summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html')
-rw-r--r--libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html481
1 files changed, 481 insertions, 0 deletions
diff --git a/libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html b/libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html
new file mode 100644
index 000000000..5a52d693e
--- /dev/null
+++ b/libjava/classpath/java/awt/geom/doc-files/FlatteningPathIterator-1.html
@@ -0,0 +1,481 @@
+<?xml version="1.0" encoding="US-ASCII"?>
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
+ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
+<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
+<head>
+ <title>The GNU Implementation of java.awt.geom.FlatteningPathIterator</title>
+ <meta name="author" content="Sascha Brawer" />
+ <style type="text/css"><!--
+ td { white-space: nowrap; }
+ li { margin: 2mm 0; }
+ --></style>
+</head>
+<body>
+
+<h1>The GNU Implementation of FlatteningPathIterator</h1>
+
+<p><i><a href="http://www.dandelis.ch/people/brawer/">Sascha
+Brawer</a>, November 2003</i></p>
+
+<p>This document describes the GNU implementation of the class
+<code>java.awt.geom.FlatteningPathIterator</code>. It does
+<em>not</em> describe how a programmer should use this class; please
+refer to the generated API documentation for this purpose. Instead, it
+is intended for maintenance programmers who want to understand the
+implementation, for example because they want to extend the class or
+fix a bug.</p>
+
+
+<h2>Data Structures</h2>
+
+<p>The algorithm uses a stack. Its allocation is delayed to the time
+when the source path iterator actually returns the first curved
+segment (either <code>SEG_QUADTO</code> or <code>SEG_CUBICTO</code>).
+If the input path does not contain any curved segments, the value of
+the <code>stack</code> variable stays <code>null</code>. In this quite
+common case, the memory consumption is minimal.</p>
+
+<dl><dt><code>stack</code></dt><dd>The variable <code>stack</code> is
+a <code>double</code> array that holds the start, control and end
+points of individual sub-segments.</dd>
+
+<dt><code>recLevel</code></dt><dd>The variable <code>recLevel</code>
+holds how many recursive sub-divisions were needed to calculate a
+segment. The original curve has recursion level 0. For each
+sub-division, the corresponding recursion level is increased by
+one.</dd>
+
+<dt><code>stackSize</code></dt><dd>Finally, the variable
+<code>stackSize</code> indicates how many sub-segments are stored on
+the stack.</dd></dl>
+
+<h2>Algorithm</h2>
+
+<p>The implementation separately processes each segment that the
+base iterator returns.</p>
+
+<p>In the case of <code>SEG_CLOSE</code>,
+<code>SEG_MOVETO</code> and <code>SEG_LINETO</code> segments, the
+implementation simply hands the segment to the consumer, without actually
+doing anything.</p>
+
+<p>Any <code>SEG_QUADTO</code> and <code>SEG_CUBICTO</code> segments
+need to be flattened. Flattening is performed with a fixed-sized
+stack, holding the coordinates of subdivided segments. When the base
+iterator returns a <code>SEG_QUADTO</code> and
+<code>SEG_CUBICTO</code> segments, it is recursively flattened as
+follows:</p>
+
+<ol><li>Intialization: Allocate memory for the stack (unless a
+sufficiently large stack has been allocated previously). Push the
+original quadratic or cubic curve onto the stack. Mark that segment as
+having a <code>recLevel</code> of zero.</li>
+
+<li>If the stack is empty, flattening the segment is complete,
+and the next segment is fetched from the base iterator.</li>
+
+<li>If the stack is not empty, pop a curve segment from the
+stack.
+
+ <ul><li>If its <code>recLevel</code> exceeds the recursion limit,
+ hand the current segment to the consumer.</li>
+
+ <li>Calculate the squared flatness of the segment. If it smaller
+ than <code>flatnessSq</code>, hand the current segment to the
+ consumer.</li>
+
+ <li>Otherwise, split the segment in two halves. Push the right
+ half onto the stack. Then, push the left half onto the stack.
