summaryrefslogtreecommitdiff
path: root/libjava/classpath/gnu/javax/crypto/cipher/Anubis.java
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/classpath/gnu/javax/crypto/cipher/Anubis.java')
-rw-r--r--libjava/classpath/gnu/javax/crypto/cipher/Anubis.java491
1 files changed, 491 insertions, 0 deletions
diff --git a/libjava/classpath/gnu/javax/crypto/cipher/Anubis.java b/libjava/classpath/gnu/javax/crypto/cipher/Anubis.java
new file mode 100644
index 000000000..3526ad612
--- /dev/null
+++ b/libjava/classpath/gnu/javax/crypto/cipher/Anubis.java
@@ -0,0 +1,491 @@
+/* Anubis.java --
+ Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
+
+This file is a part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or (at
+your option) any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+USA
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package gnu.javax.crypto.cipher;
+
+import gnu.java.security.Configuration;
+import gnu.java.security.Registry;
+import gnu.java.security.util.Util;
+
+import java.security.InvalidKeyException;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.Iterator;
+import java.util.logging.Logger;
+
+/**
+ * Anubis is a 128-bit block cipher that accepts a variable-length key. The
+ * cipher is a uniform substitution-permutation network whose inverse only
+ * differs from the forward operation in the key schedule. The design of both
+ * the round transformation and the key schedule is based upon the Wide Trail
+ * strategy and permits a wide variety of implementation trade-offs.
+ * <p>
+ * References:
+ * <ol>
+ * <li><a
+ * href="http://planeta.terra.com.br/informatica/paulobarreto/AnubisPage.html">The
+ * ANUBIS Block Cipher</a>.<br>
+ * <a href="mailto:paulo.barreto@terra.com.br">Paulo S.L.M. Barreto</a> and <a
+ * href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
+ * </ol>
+ */
+public final class Anubis
+ extends BaseCipher
+{
+ private static final Logger log = Logger.getLogger(Anubis.class.getName());
+ private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
+ private static final int DEFAULT_KEY_SIZE = 16; // in bytes
+ private static final String Sd = // p. 25 [ANUBIS]
+ "\uBA54\u2F74\u53D3\uD24D\u50AC\u8DBF\u7052\u9A4C"
+ + "\uEAD5\u97D1\u3351\u5BA6\uDE48\uA899\uDB32\uB7FC"
+ + "\uE39E\u919B\uE2BB\u416E\uA5CB\u6B95\uA1F3\uB102"
+ + "\uCCC4\u1D14\uC363\uDA5D\u5FDC\u7DCD\u7F5A\u6C5C"
+ + "\uF726\uFFED\uE89D\u6F8E\u19A0\uF089\u0F07\uAFFB"
+ + "\u0815\u0D04\u0164\uDF76\u79DD\u3D16\u3F37\u6D38"
+ + "\uB973\uE935\u5571\u7B8C\u7288\uF62A\u3E5E\u2746"
+ + "\u0C65\u6861\u03C1\u57D6\uD958\uD866\uD73A\uC83C"
+ + "\uFA96\uA798\uECB8\uC7AE\u694B\uABA9\u670A\u47F2"
+ + "\uB522\uE5EE\uBE2B\u8112\u831B\u0E23\uF545\u21CE"
+ + "\u492C\uF9E6\uB628\u1782\u1A8B\uFE8A\u09C9\u874E"
+ + "\uE12E\uE4E0\uEB90\uA41E\u8560\u0025\uF4F1\u940B"
+ + "\uE775\uEF34\u31D4\uD086\u7EAD\uFD29\u303B\u9FF8"
+ + "\uC613\u0605\uC511\u777C\u7A78\u361C\u3959\u1856"
+ + "\uB3B0\u2420\uB292\uA3C0\u4462\u10B4\u8443\u93C2"
+ + "\u4ABD\u8F2D\uBC9C\u6A40\uCFA2\u804F\u1FCA\uAA42";
+ private static final byte[] S = new byte[256];
+ private static final int[] T0 = new int[256];
+ private static final int[] T1 = new int[256];
+ private static final int[] T2 = new int[256];
+ private static final int[] T3 = new int[256];
+ private static final int[] T4 = new int[256];
+ private static final int[] T5 = new int[256];
+ /**
+ * Anubis round constants. This is the largest possible considering that we
+ * always use R values, R = 8 + N, and 4 &lt;= N &lt;= 10.
