summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/math
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/classpath/java/math')
-rw-r--r--libjava/classpath/java/math/BigDecimal.java1559
-rw-r--r--libjava/classpath/java/math/BigInteger.java2676
-rw-r--r--libjava/classpath/java/math/MathContext.java198
-rw-r--r--libjava/classpath/java/math/RoundingMode.java89
-rw-r--r--libjava/classpath/java/math/package.html46
5 files changed, 4568 insertions, 0 deletions
diff --git a/libjava/classpath/java/math/BigDecimal.java b/libjava/classpath/java/math/BigDecimal.java
new file mode 100644
index 000000000..7f4546cda
--- /dev/null
+++ b/libjava/classpath/java/math/BigDecimal.java
@@ -0,0 +1,1559 @@
+/* java.math.BigDecimal -- Arbitrary precision decimals.
+ Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.math;
+
+import gnu.java.lang.CPStringBuilder;
+
+public class BigDecimal extends Number implements Comparable<BigDecimal>
+{
+ private BigInteger intVal;
+ private int scale;
+ private int precision = 0;
+ private static final long serialVersionUID = 6108874887143696463L;
+
+ /**
+ * The constant zero as a BigDecimal with scale zero.
+ * @since 1.5
+ */
+ public static final BigDecimal ZERO =
+ new BigDecimal (BigInteger.ZERO, 0);
+
+ /**
+ * The constant one as a BigDecimal with scale zero.
+ * @since 1.5
+ */
+ public static final BigDecimal ONE =
+ new BigDecimal (BigInteger.ONE, 0);
+
+ /**
+ * The constant ten as a BigDecimal with scale zero.
+ * @since 1.5
+ */
+ public static final BigDecimal TEN =
+ new BigDecimal (BigInteger.TEN, 0);
+
+ public static final int ROUND_UP = 0;
+ public static final int ROUND_DOWN = 1;
+ public static final int ROUND_CEILING = 2;
+ public static final int ROUND_FLOOR = 3;
+ public static final int ROUND_HALF_UP = 4;
+ public static final int ROUND_HALF_DOWN = 5;
+ public static final int ROUND_HALF_EVEN = 6;
+ public static final int ROUND_UNNECESSARY = 7;
+
+ /**
+ * Constructs a new BigDecimal whose unscaled value is val and whose
+ * scale is zero.
+ * @param val the value of the new BigDecimal
+ * @since 1.5
+ */
+ public BigDecimal (int val)
+ {
+ this.intVal = BigInteger.valueOf(val);
+ this.scale = 0;
+ }
+
+ /**
+ * Constructs a BigDecimal using the BigDecimal(int) constructor and then
+ * rounds according to the MathContext.
+ * @param val the value for the initial (unrounded) BigDecimal
+ * @param mc the MathContext specifying the rounding
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (int val, MathContext mc)
+ {
+ this (val);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a new BigDecimal whose unscaled value is val and whose
+ * scale is zero.
+ * @param val the value of the new BigDecimal
+ */
+ public BigDecimal (long val)
+ {
+ this.intVal = BigInteger.valueOf(val);
+ this.scale = 0;
+ }
+
+ /**
+ * Constructs a BigDecimal from the long in the same way as BigDecimal(long)
+ * and then rounds according to the MathContext.
+ * @param val the long from which we create the initial BigDecimal
+ * @param mc the MathContext that specifies the rounding behaviour
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (long val, MathContext mc)
+ {
+ this(val);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal whose value is given by num rounded according to
+ * mc. Since num is already a BigInteger, the rounding refers only to the
+ * precision setting in mc, if mc.getPrecision() returns an int lower than
+ * the number of digits in num, then rounding is necessary.
+ * @param num the unscaledValue, before rounding
+ * @param mc the MathContext that specifies the precision
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * * @since 1.5
+ */
+ public BigDecimal (BigInteger num, MathContext mc)
+ {
+ this (num, 0);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal from the String val according to the same
+ * rules as the BigDecimal(String) constructor and then rounds
+ * according to the MathContext mc.
+ * @param val the String from which we construct the initial BigDecimal
+ * @param mc the MathContext that specifies the rounding
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (String val, MathContext mc)
+ {
+ this (val);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal whose unscaled value is num and whose
+ * scale is zero.
+ * @param num the value of the new BigDecimal
+ */
+ public BigDecimal (BigInteger num)
+ {
+ this (num, 0);
+ }
+
+ /**
+ * Constructs a BigDecimal whose unscaled value is num and whose
+ * scale is scale.
+ * @param num
+ * @param scale
+ */
+ public BigDecimal (BigInteger num, int scale)
+ {
+ this.intVal = num;
+ this.scale = scale;
+ }
+
+ /**
+ * Constructs a BigDecimal using the BigDecimal(BigInteger, int)
+ * constructor and then rounds according to the MathContext.