+ Continue with step two.</li></ul></li>
+</ol>
+
+<p>The implementation is slightly complicated by the fact that
+consumers <em>pull</em> the flattened segments from the
+<code>FlatteningPathIterator</code>. This means that we actually
+cannot &#x201c;hand the curent segment over to the consumer.&#x201d;
+But the algorithm is easier to understand if one assumes a
+<em>push</em> paradigm.</p>
+
+
+<h2>Example</h2>
+
+<p>The following example shows how a
+<code>FlatteningPathIterator</code> processes a
+<code>SEG_QUADTO</code> segment. It is (arbitrarily) assumed that the
+recursion limit was set to 2.</p>
+
+<blockquote>
+<table border="1" cellspacing="0" cellpadding="8">
+ <tr align="center" valign="baseline">
+ <th></th><th>A</th><th>B</th><th>C</th>
+ <th>D</th><th>E</th><th>F</th><th>G</th><th>H</th>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[0]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td><i>S<sub>ll</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[1]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td><i>S<sub>ll</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[2]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td><i>C<sub>ll</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[3]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td><i>C<sub>ll</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[4]</code></th>
+ <td>&#x2014;</td>
+ <td><i>S<sub>l</sub>.x</i></td>
+ <td><i>E<sub>ll</sub>.x</i>
+ = <i>S<sub>lr</sub>.x</i></td>
+ <td><i>S<sub>lr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td><i>S<sub>rl</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[5]</code></th>
+ <td>&#x2014;</td>
+ <td><i>S<sub>l</sub>.y</i></td>
+ <td><i>E<sub>ll</sub>.x</i>
+ = <i>S<sub>lr</sub>.y</i></td>
+ <td><i>S<sub>lr</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td><i>S<sub>rl</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[6]</code></th>
+ <td>&#x2014;</td>
+ <td><i>C<sub>l</sub>.x</i></td>
+ <td><i>C<sub>lr</sub>.x</i></td>
+ <td><i>C<sub>lr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td><i>C<sub>rl</sub>.x</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[7]</code></th>
+ <td>&#x2014;</td>
+ <td><i>C<sub>l</sub>.y</i></td>
+ <td><i>C<sub>lr</sub>.y</i></td>
+ <td><i>C<sub>lr</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td><i>C<sub>rl</sub>.y</i></td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[8]</code></th>
+ <td><i>S.x</i></td>
+ <td><i>E<sub>l</sub>.x</i>
+ = <i>S<sub>r</sub>.x</i></td>
+ <td><i>E<sub>lr</sub>.x</i>
+ = <i>S<sub>r</sub>.x</i></td>
+ <td><i>E<sub>lr</sub>.x</i>
+ = <i>S<sub>r</sub>.x</i></td>
+ <td><i>S<sub>r</sub>.x</i></td>
+ <td><i>E<sub>rl</sub>.x</i>
+ = <i>S<sub>rr</sub>.x</i></td>
+ <td><i>S<sub>rr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[9]</code></th>
+ <td><i>S.y</i></td>
+ <td><i>E<sub>l</sub>.y</i>
+ = <i>S<sub>r</sub>.y</i></td>
+ <td><i>E<sub>lr</sub>.y</i>
+ = <i>S<sub>r</sub>.y</i></td>
+ <td><i>E<sub>lr</sub>.y</i>
+ = <i>S<sub>r</sub>.y</i></td>
+ <td><i>S<sub>r</sub>.y</i></td>
+ <td><i>E<sub>rl</sub>.y</i>
+ = <i>S<sub>rr</sub>.y</i></td>
+ <td><i>S<sub>rr</sub>.y</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[10]</code></th>
+ <td><i>C.x</i></td>
+ <td><i>C<sub>r</sub>.x</i></td>
