summaryrefslogtreecommitdiff
path: root/libjava/classpath/gnu/java/security/key/dss/FIPS186.java
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/classpath/gnu/java/security/key/dss/FIPS186.java')
-rw-r--r--libjava/classpath/gnu/java/security/key/dss/FIPS186.java262
1 files changed, 262 insertions, 0 deletions
diff --git a/libjava/classpath/gnu/java/security/key/dss/FIPS186.java b/libjava/classpath/gnu/java/security/key/dss/FIPS186.java
new file mode 100644
index 000000000..5d371e10c
--- /dev/null
+++ b/libjava/classpath/gnu/java/security/key/dss/FIPS186.java
@@ -0,0 +1,262 @@
+/* FIPS186.java --
+ Copyright 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
+
+This file is a part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or (at
+your option) any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+USA
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package gnu.java.security.key.dss;
+
+import gnu.java.security.hash.Sha160;
+import gnu.java.security.util.PRNG;
+
+import java.math.BigInteger;
+import java.security.SecureRandom;
+
+/**
+ * An implementation of the DSA parameters generation as described in FIPS-186.
+ * <p>
+ * References:
+ * <p>
+ * <a href="http://www.itl.nist.gov/fipspubs/fip186.htm">Digital Signature
+ * Standard (DSS)</a>, Federal Information Processing Standards Publication
+ * 186. National Institute of Standards and Technology.
+ */
+public class FIPS186
+{
+ public static final int DSA_PARAMS_SEED = 0;
+
+ public static final int DSA_PARAMS_COUNTER = 1;
+
+ public static final int DSA_PARAMS_Q = 2;
+
+ public static final int DSA_PARAMS_P = 3;
+
+ public static final int DSA_PARAMS_E = 4;
+
+ public static final int DSA_PARAMS_G = 5;
+
+ /** The BigInteger constant 2. */
+ private static final BigInteger TWO = BigInteger.valueOf(2L);
+
+ private static final BigInteger TWO_POW_160 = TWO.pow(160);
+
+ /** The SHA instance to use. */
+ private Sha160 sha = new Sha160();
+
+ /** The length of the modulus of DSS keys generated by this instance. */
+ private int L;
+
+ /** The optional {@link SecureRandom} instance to use. */
+ private SecureRandom rnd = null;
+
+ /** Our default source of randomness. */
+ private PRNG prng = null;
+
+ public FIPS186(int L, SecureRandom rnd)
+ {
+ super();
+
+ this.L = L;
+ this.rnd = rnd;
+ }
+
+ /**
+ * This method generates the DSS <code>p</code>, <code>q</code>, and
+ * <code>g</code> parameters only when <code>L</code> (the modulus length)
+ * is not one of the following: <code>512</code>, <code>768</code> and
+ * <code>1024</code>. For those values of <code>L</code>, this
+ * implementation uses pre-computed values of <code>p</code>,
+ * <code>q</code>, and <code>g</code> given in the document <i>CryptoSpec</i>
+ * included in the security guide documentation of the standard JDK
+ * distribution.
+ * <p>
+ * The DSS requires two primes , <code>p</code> and <code>q</code>,
+ * satisfying the following three conditions:
+ * <ul>
+ * <li><code>2<sup>159</sup> &lt; q &lt; 2<sup>160</sup></code></li>
+ * <li><code>2<sup>L-1</sup> &lt; p &lt; 2<sup>L</sup></code> for a
+ * specified <code>L</code>, where <code>L = 512 + 64j</code> for some
+ * <code>0 &lt;= j &lt;= 8</code></li>
+ * <li>q divides p - 1.</li>
+ * </ul>
+ * The algorithm used to find these primes is as described in FIPS-186,
+ * section 2.2: GENERATION OF PRIMES. This prime generation scheme starts by
+ * using the {@link Sha160} and a user supplied <i>SEED</i> to construct a
+ * prime, <code>q</code>, in the range 2<sup>159</sup> &lt; q &lt; 2<sup>160</sup>.
+ * Once this is accomplished, the same <i>SEED</i> value is used to construct
+ * an <code>X</code> in the range <code>2<sup>L-1
+ * </sup> &lt; X &lt; 2<sup>L</sup>. The prime, <code>p</code>, is then
+ * formed by rounding <code>X</code> to a number congruent to <code>1 mod
+ * 2q</code>. In this implementation we use the same <i>SEED</i> value given
+ * in FIPS-186, Appendix 5.
+ */
+ public BigInteger[] generateParameters()
+ {
+ int counter, offset;
+ BigInteger SEED, alpha, U, q, OFFSET, SEED_PLUS_OFFSET, W, X, p, c, g;
+ byte[] a, u;
+ byte[] kb = new byte[20]; // to hold 160 bits of randomness
+
+ // Let L-1 = n*160 + b, where b and n are integers and 0 <= b < 160.