+ * @param num the unscaled value of the unrounded BigDecimal
+ * @param scale the scale of the unrounded BigDecimal
+ * @param mc the MathContext specifying the rounding
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (BigInteger num, int scale, MathContext mc)
+ {
+ this (num, scale);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal in the same way as BigDecimal(double) and then
+ * rounds according to the MathContext.
+ * @param num the double from which the initial BigDecimal is created
+ * @param mc the MathContext that specifies the rounding behaviour
+ * @throws ArithmeticException if the result is inexact but the rounding type
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal (double num, MathContext mc)
+ {
+ this (num);
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal result = this.round(mc);
+ this.intVal = result.intVal;
+ this.scale = result.scale;
+ this.precision = result.precision;
+ }
+ }
+
+ public BigDecimal (double num) throws NumberFormatException
+ {
+ if (Double.isInfinite (num) || Double.isNaN (num))
+ throw new NumberFormatException ("invalid argument: " + num);
+ // Note we can't convert NUM to a String and then use the
+ // String-based constructor. The BigDecimal documentation makes
+ // it clear that the two constructors work differently.
+
+ final int mantissaBits = 52;
+ final int exponentBits = 11;
+ final long mantMask = (1L << mantissaBits) - 1;
+ final long expMask = (1L << exponentBits) - 1;
+
+ long bits = Double.doubleToLongBits (num);
+ long mantissa = bits & mantMask;
+ long exponent = (bits >>> mantissaBits) & expMask;
+ boolean denormal = exponent == 0;
+
+ // Correct the exponent for the bias.
+ exponent -= denormal ? 1022 : 1023;
+
+ // Now correct the exponent to account for the bits to the right
+ // of the decimal.
+ exponent -= mantissaBits;
+ // Ordinary numbers have an implied leading `1' bit.
+ if (! denormal)
+ mantissa |= (1L << mantissaBits);
+
+ // Shave off factors of 10.
+ while (exponent < 0 && (mantissa & 1) == 0)
+ {
+ ++exponent;
+ mantissa >>= 1;
+ }
+
+ intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
+ if (exponent < 0)
+ {
+ // We have MANTISSA * 2 ^ (EXPONENT).
+ // Since (1/2)^N == 5^N * 10^-N we can easily convert this
+ // into a power of 10.
+ scale = (int) (- exponent);
+ BigInteger mult = BigInteger.valueOf (5).pow (scale);
+ intVal = intVal.multiply (mult);
+ }
+ else
+ {
+ intVal = intVal.shiftLeft ((int) exponent);
+ scale = 0;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal from the char subarray and rounding
+ * according to the MathContext.
+ * @param in the char array
+ * @param offset the start of the subarray
+ * @param len the length of the subarray
+ * @param mc the MathContext for rounding
+ * @throws NumberFormatException if the char subarray is not a valid
+ * BigDecimal representation
+ * @throws ArithmeticException if the result is inexact but the rounding
+ * mode is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal(char[] in, int offset, int len, MathContext mc)
+ {
+ this(in, offset, len);
+ // If mc has precision other than zero then we must round.
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal temp = this.round(mc);
+ this.intVal = temp.intVal;
+ this.scale = temp.scale;
+ this.precision = temp.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal from the char array and rounding according
+ * to the MathContext.
+ * @param in the char array
+ * @param mc the MathContext
+ * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
+ * representation
+ * @throws ArithmeticException if the result is inexact but the rounding mode
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal(char[] in, MathContext mc)
+ {
+ this(in, 0, in.length);
+ // If mc has precision other than zero then we must round.
+ if (mc.getPrecision() != 0)
+ {
+ BigDecimal temp = this.round(mc);
+ this.intVal = temp.intVal;
+ this.scale = temp.scale;
+ this.precision = temp.precision;
+ }
+ }
+
+ /**
+ * Constructs a BigDecimal from the given char array, accepting the same
+ * sequence of characters as the BigDecimal(String) constructor.
+ * @param in the char array
+ * @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
+ * representation
+ * @since 1.5
+ */
+ public BigDecimal(char[] in)
+ {
+ this(in, 0, in.length);
+ }
+
+ /**
+ * Constructs a BigDecimal from a char subarray, accepting the same sequence
+ * of characters as the BigDecimal(String) constructor.
+ * @param in the char array
+ * @param offset the start of the subarray
+ * @param len the length of the subarray
+ * @throws NumberFormatException if <code>in</code> is not a valid
+ * BigDecimal representation.
+ * @since 1.5
+ */
+ public BigDecimal(char[] in, int offset, int len)
+ {
+ // start is the index into the char array where the significand starts
+ int start = offset;
+ // end is one greater than the index of the last character used
+ int end = offset + len;
+ // point is the index into the char array where the exponent starts
+ // (or, if there is no exponent, this is equal to end)
+ int point = offset;
+ // dot is the index into the char array where the decimal point is
+ // found, or -1 if there is no decimal point
+ int dot = -1;
+
+ // The following examples show what these variables mean. Note that
+ // point and dot don't yet have the correct values, they will be
+ // properly assigned in a loop later on in this method.