+ */
+ private static final int[] rc = new int[18];
+ /**
+ * KAT vector (from ecb_vk): I=83
+ * KEY=000000000000000000002000000000000000000000000000
+ * CT=2E66AB15773F3D32FB6C697509460DF4
+ */
+ private static final byte[] KAT_KEY =
+ Util.toBytesFromString("000000000000000000002000000000000000000000000000");
+ private static final byte[] KAT_CT =
+ Util.toBytesFromString("2E66AB15773F3D32FB6C697509460DF4");
+ /** caches the result of the correctness test, once executed. */
+ private static Boolean valid;
+
+ static
+ {
+ long time = System.currentTimeMillis();
+ int ROOT = 0x11d; // para. 2.1 [ANUBIS]
+ int i, s, s2, s4, s6, s8, t;
+ char c;
+ for (i = 0; i < 256; i++)
+ {
+ c = Sd.charAt(i >>> 1);
+ s = ((i & 1) == 0 ? c >>> 8 : c) & 0xFF;
+ S[i] = (byte) s;
+ s2 = s << 1;
+ if (s2 > 0xFF)
+ s2 ^= ROOT;
+ s4 = s2 << 1;
+ if (s4 > 0xFF)
+ s4 ^= ROOT;
+ s6 = s4 ^ s2;
+ s8 = s4 << 1;
+ if (s8 > 0xFF)
+ s8 ^= ROOT;
+ T0[i] = s << 24 | s2 << 16 | s4 << 8 | s6;
+ T1[i] = s2 << 24 | s << 16 | s6 << 8 | s4;
+ T2[i] = s4 << 24 | s6 << 16 | s << 8 | s2;
+ T3[i] = s6 << 24 | s4 << 16 | s2 << 8 | s;
+ T4[i] = s << 24 | s << 16 | s << 8 | s;
+ T5[s] = s << 24 | s2 << 16 | s6 << 8 | s8;
+ }
+ // compute round constant
+ for (i = 0, s = 0; i < 18;)
+ rc[i++] = S[(s++) & 0xFF] << 24
+ | (S[(s++) & 0xFF] & 0xFF) << 16
+ | (S[(s++) & 0xFF] & 0xFF) << 8
+ | (S[(s++) & 0xFF] & 0xFF);
+ time = System.currentTimeMillis() - time;
+ if (Configuration.DEBUG)
+ {
+ log.fine("Static data");
+ log.fine("T0[]:");
+ StringBuilder sb;
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (t = 0; t < 4; t++)
+ sb.append("0x").append(Util.toString(T0[i * 4 + t])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T1[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (t = 0; t < 4; t++)
+ sb.append("0x").append(Util.toString(T1[i * 4 + t])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T2[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (t = 0; t < 4; t++)
+ sb.append("0x").append(Util.toString(T2[i * 4 + t])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T3[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (t = 0; t < 4; t++)
+ sb.append("0x").append(Util.toString(T3[i * 4 + t])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T4[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (t = 0; t < 4; t++)
+ sb.append("0x").append(Util.toString(T4[i * 4 + t])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T5[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (t = 0; t < 4; t++)
+ sb.append("0x").append(Util.toString(T5[i * 4 + t])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("rc[]:");
+ for (i = 0; i < 18; i++)
+ log.fine("0x" + Util.toString(rc[i]));
+ log.fine("Total initialization time: " + time + " ms.");
+ }
+ }
+
+ /** Trivial 0-arguments constructor. */
+ public Anubis()
+ {
+ super(Registry.ANUBIS_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
+ }
+
+ private static void anubis(byte[] in, int i, byte[] out, int j, int[][] K)
+ {
+ // extract encryption round keys