+ int b = (L - 1) % 160;
+ int n = (L - 1 - b) / 160;
+ BigInteger[] V = new BigInteger[n + 1];
+ algorithm: while (true)
+ {
+ step1: while (true)
+ {
+ // 1. Choose an arbitrary sequence of at least 160 bits and
+ // call it SEED.
+ nextRandomBytes(kb);
+ SEED = new BigInteger(1, kb).setBit(159).setBit(0);
+ // Let g be the length of SEED in bits. here always 160
+ // 2. Compute: U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]
+ alpha = SEED.add(BigInteger.ONE).mod(TWO_POW_160);
+ synchronized (sha)
+ {
+ a = SEED.toByteArray();
+ sha.update(a, 0, a.length);
+ a = sha.digest();
+ u = alpha.toByteArray();
+ sha.update(u, 0, u.length);
+ u = sha.digest();
+ }
+ for (int i = 0; i < a.length; i++)
+ a[i] ^= u[i];
+
+ U = new BigInteger(1, a);
+ // 3. Form q from U by setting the most significant bit (the
+ // 2**159 bit) and the least significant bit to 1. In terms of
+ // boolean operations, q = U OR 2**159 OR 1. Note that
+ // 2**159 < q < 2**160.
+ q = U.setBit(159).setBit(0);
+ // 4. Use a robust primality testing algorithm to test whether
+ // q is prime(1). A robust primality test is one where the
+ // probability of a non-prime number passing the test is at
+ // most 1/2**80.
+ // 5. If q is not prime, go to step 1.
+ if (q.isProbablePrime(80))
+ break step1;
+ } // step1
+ // 6. Let counter = 0 and offset = 2.
+ counter = 0;
+ offset = 2;
+ while (true)
+ {
+ OFFSET = BigInteger.valueOf(offset & 0xFFFFFFFFL);
+ SEED_PLUS_OFFSET = SEED.add(OFFSET);
+ // 7. For k = 0,...,n let V[k] = SHA[(SEED + offset + k) mod 2**g].
+ synchronized (sha)
+ {
+ for (int k = 0; k <= n; k++)
+ {
+ a = SEED_PLUS_OFFSET
+ .add(BigInteger.valueOf(k & 0xFFFFFFFFL))
+ .mod(TWO_POW_160).toByteArray();
+ sha.update(a, 0, a.length);
+ V[k] = new BigInteger(1, sha.digest());
+ }
+ }
+ // 8. Let W be the integer:
+ // V[0]+V[1]*2**160+...+V[n-1]*2**((n-1)*160)+(V[n]mod2**b)*2**(n*160)
+ // and let : X = W + 2**(L-1).
+ // Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L.
+ W = V[0];
+ for (int k = 1; k < n; k++)
+ W = W.add(V[k].multiply(TWO.pow(k * 160)));
+
+ W = W.add(V[n].mod(TWO.pow(b)).multiply(TWO.pow(n * 160)));
+ X = W.add(TWO.pow(L - 1));
+ // 9. Let c = X mod 2q and set p = X - (c - 1).
+ // Note that p is congruent to 1 mod 2q.
+ c = X.mod(TWO.multiply(q));
+ p = X.subtract(c.subtract(BigInteger.ONE));
+ // 10. If p < 2**(L-1), then go to step 13.
+ if (p.compareTo(TWO.pow(L - 1)) >= 0)
+ {
+ // 11. Perform a robust primality test on p.
+ // 12. If p passes the test performed in step 11, go to step 15.
+ if (p.isProbablePrime(80))
+ break algorithm;
+ }
+ // 13. Let counter = counter + 1 and offset = offset + n + 1.
+ counter++;
+ offset += n + 1;
+ // 14. If counter >= 4096 go to step 1, otherwise go to step 7.
+ if (counter >= 4096)
+ continue algorithm;
+ } // step7
+ } // algorithm
+ // compute g. from FIPS-186, Appendix 4:
+ // 1. Generate p and q as specified in Appendix 2.
+ // 2. Let e = (p - 1) / q
+ BigInteger e = p.subtract(BigInteger.ONE).divide(q);
+ BigInteger h = TWO;
+ BigInteger p_minus_1 = p.subtract(BigInteger.ONE);
+ g = TWO;
+ // 3. Set h = any integer, where 1 < h < p - 1 and
+ // h differs from any value previously tried
+ for (; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE))
+ {
+ // 4. Set g = h**e mod p
+ g = h.modPow(e, p);
+ // 5. If g = 1, go to step 3
+ if (! g.equals(BigInteger.ONE))
+ break;
+ }
+ return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g };
+ }
+
+ /**
+ * Fills the designated byte array with random data.
+ *
+ * @param buffer the byte array to fill with random data.
+ */
+ private void nextRandomBytes(byte[] buffer)
+ {
+ if (rnd != null)
+ rnd.nextBytes(buffer);
+ else
+ getDefaultPRNG().nextBytes(buffer);
+ }
+
+ private PRNG getDefaultPRNG()
+ {
+ if (prng == null)
+ prng = PRNG.getInstance();
+
+ return prng;
+ }
+}