+ //
+ // Example 1
+ //
+ // + 1 0 2 . 4 6 9
+ // __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
+ //
+ // offset = 2, len = 8, start = 3, dot = 6, point = end = 10
+ //
+ // Example 2
+ //
+ // + 2 3 4 . 6 1 3 E - 1
+ // __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
+ //
+ // offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
+ //
+ // Example 3
+ //
+ // - 1 2 3 4 5 e 7
+ // __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
+ //
+ // offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10
+
+ // Determine the sign of the number.
+ boolean negative = false;
+ if (in[offset] == '+')
+ {
+ ++start;
+ ++point;
+ }
+ else if (in[offset] == '-')
+ {
+ ++start;
+ ++point;
+ negative = true;
+ }
+
+ // Check each character looking for the decimal point and the
+ // start of the exponent.
+ while (point < end)
+ {
+ char c = in[point];
+ if (c == '.')
+ {
+ // If dot != -1 then we've seen more than one decimal point.
+ if (dot != -1)
+ throw new NumberFormatException("multiple `.'s in number");
+ dot = point;
+ }
+ // Break when we reach the start of the exponent.
+ else if (c == 'e' || c == 'E')
+ break;
+ // Throw an exception if the character was not a decimal or an
+ // exponent and is not a digit.
+ else if (!Character.isDigit(c))
+ throw new NumberFormatException("unrecognized character at " + point
+ + ": " + c);
+ ++point;
+ }
+
+ // val is a StringBuilder from which we'll create a BigInteger
+ // which will be the unscaled value for this BigDecimal
+ CPStringBuilder val = new CPStringBuilder(point - start - 1);
+ if (dot != -1)
+ {
+ // If there was a decimal we must combine the two parts that
+ // contain only digits and we must set the scale properly.
+ val.append(in, start, dot - start);
+ val.append(in, dot + 1, point - dot - 1);
+ scale = point - 1 - dot;
+ }
+ else
+ {
+ // If there was no decimal then the unscaled value is just the number
+ // formed from all the digits and the scale is zero.
+ val.append(in, start, point - start);
+ scale = 0;
+ }
+ if (val.length() == 0)
+ throw new NumberFormatException("no digits seen");
+
+ // Prepend a negative sign if necessary.
+ if (negative)
+ val.insert(0, '-');
+ intVal = new BigInteger(val.toString());
+
+ // Now parse exponent.
+ // If point < end that means we broke out of the previous loop when we
+ // saw an 'e' or an 'E'.
+ if (point < end)
+ {
+ point++;
+ // Ignore a '+' sign.
+ if (in[point] == '+')
+ point++;
+
+ // Throw an exception if there were no digits found after the 'e'
+ // or 'E'.
+ if (point >= end)
+ throw new NumberFormatException("no exponent following e or E");
+
+ try
+ {
+ // Adjust the scale according to the exponent.
+ // Remember that the value of a BigDecimal is
+ // unscaledValue x Math.pow(10, -scale)
+ scale -= Integer.parseInt(new String(in, point, end - point));
+ }
+ catch (NumberFormatException ex)
+ {
+ throw new NumberFormatException("malformed exponent");
+ }
+ }
+ }
+
+ public BigDecimal (String num) throws NumberFormatException
+ {
+ int len = num.length();
+ int start = 0, point = 0;
+ int dot = -1;
+ boolean negative = false;
+ if (num.charAt(0) == '+')
+ {
+ ++start;
+ ++point;
+ }
+ else if (num.charAt(0) == '-')
+ {
+ ++start;
+ ++point;
+ negative = true;
+ }
+
+ while (point < len)
+ {
+ char c = num.charAt (point);
+ if (c == '.')
+ {
+ if (dot >= 0)
+ throw new NumberFormatException ("multiple `.'s in number");
+ dot = point;
+ }
+ else if (c == 'e' || c == 'E')
+ break;
+ else if (Character.digit (c, 10) < 0)
+ throw new NumberFormatException ("unrecognized character: " + c);
+ ++point;
+ }
+
+ String val;
+ if (dot >= 0)
+ {
+ val = num.substring (start, dot) + num.substring (dot + 1, point);
+ scale = point - 1 - dot;
+ }
+ else
+ {
+ val = num.substring (start, point);
+ scale = 0;
+ }
+ if (val.length () == 0)
+ throw new NumberFormatException ("no digits seen");
+
+ if (negative)
+ val = "-" + val;
+ intVal = new BigInteger (val);
+
+ // Now parse exponent.