+ <td><i>C<sub>r</sub>.x</i></td>
+ <td><i>C<sub>r</sub>.x</i></td>
+ <td><i>C<sub>r</sub>.x</i></td>
+ <td><i>C<sub>rr</sub>.x</i></td>
+ <td><i>C<sub>rr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[11]</code></th>
+ <td><i>C.y</i></td>
+ <td><i>C<sub>r</sub>.y</i></td>
+ <td><i>C<sub>r</sub>.y</i></td>
+ <td><i>C<sub>r</sub>.y</i></td>
+ <td><i>C<sub>r</sub>.y</i></td>
+ <td><i>C<sub>rr</sub>.y</i></td>
+ <td><i>C<sub>rr</sub>.y</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[12]</code></th>
+ <td><i>E.x</i></td>
+ <td><i>E<sub>r</sub>.x</i></td>
+ <td><i>E<sub>r</sub>.x</i></td>
+ <td><i>E<sub>r</sub>.x</i></td>
+ <td><i>E<sub>r</sub>.x</i></td>
+ <td><i>E<sub>rr</sub>.x</i></td>
+ <td><i>E<sub>rr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stack[13]</code></th>
+ <td><i>E.y</i></td>
+ <td><i>E<sub>r</sub>.y</i></td>
+ <td><i>E<sub>r</sub>.y</i></td>
+ <td><i>E<sub>r</sub>.y</i></td>
+ <td><i>E<sub>r</sub>.y</i></td>
+ <td><i>E<sub>rr</sub>.y</i></td>
+ <td><i>E<sub>rr</sub>.x</i></td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>stackSize</code></th>
+ <td>1</td>
+ <td>2</td>
+ <td>3</td>
+ <td>2</td>
+ <td>1</td>
+ <td>2</td>
+ <td>1</td>
+ <td>0</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>recLevel[2]</code></th>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>2</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>recLevel[1]</code></th>
+ <td>&#x2014;</td>
+ <td>1</td>
+ <td>2</td>
+ <td>2</td>
+ <td>&#x2014;</td>
+ <td>2</td>
+ <td>&#x2014;</td>
+ <td>&#x2014;</td>
+ </tr>
+ <tr align="center" valign="baseline">
+ <th><code>recLevel[0]</code></th>
+ <td>0</td>
+ <td>1</td>
+ <td>1</td>
+ <td>1</td>
+ <td>1</td>
+ <td>2</td>
+ <td>2</td>
+ <td>&#x2014;</td>
+ </tr>
+ </table>
+</blockquote>
+
+<ol>
+
+<li>The data structures are initialized as follows.
+
+<ul><li>The segment&#x2019;s end point <i>E</i>, control point
+<i>C</i>, and start point <i>S</i> are pushed onto the stack.</li>
+
+ <li>Currently, the curve in the stack would be approximated by one
+ single straight line segment (<i>S</i> &#x2013; <i>E</i>).
+ Therefore, <code>stackSize</code> is set to 1.</li>
+
+ <li>This single straight line segment is approximating the original
+ curve, which can be seen as the result of zero recursive
+ splits. Therefore, <code>recLevel[0]</code> is set to
+ zero.</li></ul>
+
+Column A shows the state after the initialization step.</li>
+
+<li>The algorithm proceeds by taking the topmost curve segment
+(<i>S</i> &#x2013; <i>C</i> &#x2013; <i>E</i>) from the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[0]</code>) is zero, which is smaller than
+ the limit 2.</li>
+
+ <li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
+ is called to calculate the squared flatness.</li>
+
+ <li>For the sake of argument, we assume that the squared flatness is
+ exceeding the threshold stored in <code>flatnessSq</code>. Thus, the
+ curve segment <i>S</i> &#x2013; <i>C</i> &#x2013; <i>E</i> gets
+ subdivided into a left and a right half, namely
+ <i>S<sub>l</sub></i> &#x2013; <i>C<sub>l</sub></i> &#x2013;
+ <i>E<sub>l</sub></i> and <i>S<sub>r</sub></i> &#x2013;
+ <i>C<sub>r</sub></i> &#x2013; <i>E<sub>r</sub></i>. Both halves are
+ pushed onto the stack, so the left half is now on top.
