterest = new Rectangle(sx, sy, sw, sh);
+ return drawImageImpl(image, t, observer, areaOfInterest);
+ }
+
+ /**
+ * Draws an image fragment to a rectangular area of the target.
+ *
+ * @param image the image to render
+ * @param dx1 the first corner of the destination rectangle
+ * @param dy1 the first corner of the destination rectangle
+ * @param dx2 the second corner of the destination rectangle
+ * @param dy2 the second corner of the destination rectangle
+ * @param sx1 the first corner of the source rectangle
+ * @param sy1 the first corner of the source rectangle
+ * @param sx2 the second corner of the source rectangle
+ * @param sy2 the second corner of the source rectangle
+ * @param bgcolor the background color to use for transparent pixels
+ * @param observer the image observer to be notified
+ */
+ public boolean drawImage(Image image, int dx1, int dy1, int dx2, int dy2,
+ int sx1, int sy1, int sx2, int sy2, Color bgcolor,
+ ImageObserver observer)
+ {
+ // FIXME: Do something with bgcolor.
+ return drawImage(image, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2, observer);
+ }
+
+ /**
+ * Disposes this graphics object.
+ */
+ public void dispose()
+ {
+ // Nothing special to do here.
+ }
+
+ /**
+ * Fills the specified shape. Override this if your backend can efficiently
+ * fill shapes. This is possible on many systems via a polygon fill
+ * method or something similar. But keep in mind that Shapes can be quite
+ * complex (non-convex, with holes etc), which is not necessarily supported
+ * by all polygon fillers. Also note that you must perform clipping
+ * before filling the shape.
+ *
+ * @param s the shape to fill
+ * @param isFont <code>true</code> if the shape is a font outline
+ */
+ protected void fillShape(Shape s, boolean isFont)
+ {
+ // Determine if we need to antialias stuff.
+ boolean antialias = false;
+ if (isFont)
+ {
+ Object v = renderingHints.get(RenderingHints.KEY_TEXT_ANTIALIASING);
+ // We default to antialiasing for text rendering.
+ antialias = v == RenderingHints.VALUE_TEXT_ANTIALIAS_ON
+ || (v == RenderingHints.VALUE_TEXT_ANTIALIAS_DEFAULT
+ && DEFAULT_TEXT_AA);
+ }
+ else
+ {
+ Object v = renderingHints.get(RenderingHints.KEY_ANTIALIASING);
+ antialias = (v == RenderingHints.VALUE_ANTIALIAS_ON);
+ }
+ ScanlineConverter sc = getScanlineConverter();
+ int resolution = 0;
+ int yRes = 0;
+ if (antialias)
+ {
+ // Adjust resolution according to rendering hints.
+ resolution = 2;
+ yRes = 4;
+ }
+ sc.renderShape(this, s, clip, transform, resolution, yRes, renderingHints);
+ freeScanlineConverter(sc);
+ }
+
+ /**
+ * Returns the color model of this Graphics object.
+ *
+ * @return the color model of this Graphics object
+ */
+ protected abstract ColorModel getColorModel();
+
+ /**
+ * Returns the bounds of the target.
+ *
+ * @return the bounds of the target
+ */
+ protected abstract Rectangle getDeviceBounds();
+
+ /**
+ * Draws a line in optimization mode. The implementation should respect the
+ * clip and translation. It can assume that the clip is a rectangle and that
+ * the transform is only a translating transform.
+ *
+ * @param x0 the starting point, X coordinate
+ * @param y0 the starting point, Y coordinate
+ * @param x1 the end point, X coordinate
+ * @param y1 the end point, Y coordinate
+ */
+ protected void rawDrawLine(int x0, int y0, int x1, int y1)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.line == null)
+ sc.line = new Line2D.Float();
+ sc.line.setLine(x0, y0, x1, y1);
+ draw(sc.line);
+ }
+
+ protected void rawDrawRect(int x, int y, int w, int h)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.rect == null)
+ sc.rect = new Rectangle();
+ sc.rect.setBounds(x, y, w, h);
+ draw(sc.rect);
+ }
+
+ /**
+ * Clears a rectangle in optimization mode. The implementation should respect the
+ * clip and translation. It can assume that the clip is a rectangle and that
+ * the transform is only a translating transform.