+ if (point < len)
+ {
+ point++;
+ if (num.charAt(point) == '+')
+ point++;
+
+ if (point >= len )
+ throw new NumberFormatException ("no exponent following e or E");
+
+ try
+ {
+ scale -= Integer.parseInt (num.substring (point));
+ }
+ catch (NumberFormatException ex)
+ {
+ throw new NumberFormatException ("malformed exponent");
+ }
+ }
+ }
+
+ public static BigDecimal valueOf (long val)
+ {
+ return valueOf (val, 0);
+ }
+
+ public static BigDecimal valueOf (long val, int scale)
+ throws NumberFormatException
+ {
+ if ((scale == 0) && ((int)val == val))
+ switch ((int) val)
+ {
+ case 0:
+ return ZERO;
+ case 1:
+ return ONE;
+ }
+
+ return new BigDecimal (BigInteger.valueOf (val), scale);
+ }
+
+ public BigDecimal add (BigDecimal val)
+ {
+ // For addition, need to line up decimals. Note that the movePointRight
+ // method cannot be used for this as it might return a BigDecimal with
+ // scale == 0 instead of the scale we need.
+ BigInteger op1 = intVal;
+ BigInteger op2 = val.intVal;
+ if (scale < val.scale)
+ op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
+ else if (scale > val.scale)
+ op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
+
+ return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
+ }
+
+ /**
+ * Returns a BigDecimal whose value is found first by calling the
+ * method add(val) and then by rounding according to the MathContext mc.
+ * @param val the augend
+ * @param mc the MathContext for rounding
+ * @throws ArithmeticException if the value is inexact but the rounding is
+ * RoundingMode.UNNECESSARY
+ * @return <code>this</code> + <code>val</code>, rounded if need be
+ * @since 1.5
+ */
+ public BigDecimal add (BigDecimal val, MathContext mc)
+ {
+ return add(val).round(mc);
+ }
+
+ public BigDecimal subtract (BigDecimal val)
+ {
+ return this.add(val.negate());
+ }
+
+ /**
+ * Returns a BigDecimal whose value is found first by calling the
+ * method subtract(val) and then by rounding according to the MathContext mc.
+ * @param val the subtrahend
+ * @param mc the MathContext for rounding
+ * @throws ArithmeticException if the value is inexact but the rounding is
+ * RoundingMode.UNNECESSARY
+ * @return <code>this</code> - <code>val</code>, rounded if need be
+ * @since 1.5
+ */
+ public BigDecimal subtract (BigDecimal val, MathContext mc)
+ {
+ return subtract(val).round(mc);
+ }
+
+ public BigDecimal multiply (BigDecimal val)
+ {
+ return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is (this x val) before it is rounded
+ * according to the MathContext mc.
+ * @param val the multiplicand
+ * @param mc the MathContext for rounding
+ * @return a new BigDecimal with value approximately (this x val)
+ * @throws ArithmeticException if the value is inexact but the rounding mode
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal multiply (BigDecimal val, MathContext mc)
+ {
+ return multiply(val).round(mc);
+ }
+
+ public BigDecimal divide (BigDecimal val, int roundingMode)
+ throws ArithmeticException, IllegalArgumentException
+ {
+ return divide (val, scale, roundingMode);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is (this / val), with the specified scale
+ * and rounding according to the RoundingMode
+ * @param val the divisor
+ * @param scale the scale of the BigDecimal returned
+ * @param roundingMode the rounding mode to use
+ * @return a BigDecimal whose value is approximately (this / val)
+ * @throws ArithmeticException if divisor is zero or the rounding mode is
+ * UNNECESSARY but the specified scale cannot represent the value exactly
+ * @since 1.5
+ */
+ public BigDecimal divide(BigDecimal val,
+ int scale, RoundingMode roundingMode)
+ {
+ return divide (val, scale, roundingMode.ordinal());
+ }
+
+ /**
+ * Returns a BigDecimal whose value is (this / val) rounded according to the
+ * RoundingMode
+ * @param val the divisor
+ * @param roundingMode the rounding mode to use
+ * @return a BigDecimal whose value is approximately (this / val)
+ * @throws ArithmeticException if divisor is zero or the rounding mode is
+ * UNNECESSARY but the specified scale cannot represent the value exactly
+ */
+ public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
+ {
+ return divide (val, scale, roundingMode.ordinal());
+ }
+
+ public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
+ throws ArithmeticException, IllegalArgumentException
+ {
+ if (roundingMode < 0 || roundingMode > 7)
+ throw
+ new IllegalArgumentException("illegal rounding mode: " + roundingMode);
+
+ if (intVal.signum () == 0) // handle special case of 0.0/0.0
+ return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
+
+ // Ensure that pow gets a non-negative value.
+ BigInteger valIntVal = val.intVal;
+ int power = newScale - (scale - val.scale);
+ if (power < 0)
+ {
+ // Effectively increase the scale of val to avoid an
+ // ArithmeticException for a negative power.
+ valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
+ power = 0;
+ }
+
+ BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
+
+ BigInteger parts[] = dividend.divideAndRemainder (valIntVal);
+
+ BigInteger unrounded = parts[0];
+ if (parts[1].signum () == 0) // no remainder, no rounding necessary
+ return new BigDecimal (unrounded, newScale);
+
+ if (roundingMode == ROUND_UNNECESSARY)
+ throw new ArithmeticException ("Rounding necessary");
+
+ int sign = intVal.signum () * valIntVal.signum ();
+
+ if (roundingMode == ROUND_CEILING)
+ roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
+ else if (roundingMode == ROUND_FLOOR)
+ roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
+ else
+ {
+ // half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
+ // 1 if >. This implies that the remainder to round is less than,
+ // equal to, or greater than half way to the next digit.
+ BigInteger posRemainder
+ = parts[1].signum () < 0 ? parts[1].negate() : parts[1];
+ valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
+ int half = posRemainder.shiftLeft(1).compareTo(valIntVal);
+
+ switch(roundingMode)
+ {
+ case ROUND_HALF_UP:
+ roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
+ break;
+ case ROUND_HALF_DOWN:
+ roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
+ break;
+ case ROUND_HALF_EVEN:
+ if (half < 0)
+ roundingMode = ROUND_DOWN;
+ else if (half > 0)
+ roundingMode = ROUND_UP;
+ else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
+ roundingMode = ROUND_UP;
+ else // even, ROUND_HALF_DOWN
+ roundingMode = ROUND_DOWN;
+ break;
+ }
+ }
+
+ if (roundingMode == ROUND_UP)
+ unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));
+
+ // roundingMode == ROUND_DOWN
+ return new BigDecimal (unrounded, newScale);
+ }
+
+ /**
+ * Performs division, if the resulting quotient requires rounding
+ * (has a nonterminating decimal expansion),
+ * an ArithmeticException is thrown.
+ * #see divide(BigDecimal, int, int)
+ * @since 1.5
+ */
+ public BigDecimal divide(BigDecimal divisor)
+ throws ArithmeticException, IllegalArgumentException
+ {
+ return divide(divisor, scale, ROUND_UNNECESSARY);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is the remainder in the quotient
+ * this / val. This is obtained by
+ * subtract(divideToIntegralValue(val).multiply(val)).
+ * @param val the divisor
+ * @return a BigDecimal whose value is the remainder
+ * @throws ArithmeticException if val == 0
+ * @since 1.5
+ */
+ public BigDecimal remainder(BigDecimal val)
+ {
+ return subtract(divideToIntegralValue(val).multiply(val));
+ }
+
+ /**
+ * Returns a BigDecimal array, the first element of which is the integer part
+ * of this / val, and the second element of which is the remainder of
+ * that quotient.
+ * @param val the divisor
+ * @return the above described BigDecimal array
+ * @throws ArithmeticException if val == 0
+ * @since 1.5
+ */
+ public BigDecimal[] divideAndRemainder(BigDecimal val)
+ {
+ BigDecimal[] result = new BigDecimal[2];
+ result[0] = divideToIntegralValue(val);
+ result[1] = subtract(result[0].multiply(val));
+ return result;
+ }
+
+ /**
+ * Returns a BigDecimal whose value is the integer part of the quotient
+ * this / val. The preferred scale is this.scale - val.scale.
+ * @param val the divisor
+ * @return a BigDecimal whose value is the integer part of this / val.
+ * @throws ArithmeticException if val == 0
+ * @since 1.5
+ */
+ public BigDecimal divideToIntegralValue(BigDecimal val)
+ {
+ return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
+ }
+
+ /**
+ * Mutates this BigDecimal into one with no fractional part, whose value is
+ * equal to the largest integer that is <= to this BigDecimal. Note that
+ * since this method is private it is okay to mutate this BigDecimal.
+ * @return the BigDecimal obtained through the floor operation on this
+ * BigDecimal.