+ int R = K.length - 1;
+ int[] Ker = K[0];
+ // mu function + affine key addition
+ int a0 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Ker[0];
+ int a1 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Ker[1];
+ int a2 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Ker[2];
+ int a3 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i] & 0xFF) ) ^ Ker[3];
+ int b0, b1, b2, b3;
+ // round function
+ for (int r = 1; r < R; r++)
+ {
+ Ker = K[r];
+ b0 = T0[ a0 >>> 24 ]
+ ^ T1[ a1 >>> 24 ]
+ ^ T2[ a2 >>> 24 ]
+ ^ T3[ a3 >>> 24 ] ^ Ker[0];
+ b1 = T0[(a0 >>> 16) & 0xFF]
+ ^ T1[(a1 >>> 16) & 0xFF]
+ ^ T2[(a2 >>> 16) & 0xFF]
+ ^ T3[(a3 >>> 16) & 0xFF] ^ Ker[1];
+ b2 = T0[(a0 >>> 8) & 0xFF]
+ ^ T1[(a1 >>> 8) & 0xFF]
+ ^ T2[(a2 >>> 8) & 0xFF]
+ ^ T3[(a3 >>> 8) & 0xFF] ^ Ker[2];
+ b3 = T0[ a0 & 0xFF]
+ ^ T1[ a1 & 0xFF]
+ ^ T2[ a2 & 0xFF]
+ ^ T3[ a3 & 0xFF] ^ Ker[3];
+ a0 = b0;
+ a1 = b1;
+ a2 = b2;
+ a3 = b3;
+ if (Configuration.DEBUG)
+ log.fine("T" + r + "=" + Util.toString(a0) + Util.toString(a1)
+ + Util.toString(a2) + Util.toString(a3));
+ }
+ // last round function
+ Ker = K[R];
+ int tt = Ker[0];
+ out[j++] = (byte)(S[ a0 >>> 24 ] ^ (tt >>> 24));
+ out[j++] = (byte)(S[ a1 >>> 24 ] ^ (tt >>> 16));
+ out[j++] = (byte)(S[ a2 >>> 24 ] ^ (tt >>> 8));
+ out[j++] = (byte)(S[ a3 >>> 24 ] ^ tt);
+ tt = Ker[1];
+ out[j++] = (byte)(S[(a0 >>> 16) & 0xFF] ^ (tt >>> 24));
+ out[j++] = (byte)(S[(a1 >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(S[(a2 >>> 16) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(S[(a3 >>> 16) & 0xFF] ^ tt);
+ tt = Ker[2];
+ out[j++] = (byte)(S[(a0 >>> 8) & 0xFF] ^ (tt >>> 24));
+ out[j++] = (byte)(S[(a1 >>> 8) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(S[(a2 >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(S[(a3 >>> 8) & 0xFF] ^ tt);
+ tt = Ker[3];
+ out[j++] = (byte)(S[ a0 & 0xFF] ^ (tt >>> 24));
+ out[j++] = (byte)(S[ a1 & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(S[ a2 & 0xFF] ^ (tt >>> 8));
+ out[j ] = (byte)(S[ a3 & 0xFF] ^ tt);
+ if (Configuration.DEBUG)
+ log.fine("T=" + Util.toString(out, j - 15, 16) + "\n");
+ }
+
+ public Object clone()
+ {
+ Anubis result = new Anubis();
+ result.currentBlockSize = this.currentBlockSize;
+
+ return result;
+ }
+
+ public Iterator blockSizes()
+ {
+ ArrayList al = new ArrayList();
+ al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE));
+
+ return Collections.unmodifiableList(al).iterator();
+ }
+
+ public Iterator keySizes()
+ {
+ ArrayList al = new ArrayList();
+ for (int n = 4; n < 10; n++)
+ al.add(Integer.valueOf(n * 32 / 8));
+ return Collections.unmodifiableList(al).iterator();
+ }
+
+ /**
+ * Expands a user-supplied key material into a session key for a designated
+ * <i>block size</i>.
+ *
+ * @param uk the 32N-bit user-supplied key material; 4 &lt;= N &lt;= 10.
+ * @param bs the desired block size in bytes.
+ * @return an Object encapsulating the session key.
+ * @exception IllegalArgumentException if the block size is not 16 (128-bit).