+ *
+ * @param x the upper left corner, X coordinate
+ * @param y the upper left corner, Y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ protected void rawClearRect(int x, int y, int w, int h)
+ {
+ Paint savedForeground = getPaint();
+ setPaint(getBackground());
+ rawFillRect(x, y, w, h);
+ setPaint(savedForeground);
+ }
+
+ /**
+ * Fills a rectangle in optimization mode. The implementation should respect
+ * the clip but can assume that it is a rectangle.
+ *
+ * @param x the upper left corner, X coordinate
+ * @param y the upper left corner, Y coordinate
+ * @param w the width
+ * @param h the height
+ */
+ protected void rawFillRect(int x, int y, int w, int h)
+ {
+ ShapeCache sc = shapeCache;
+ if (sc.rect == null)
+ sc.rect = new Rectangle();
+ sc.rect.setBounds(x, y, w, h);
+ fill(sc.rect);
+ }
+
+ /**
+ * Draws an image in optimization mode. The implementation should respect
+ * the clip but can assume that it is a rectangle.
+ *
+ * @param image the image to be painted
+ * @param x the location, X coordinate
+ * @param y the location, Y coordinate
+ * @param obs the image observer to be notified
+ *
+ * @return <code>true</code> when the image is painted completely,
+ * <code>false</code> if it is still rendered
+ */
+ protected boolean rawDrawImage(Image image, int x, int y, ImageObserver obs)
+ {
+ AffineTransform t = new AffineTransform();
+ t.translate(x, y);
+ return drawImage(image, t, obs);
+ }
+
+ /**
+ * Copies a rectangular region to another location.
+ *
+ * @param x the upper left corner, X coordinate
+ * @param y the upper left corner, Y coordinate
+ * @param w the width
+ * @param h the height
+ * @param dx
+ * @param dy
+ */
+ protected void rawCopyArea(int x, int y, int w, int h, int dx, int dy)
+ {
+ copyAreaImpl(x, y, w, h, dx, dy);
+ }
+
+ // Private implementation methods.
+
+ /**
+ * Copies a rectangular area of the target raster to a different location.
+ */
+ private void copyAreaImpl(int x, int y, int w, int h, int dx, int dy)
+ {
+ // FIXME: Implement this properly.
+ throw new UnsupportedOperationException("Not implemented yet.");
+ }
+
+ /**
+ * Paints a scanline between x0 and x1. Override this when your backend
+ * can efficiently draw/fill horizontal lines.
+ *
+ * @param x0 the left offset
+ * @param x1 the right offset
+ * @param y the scanline
+ */
+ public void renderScanline(int y, ScanlineCoverage c)
+ {
+ PaintContext pCtx = getPaintContext();
+
+ int x0 = c.getMinX();
+ int x1 = c.getMaxX();
+ Raster paintRaster = pCtx.getRaster(x0, y, x1 - x0, 1);
+
+ // Do the anti aliasing thing.
+ float coverageAlpha = 0;
+ float maxCoverage = c.getMaxCoverage();
+ ColorModel cm = pCtx.getColorModel();
+ DataBuffer db = paintRaster.getDataBuffer();
+ Point loc = new Point(paintRaster.getMinX(), paintRaster.getMinY());
+ SampleModel sm = paintRaster.getSampleModel();
+ WritableRaster writeRaster = Raster.createWritableRaster(sm, db, loc);
+ WritableRaster alphaRaster = cm.getAlphaRaster(writeRaster);
+ int pixel;
+ ScanlineCoverage.Iterator iter = c.iterate();
+ while (iter.hasNext())
+ {
+ ScanlineCoverage.Range range = iter.next();
+ coverageAlpha = range.getCoverage() / maxCoverage;
+ if (coverageAlpha < 1.0)
+ {
+ for (int x = range.getXPos(); x < range.getXPosEnd(); x++)
+ {
+ pixel = alphaRaster.getSample(x, y, 0);
+ pixel = (int) (pixel * coverageAlpha);
+ alphaRaster.setSample(x, y, 0, pixel);
+ }
+ }
+ }
+ ColorModel paintColorModel = pCtx.getColorModel();
+ CompositeContext cCtx = composite.createContext(paintColorModel,
+ getColorModel(),
+ renderingHints);
+ WritableRaster raster = getDestinationRaster();
+ WritableRaster targetChild = raster.createWritableTranslatedChild(-x0, -y);
+
+ cCtx.compose(paintRaster, targetChild, targetChild);
+ updateRaster(raster, x0, y, x1 - x0, 1);
+ cCtx.dispose();
+ }
+
+
+ /**
+ * Initializes this graphics object. This must be called by subclasses in
+ * order to correctly initialize the state of this object.