+ */
+ private BigDecimal floor()
+ {
+ if (scale <= 0)
+ return this;
+ String intValStr = intVal.toString();
+ intValStr = intValStr.substring(0, intValStr.length() - scale);
+ intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
+ return this;
+ }
+
+ public int compareTo (BigDecimal val)
+ {
+ if (scale == val.scale)
+ return intVal.compareTo (val.intVal);
+
+ BigInteger thisParts[] =
+ intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
+ BigInteger valParts[] =
+ val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
+
+ int compare;
+ if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
+ return compare;
+
+ // quotients are the same, so compare remainders
+
+ // Add some trailing zeros to the remainder with the smallest scale
+ if (scale < val.scale)
+ thisParts[1] = thisParts[1].multiply
+ (BigInteger.valueOf (10).pow (val.scale - scale));
+ else if (scale > val.scale)
+ valParts[1] = valParts[1].multiply
+ (BigInteger.valueOf (10).pow (scale - val.scale));
+
+ // and compare them
+ return thisParts[1].compareTo (valParts[1]);
+ }
+
+ public boolean equals (Object o)
+ {
+ return (o instanceof BigDecimal
+ && scale == ((BigDecimal) o).scale
+ && compareTo ((BigDecimal) o) == 0);
+ }
+
+ public int hashCode()
+ {
+ return intValue() ^ scale;
+ }
+
+ public BigDecimal max (BigDecimal val)
+ {
+ switch (compareTo (val))
+ {
+ case 1:
+ return this;
+ default:
+ return val;
+ }
+ }
+
+ public BigDecimal min (BigDecimal val)
+ {
+ switch (compareTo (val))
+ {
+ case -1:
+ return this;
+ default:
+ return val;
+ }
+ }
+
+ public BigDecimal movePointLeft (int n)
+ {
+ return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
+ }
+
+ public BigDecimal movePointRight (int n)
+ {
+ if (n < 0)
+ return movePointLeft (-n);
+
+ if (scale >= n)
+ return new BigDecimal (intVal, scale - n);
+
+ return new BigDecimal (intVal.multiply
+ (BigInteger.TEN.pow (n - scale)), 0);
+ }
+
+ public int signum ()
+ {
+ return intVal.signum ();
+ }
+
+ public int scale ()
+ {
+ return scale;
+ }
+
+ public BigInteger unscaledValue()
+ {
+ return intVal;
+ }
+
+ public BigDecimal abs ()
+ {
+ return new BigDecimal (intVal.abs (), scale);
+ }
+
+ public BigDecimal negate ()
+ {
+ return new BigDecimal (intVal.negate (), scale);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is found first by negating this via
+ * the negate() method, then by rounding according to the MathContext mc.
+ * @param mc the MathContext for rounding
+ * @return a BigDecimal whose value is approximately (-this)
+ * @throws ArithmeticException if the value is inexact but the rounding mode
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal negate(MathContext mc)
+ {
+ BigDecimal result = negate();
+ if (mc.getPrecision() != 0)
+ result = result.round(mc);
+ return result;
+ }
+
+ /**
+ * Returns this BigDecimal. This is included for symmetry with the
+ * method negate().
+ * @return this
+ * @since 1.5
+ */
+ public BigDecimal plus()
+ {
+ return this;
+ }
+
+ /**
+ * Returns a BigDecimal whose value is found by rounding <code>this</code>
+ * according to the MathContext. This is the same as round(MathContext).
+ * @param mc the MathContext for rounding
+ * @return a BigDecimal whose value is <code>this</code> before being rounded
+ * @throws ArithmeticException if the value is inexact but the rounding mode
+ * is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal plus(MathContext mc)
+ {
+ return round(mc);
+ }
+
+ /**
+ * Returns a BigDecimal which is this BigDecimal rounded according to the
+ * MathContext rounding settings.
+ * @param mc the MathContext that tells us how to round
+ * @return the rounded BigDecimal
+ */
+ public BigDecimal round(MathContext mc)
+ {
+ int mcPrecision = mc.getPrecision();
+ int numToChop = precision() - mcPrecision;
+ // If mc specifies not to chop any digits or if we've already chopped
+ // enough digits (say by using a MathContext in the constructor for this
+ // BigDecimal) then just return this.
+ if (mcPrecision == 0 || numToChop <= 0)
+ return this;
+
+ // Make a new BigDecimal which is the correct power of 10 to chop off
+ // the required number of digits and then call divide.
+ BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
+ BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
+ rounded.scale -= numToChop;
+ rounded.precision = mcPrecision;
+ return rounded;
+ }
+
+ /**
+ * Returns the precision of this BigDecimal (the number of digits in the
+ * unscaled value). The precision of a zero value is 1.
+ * @return the number of digits in the unscaled value, or 1 if the value
+ * is zero.
+ */
+ public int precision()
+ {
+ if (precision == 0)
+ {
+ String s = intVal.toString();
+ precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
+ }
+ return precision;
+ }
+
+ /**
+ * Returns the String representation of this BigDecimal, using scientific
+ * notation if necessary. The following steps are taken to generate
+ * the result:
+ *
+ * 1. the BigInteger unscaledValue's toString method is called and if
+ * <code>scale == 0<code> is returned.
+ * 2. an <code>int adjExp</code> is created which is equal to the negation
+ * of <code>scale</code> plus the number of digits in the unscaled value,
+ * minus one.
+ * 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this
+ * BigDecimal without scientific notation. A decimal is added if the
+ * scale is positive and zeros are prepended as necessary.