+ * @exception InvalidKeyException if the key data is invalid.
+ */
+ public Object makeKey(byte[] uk, int bs) throws InvalidKeyException
+ {
+ if (bs != DEFAULT_BLOCK_SIZE)
+ throw new IllegalArgumentException();
+ if (uk == null)
+ throw new InvalidKeyException("Empty key");
+ if ((uk.length % 4) != 0)
+ throw new InvalidKeyException("Key is not multiple of 32-bit.");
+ int N = uk.length / 4;
+ if (N < 4 || N > 10)
+ throw new InvalidKeyException("Key is not 32N; 4 <= N <= 10");
+ int R = 8 + N;
+ int[][] Ke = new int[R + 1][4]; // encryption round keys
+ int[][] Kd = new int[R + 1][4]; // decryption round keys
+ int[] tk = new int[N];
+ int[] kk = new int[N];
+ int r, i, j, k, k0, k1, k2, k3, tt;
+ // apply mu to k0
+ for (r = 0, i = 0; r < N;)
+ tk[r++] = uk[i++] << 24
+ | (uk[i++] & 0xFF) << 16
+ | (uk[i++] & 0xFF) << 8
+ | (uk[i++] & 0xFF);
+ for (r = 0; r <= R; r++)
+ {
+ if (r > 0)
+ {
+ // psi = key evolution function
+ kk[0] = T0[(tk[0 ] >>> 24) ]
+ ^ T1[(tk[N - 1] >>> 16) & 0xFF]
+ ^ T2[(tk[N - 2] >>> 8) & 0xFF]
+ ^ T3[ tk[N - 3] & 0xFF];
+ kk[1] = T0[(tk[1 ] >>> 24) ]
+ ^ T1[(tk[0 ] >>> 16) & 0xFF]
+ ^ T2[(tk[N - 1] >>> 8) & 0xFF]
+ ^ T3[ tk[N - 2] & 0xFF];
+ kk[2] = T0[(tk[2 ] >>> 24) ]
+ ^ T1[(tk[1 ] >>> 16) & 0xFF]
+ ^ T2[(tk[0 ] >>> 8) & 0xFF]
+ ^ T3[ tk[N - 1] & 0xFF];
+ kk[3] = T0[(tk[3 ] >>> 24) ]
+ ^ T1[(tk[2 ] >>> 16) & 0xFF]
+ ^ T2[(tk[1 ] >>> 8) & 0xFF]
+ ^ T3[ tk[0 ] & 0xFF];
+ for (i = 4; i < N; i++)
+ kk[i] = T0[ tk[i ] >>> 24 ]
+ ^ T1[(tk[i - 1] >>> 16) & 0xFF]
+ ^ T2[(tk[i - 2] >>> 8) & 0xFF]
+ ^ T3[ tk[i - 3] & 0xFF];
+ // apply sigma (affine addition) to round constant
+ tk[0] = rc[r - 1] ^ kk[0];
+ for (i = 1; i < N; i++)
+ tk[i] = kk[i];
+ }
+ // phi = key selection function
+ tt = tk[N - 1];
+ k0 = T4[ tt >>> 24 ];
+ k1 = T4[(tt >>> 16) & 0xFF];
+ k2 = T4[(tt >>> 8) & 0xFF];
+ k3 = T4[ tt & 0xFF];
+ for (k = N - 2; k >= 0; k--)
+ {
+ tt = tk[k];
+ k0 = T4[ tt >>> 24 ]
+ ^ (T5[(k0 >>> 24) & 0xFF] & 0xFF000000)
+ ^ (T5[(k0 >>> 16) & 0xFF] & 0x00FF0000)
+ ^ (T5[(k0 >>> 8) & 0xFF] & 0x0000FF00)
+ ^ (T5 [k0 & 0xFF] & 0x000000FF);
+ k1 = T4[(tt >>> 16) & 0xFF]
+ ^ (T5[(k1 >>> 24) & 0xFF] & 0xFF000000)
+ ^ (T5[(k1 >>> 16) & 0xFF] & 0x00FF0000)
+ ^ (T5[(k1 >>> 8) & 0xFF] & 0x0000FF00)
+ ^ (T5[ k1 & 0xFF] & 0x000000FF);
+ k2 = T4[(tt >>> 8) & 0xFF]
+ ^ (T5[(k2 >>> 24) & 0xFF] & 0xFF000000)