+ */
+ protected void init()
+ {
+ setPaint(Color.BLACK);
+ setFont(FONT);
+ isOptimized = true;
+ }
+
+ /**
+ * Returns a WritableRaster that is used by this class to perform the
+ * rendering in. It is not necessary that the target surface immediately
+ * reflects changes in the raster. Updates to the raster are notified via
+ * {@link #updateRaster}.
+ *
+ * @return the destination raster
+ */
+ protected WritableRaster getDestinationRaster()
+ {
+ // TODO: Ideally we would fetch the xdrawable's surface pixels for
+ // initialization of the raster.
+ Rectangle db = getDeviceBounds();
+ if (destinationRaster == null)
+ {
+ int[] bandMasks = new int[]{ 0xFF0000, 0xFF00, 0xFF };
+ destinationRaster = Raster.createPackedRaster(DataBuffer.TYPE_INT,
+ db.width, db.height,
+ bandMasks, null);
+ // Initialize raster with white.
+ int x0 = destinationRaster.getMinX();
+ int x1 = destinationRaster.getWidth() + x0;
+ int y0 = destinationRaster.getMinY();
+ int y1 = destinationRaster.getHeight() + y0;
+ int numBands = destinationRaster.getNumBands();
+ for (int y = y0; y < y1; y++)
+ {
+ for (int x = x0; x < x1; x++)
+ {
+ for (int b = 0; b < numBands; b++)
+ destinationRaster.setSample(x, y, b, 255);
+ }
+ }
+ }
+ return destinationRaster;
+ }
+
+ /**
+ * Notifies the backend that the raster has changed in the specified
+ * rectangular area. The raster that is provided in this method is always
+ * the same as the one returned in {@link #getDestinationRaster}.
+ * Backends that reflect changes to this raster directly don't need to do
+ * anything here.
+ *
+ * @param raster the updated raster, identical to the raster returned
+ * by {@link #getDestinationRaster()}
+ * @param x the upper left corner of the updated region, X coordinate
+ * @param y the upper lef corner of the updated region, Y coordinate
+ * @param w the width of the updated region
+ * @param h the height of the updated region
+ */
+ protected void updateRaster(Raster raster, int x, int y, int w, int h)
+ {
+ // Nothing to do here. Backends that need to update their surface
+ // to reflect the change should override this method.
+ }
+
+ // Some helper methods.
+
+ /**
+ * Helper method to check and update the optimization conditions.
+ */
+ private void updateOptimization()
+ {
+ int transformType = transform.getType();
+ boolean optimizedTransform = false;
+ if (transformType == AffineTransform.TYPE_IDENTITY
+ || transformType == AffineTransform.TYPE_TRANSLATION)
+ optimizedTransform = true;
+
+ boolean optimizedClip = (clip == null || clip instanceof Rectangle);
+ isOptimized = optimizedClip
+ && optimizedTransform && paint instanceof Color
+ && composite == AlphaComposite.SrcOver
+ && stroke.equals(new BasicStroke());
+ }
+
+ /**
+ * Calculates the intersection of two rectangles. The result is stored
+ * in <code>rect</code>. This is basically the same
+ * like {@link Rectangle#intersection(Rectangle)}, only that it does not
+ * create new Rectangle instances. The tradeoff is that you loose any data in
+ * <code>rect</code>.