+ * 4. if scale is negative or adjExp is less than -6 we use scientific
+ * notation. If the unscaled value has more than one digit, a decimal
+ * as inserted after the first digit, the character 'E' is appended
+ * and adjExp is appended.
+ */
+ public String toString()
+ {
+ // bigStr is the String representation of the unscaled value. If
+ // scale is zero we simply return this.
+ String bigStr = intVal.toString();
+ if (scale == 0)
+ return bigStr;
+
+ boolean negative = (bigStr.charAt(0) == '-');
+ int point = bigStr.length() - scale - (negative ? 1 : 0);
+
+ CPStringBuilder val = new CPStringBuilder();
+
+ if (scale >= 0 && (point - 1) >= -6)
+ {
+ // Convert to character form without scientific notation.
+ if (point <= 0)
+ {
+ // Zeros need to be prepended to the StringBuilder.
+ if (negative)
+ val.append('-');
+ // Prepend a '0' and a '.' and then as many more '0's as necessary.
+ val.append('0').append('.');
+ while (point < 0)
+ {
+ val.append('0');
+ point++;
+ }
+ // Append the unscaled value.
+ val.append(bigStr.substring(negative ? 1 : 0));
+ }
+ else
+ {
+ // No zeros need to be prepended so the String is simply the
+ // unscaled value with the decimal point inserted.
+ val.append(bigStr);
+ val.insert(point + (negative ? 1 : 0), '.');
+ }
+ }
+ else
+ {
+ // We must use scientific notation to represent this BigDecimal.
+ val.append(bigStr);
+ // If there is more than one digit in the unscaled value we put a
+ // decimal after the first digit.
+ if (bigStr.length() > 1)
+ val.insert( ( negative ? 2 : 1 ), '.');
+ // And then append 'E' and the exponent = (point - 1).
+ val.append('E');
+ if (point - 1 >= 0)
+ val.append('+');
+ val.append( point - 1 );
+ }
+ return val.toString();
+ }
+
+ /**
+ * Returns the String representation of this BigDecimal, using engineering
+ * notation if necessary. This is similar to toString() but when exponents
+ * are used the exponent is made to be a multiple of 3 such that the integer
+ * part is between 1 and 999.
+ *
+ * @return a String representation of this BigDecimal in engineering notation
+ * @since 1.5
+ */
+ public String toEngineeringString()
+ {
+ // bigStr is the String representation of the unscaled value. If
+ // scale is zero we simply return this.
+ String bigStr = intVal.toString();
+ if (scale == 0)
+ return bigStr;
+
+ boolean negative = (bigStr.charAt(0) == '-');
+ int point = bigStr.length() - scale - (negative ? 1 : 0);
+
+ // This is the adjusted exponent described above.
+ int adjExp = point - 1;
+ CPStringBuilder val = new CPStringBuilder();
+
+ if (scale >= 0 && adjExp >= -6)
+ {
+ // Convert to character form without scientific notation.
+ if (point <= 0)
+ {
+ // Zeros need to be prepended to the StringBuilder.
+ if (negative)
+ val.append('-');
+ // Prepend a '0' and a '.' and then as many more '0's as necessary.
+ val.append('0').append('.');
+ while (point < 0)
+ {
+ val.append('0');
+ point++;
+ }
+ // Append the unscaled value.
+ val.append(bigStr.substring(negative ? 1 : 0));
+ }
+ else
+ {
+ // No zeros need to be prepended so the String is simply the
+ // unscaled value with the decimal point inserted.
+ val.append(bigStr);
+ val.insert(point + (negative ? 1 : 0), '.');
+ }
+ }
+ else
+ {
+ // We must use scientific notation to represent this BigDecimal.
+ // The exponent must be a multiple of 3 and the integer part
+ // must be between 1 and 999.
+ val.append(bigStr);
+ int zeros = adjExp % 3;
+ int dot = 1;
+ if (adjExp > 0)
+ {
+ // If the exponent is positive we just move the decimal to the
+ // right and decrease the exponent until it is a multiple of 3.
+ dot += zeros;
+ adjExp -= zeros;
+ }
+ else
+ {
+ // If the exponent is negative then we move the dot to the right
+ // and decrease the exponent (increase its magnitude) until
+ // it is a multiple of 3. Note that this is not adjExp -= zeros
+ // because the mod operator doesn't give us the distance to the
+ // correct multiple of 3. (-5 mod 3) is -2 but the distance from
+ // -5 to the correct multiple of 3 (-6) is 1, not 2.
+ if (zeros == -2)
+ {
+ dot += 1;
+ adjExp -= 1;
+ }
+ else if (zeros == -1)
+ {
+ dot += 2;
+ adjExp -= 2;
+ }
+ }
+
+ // Either we have to append zeros because, for example, 1.1E+5 should
+ // be 110E+3, or we just have to put the decimal in the right place.