+
+ <br />&nbsp;<br />The left half starts at the same point
+ as the original curve, so <i>S<sub>l</sub></i> has the same
+ coordinates as <i>S</i>. Similarly, the end point of the right
+ half and of the original curve are identical
+ (<i>E<sub>r</sub></i> = <i>E</i>). More interestingly, the left
+ half ends where the right half starts. Because
+ <i>E<sub>l</sub></i> = <i>S<sub>r</sub></i>, their coordinates need
+ to be stored only once, which amounts to saving 16 bytes (two
+ <code>double</code> values) for each iteration.</li></ul>
+
+Column B shows the state after the first iteration.</li>
+
+<li>Again, the topmost curve segment (<i>S<sub>l</sub></i>
+&#x2013; <i>C<sub>l</sub></i> &#x2013; <i>E<sub>l</sub></i>) is
+taken from the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[1]</code>) is 1, which is smaller than
+ the limit 2.</li>
+
+ <li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
+ is called to calculate the squared flatness.</li>
+
+ <li>Assuming that the segment is still not considered
+ flat enough, it gets subdivided into a left
+ (<i>S<sub>ll</sub></i> &#x2013; <i>C<sub>ll</sub></i> &#x2013;
+ <i>E<sub>ll</sub></i>) and a right (<i>S<sub>lr</sub></i>
+ &#x2013; <i>C<sub>lr</sub></i> &#x2013; <i>E<sub>lr</sub></i>)
+ half.</li></ul>
+
+Column C shows the state after the second iteration.</li>
+
+<li>The topmost curve segment (<i>S<sub>ll</sub></i> &#x2013;
+<i>C<sub>ll</sub></i> &#x2013; <i>E<sub>ll</sub></i>) is popped from
+the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
+ the limit 2. Therefore, a <code>SEG_LINETO</code> (from
+ <i>S<sub>ll</sub></i> to <i>E<sub>ll</sub></i>) is passed to the
+ consumer.</li></ul>
+
+ The new state is shown in column D.</li>
+
+
+<li>The topmost curve segment (<i>S<sub>lr</sub></i> &#x2013;
+<i>C<sub>lr</sub></i> &#x2013; <i>E<sub>lr</sub></i>) is popped from
+the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[1]</code>) is 2, which is <em>not</em> smaller than
+ the limit 2. Therefore, a <code>SEG_LINETO</code> (from
+ <i>S<sub>lr</sub></i> to <i>E<sub>lr</sub></i>) is passed to the
+ consumer.</li></ul>
+
+ The new state is shown in column E.</li>
+
+<li>The algorithm proceeds by taking the topmost curve segment
+(<i>S<sub>r</sub></i> &#x2013; <i>C<sub>r</sub></i> &#x2013;
+<i>E<sub>r</sub></i>) from the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[0]</code>) is 1, which is smaller than
+ the limit 2.</li>
+
+ <li>The method <code>java.awt.geom.QuadCurve2D.getFlatnessSq</code>
+ is called to calculate the squared flatness.</li>
+
+ <li>For the sake of argument, we again assume that the squared
+ flatness is exceeding the threshold stored in
+ <code>flatnessSq</code>. Thus, the curve segment
+ (<i>S<sub>r</sub></i> &#x2013; <i>C<sub>r</sub></i> &#x2013;
+ <i>E<sub>r</sub></i>) is subdivided into a left and a right half,
+ namely
+ <i>S<sub>rl</sub></i> &#x2013; <i>C<sub>rl</sub></i> &#x2013;
+ <i>E<sub>rl</sub></i> and <i>S<sub>rr</sub></i> &#x2013;
+ <i>C<sub>rr</sub></i> &#x2013; <i>E<sub>rr</sub></i>. Both halves
+ are pushed onto the stack.</li></ul>
+
+ The new state is shown in column F.</li>
+
+<li>The topmost curve segment (<i>S<sub>rl</sub></i> &#x2013;
+<i>C<sub>rl</sub></i> &#x2013; <i>E<sub>rl</sub></i>) is popped from
+the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
+ the limit 2. Therefore, a <code>SEG_LINETO</code> (from
+ <i>S<sub>rl</sub></i> to <i>E<sub>rl</sub></i>) is passed to the
+ consumer.</li></ul>
+
+ The new state is shown in column G.</li>
+
+<li>The topmost curve segment (<i>S<sub>rr</sub></i> &#x2013;
+<i>C<sub>rr</sub></i> &#x2013; <i>E<sub>rr</sub></i>) is popped from
+the stack.
+
+ <ul><li>The recursion level of this segment (stored in
+ <code>recLevel[2]</code>) is 2, which is <em>not</em> smaller than
+ the limit 2. Therefore, a <code>SEG_LINETO</code> (from
+ <i>S<sub>rr</sub></i> to <i>E<sub>rr</sub></i>) is passed to the
+ consumer.</li></ul>
+
+ The new state is shown in column H.</li>
+
+<li>The stack is now empty. The FlatteningPathIterator will fetch the
+next segment from the base iterator, and process it.</li>
+
+</ol>
+
+<p>In order to split the most recently pushed segment, the
+<code>subdivideQuadratic()</code> method passes <code>stack</code>
+directly to
+<code>QuadCurve2D.subdivide(double[],int,double[],int,double[],int)</code>.
+Because the stack grows towards the beginning of the array, no data
+needs to be copied around: <code>subdivide</code> will directly store
+the result into the stack, which will have the contents shown to the
+right.</p>
+
+</body>
+</html>