+ *
+ * @param x upper-left x coodinate of first rectangle
+ * @param y upper-left y coodinate of first rectangle
+ * @param w width of first rectangle
+ * @param h height of first rectangle
+ * @param rect a Rectangle object of the second rectangle
+ *
+ * @throws NullPointerException if rect is null
+ *
+ * @return a rectangle corresponding to the intersection of the
+ * two rectangles. An empty rectangle is returned if the rectangles
+ * do not overlap
+ */
+ private static Rectangle computeIntersection(int x, int y, int w, int h,
+ Rectangle rect)
+ {
+ int x2 = rect.x;
+ int y2 = rect.y;
+ int w2 = rect.width;
+ int h2 = rect.height;
+
+ int dx = (x > x2) ? x : x2;
+ int dy = (y > y2) ? y : y2;
+ int dw = (x + w < x2 + w2) ? (x + w - dx) : (x2 + w2 - dx);
+ int dh = (y + h < y2 + h2) ? (y + h - dy) : (y2 + h2 - dy);
+
+ if (dw >= 0 && dh >= 0)
+ rect.setBounds(dx, dy, dw, dh);
+ else
+ rect.setBounds(0, 0, 0, 0);
+
+ return rect;
+ }
+
+ /**
+ * Helper method to transform the clip. This is called by the various
+ * transformation-manipulation methods to update the clip (which is in
+ * userspace) accordingly.
+ *
+ * The transform usually is the inverse transform that was applied to the
+ * graphics object.
+ *
+ * @param t the transform to apply to the clip
+ */
+ private void updateClip(AffineTransform t)
+ {
+ if (! (clip instanceof GeneralPath))
+ clip = new GeneralPath(clip);
+
+ GeneralPath p = (GeneralPath) clip;
+ p.transform(t);
+ }
+
+ /**
+ * Returns a free scanline converter from the pool.
+ *
+ * @return a scanline converter
+ */
+ private ScanlineConverter getScanlineConverter()
+ {
+ synchronized (scanlineConverters)
+ {
+ ScanlineConverter sc;
+ if (scanlineConverters.size() > 0)
+ {
+ sc = scanlineConverters.removeFirst();
+ }
+ else
+ {
+ sc = new ScanlineConverter();
+ }
+ return sc;
+ }
+ }
+
+ /**
+ * Puts a scanline converter back in the pool.
+ *
+ * @param sc
+ */
+ private void freeScanlineConverter(ScanlineConverter sc)
+ {
+ synchronized (scanlineConverters)
+ {
+ scanlineConverters.addLast(sc);
+ }
+ }
+
+ private PaintContext getPaintContext()
+ {
+ if (this.paintContext == null)
+ {
+ this.paintContext =
+ this.foreground.createContext(getColorModel(),
+ getDeviceBounds(),
+ getClipBounds(),
+ getTransform(),
+ getRenderingHints());
+ }
+
+ return this.paintContext;
+ }
+
+ /**
+ * Scales an image to the specified width and height. This should also
+ * be used to implement
+ * {@link Toolkit#prepareImage(Image, int, int, ImageObserver)}.
+ * This uses {@link Toolkit#createImage(ImageProducer)} to create the actual
+ * image.
+ *
+ * @param image the image to prepare
+ * @param w the width
+ * @param h the height
+ *
+ * @return the scaled image
+ */
+ public static Image prepareImage(Image image, int w, int h)
+ {
+ // Try to find cached scaled image.
+ HashMap<Dimension,Image> scaledTable = imageCache.get(image);
+ Dimension size = new Dimension(w, h);
+ Image scaled = null;
+ if (scaledTable != null)
+ {
+ scaled = scaledTable.get(size);
+ }
+ if (scaled == null)
+ {
+ // No cached scaled image. Start scaling image now.
+ ImageProducer source = image.getSource();
+ ReplicateScaleFilter scaler = new ReplicateScaleFilter(w, h);
+ FilteredImageSource filteredSource =
+ new FilteredImageSource(source, scaler);
+ // Ideally, this should asynchronously scale the image.
+ Image scaledImage =
+ Toolkit.getDefaultToolkit().createImage(filteredSource);
+ scaled = scaledImage;
+ // Put scaled image in cache.
+ if (scaledTable == null)
+ {
+ scaledTable = new HashMap<Dimension,Image>();
+ imageCache.put(image, scaledTable);
+ }
+ scaledTable.put(size, scaledImage);
+ }
+ return scaled;
+ }
+
+}