+ ^ (T5[(k2 >>> 16) & 0xFF] & 0x00FF0000)
+ ^ (T5[(k2 >>> 8) & 0xFF] & 0x0000FF00)
+ ^ (T5[ k2 & 0xFF] & 0x000000FF);
+ k3 = T4[ tt & 0xFF]
+ ^ (T5[(k3 >>> 24) & 0xFF] & 0xFF000000)
+ ^ (T5[(k3 >>> 16) & 0xFF] & 0x00FF0000)
+ ^ (T5[(k3 >>> 8) & 0xFF] & 0x0000FF00)
+ ^ (T5[ k3 & 0xFF] & 0x000000FF);
+ }
+ Ke[r][0] = k0;
+ Ke[r][1] = k1;
+ Ke[r][2] = k2;
+ Ke[r][3] = k3;
+ if (r == 0 || r == R)
+ {
+ Kd[R - r][0] = k0;
+ Kd[R - r][1] = k1;
+ Kd[R - r][2] = k2;
+ Kd[R - r][3] = k3;
+ }
+ else
+ {
+ Kd[R - r][0] = T0[S[ k0 >>> 24 ] & 0xFF]
+ ^ T1[S[(k0 >>> 16) & 0xFF] & 0xFF]
+ ^ T2[S[(k0 >>> 8) & 0xFF] & 0xFF]
+ ^ T3[S[ k0 & 0xFF] & 0xFF];
+ Kd[R - r][1] = T0[S[ k1 >>> 24 ] & 0xFF]
+ ^ T1[S[(k1 >>> 16) & 0xFF] & 0xFF]
+ ^ T2[S[(k1 >>> 8) & 0xFF] & 0xFF]
+ ^ T3[S[ k1 & 0xFF] & 0xFF];
+ Kd[R - r][2] = T0[S[ k2 >>> 24 ] & 0xFF]
+ ^ T1[S[(k2 >>> 16) & 0xFF] & 0xFF]
+ ^ T2[S[(k2 >>> 8) & 0xFF] & 0xFF]
+ ^ T3[S[ k2 & 0xFF] & 0xFF];
+ Kd[R - r][3] = T0[S[ k3 >>> 24 ] & 0xFF]
+ ^ T1[S[(k3 >>> 16) & 0xFF] & 0xFF]
+ ^ T2[S[(k3 >>> 8) & 0xFF] & 0xFF]
+ ^ T3[S[ k3 & 0xFF] & 0xFF];
+ }
+ }
+ if (Configuration.DEBUG)
+ {
+ log.fine("Key schedule");
+ log.fine("Ke[]:");
+ StringBuilder sb;
+ for (r = 0; r < R + 1; r++)
+ {
+ sb = new StringBuilder("#").append(r).append(": ");
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(Ke[r][j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("Kd[]:");
+ for (r = 0; r < R + 1; r++)
+ {
+ sb = new StringBuilder("#").append(r).append(": ");
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(Kd[r][j])).append(", ");
+ log.fine(sb.toString());
+ }
+ }
+ return new Object[] { Ke, Kd };
+ }
+
+ public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
+ {
+ if (bs != DEFAULT_BLOCK_SIZE)
+ throw new IllegalArgumentException();
+ int[][] K = (int[][])((Object[]) k)[0];
+ anubis(in, i, out, j, K);
+ }
+
+ public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
+ {
+ if (bs != DEFAULT_BLOCK_SIZE)
+ throw new IllegalArgumentException();
+ int[][] K = (int[][])((Object[]) k)[1];
+ anubis(in, i, out, j, K);
+ }
+
+ public boolean selfTest()
+ {
+ if (valid == null)
+ {
+ boolean result = super.selfTest(); // do symmetry tests
+ if (result)
+ result = testKat(KAT_KEY, KAT_CT);
+ valid = Boolean.valueOf(result);
+ }
+ return valid.booleanValue();
+ }
+}