+ if (dot > val.length())
+ {
+ while (dot > val.length())
+ val.append('0');
+ }
+ else if (bigStr.length() > dot)
+ val.insert(dot + (negative ? 1 : 0), '.');
+
+ // And then append 'E' and the exponent (adjExp).
+ val.append('E');
+ if (adjExp >= 0)
+ val.append('+');
+ val.append(adjExp);
+ }
+ return val.toString();
+ }
+
+ /**
+ * Returns a String representation of this BigDecimal without using
+ * scientific notation. This is how toString() worked for releases 1.4
+ * and previous. Zeros may be added to the end of the String. For
+ * example, an unscaled value of 1234 and a scale of -3 would result in
+ * the String 1234000, but the toString() method would return
+ * 1.234E+6.
+ * @return a String representation of this BigDecimal
+ * @since 1.5
+ */
+ public String toPlainString()
+ {
+ // If the scale is zero we simply return the String representation of the
+ // unscaled value.
+ String bigStr = intVal.toString();
+ if (scale == 0)
+ return bigStr;
+
+ // Remember if we have to put a negative sign at the start.
+ boolean negative = (bigStr.charAt(0) == '-');
+
+ int point = bigStr.length() - scale - (negative ? 1 : 0);
+
+ CPStringBuilder sb = new CPStringBuilder(bigStr.length() + 2
+ + (point <= 0 ? (-point + 1) : 0));
+ if (point <= 0)
+ {
+ // We have to prepend zeros and a decimal point.
+ if (negative)
+ sb.append('-');
+ sb.append('0').append('.');
+ while (point < 0)
+ {
+ sb.append('0');
+ point++;
+ }
+ sb.append(bigStr.substring(negative ? 1 : 0));
+ }
+ else if (point < bigStr.length())
+ {
+ // No zeros need to be prepended or appended, just put the decimal
+ // in the right place.
+ sb.append(bigStr);
+ sb.insert(point + (negative ? 1 : 0), '.');
+ }
+ else
+ {
+ // We must append zeros instead of using scientific notation.
+ sb.append(bigStr);
+ for (int i = bigStr.length(); i < point; i++)
+ sb.append('0');
+ }
+ return sb.toString();
+ }
+
+ /**
+ * Converts this BigDecimal to a BigInteger. Any fractional part will
+ * be discarded.
+ * @return a BigDecimal whose value is equal to floor[this]
+ */
+ public BigInteger toBigInteger ()
+ {
+ // If scale > 0 then we must divide, if scale > 0 then we must multiply,
+ // and if scale is zero then we just return intVal;
+ if (scale > 0)
+ return intVal.divide (BigInteger.TEN.pow (scale));
+ else if (scale < 0)
+ return intVal.multiply(BigInteger.TEN.pow(-scale));
+ return intVal;
+ }
+
+ /**
+ * Converts this BigDecimal into a BigInteger, throwing an
+ * ArithmeticException if the conversion is not exact.
+ * @return a BigInteger whose value is equal to the value of this BigDecimal
+ * @since 1.5
+ */
+ public BigInteger toBigIntegerExact()
+ {
+ if (scale > 0)
+ {
+ // If we have to divide, we must check if the result is exact.
+ BigInteger[] result =
+ intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
+ if (result[1].equals(BigInteger.ZERO))
+ return result[0];
+ throw new ArithmeticException("No exact BigInteger representation");
+ }
+ else if (scale < 0)
+ // If we're multiplying instead, then we needn't check for exactness.
+ return intVal.multiply(BigInteger.TEN.pow(-scale));
+ // If the scale is zero we can simply return intVal.
+ return intVal;
+ }
+
+ public int intValue ()
+ {
+ return toBigInteger ().intValue ();
+ }
+
+ /**
+ * Returns a BigDecimal which is numerically equal to this BigDecimal but
+ * with no trailing zeros in the representation. For example, if this
+ * BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
+ * a BigDecimal with [unscaledValue, scale] = [6313, 1]. As another
+ * example, [12400, -2] would become [124, -4].
+ * @return a numerically equal BigDecimal with no trailing zeros
+ */
+ public BigDecimal stripTrailingZeros()
+ {
+ String intValStr = intVal.toString();
+ int newScale = scale;
+ int pointer = intValStr.length() - 1;
+ // This loop adjusts pointer which will be used to give us the substring
+ // of intValStr to use in our new BigDecimal, and also accordingly
+ // adjusts the scale of our new BigDecimal.
+ while (intValStr.charAt(pointer) == '0')
+ {
+ pointer --;
+ newScale --;
+ }
+ // Create a new BigDecimal with the appropriate substring and then
+ // set its scale.
+ BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));
+ result.scale = newScale;
+ return result;
+ }
+
+ public long longValue ()
+ {
+ return toBigInteger().longValue();
+ }
+
+ public float floatValue()
+ {
+ return Float.valueOf(toString()).floatValue();
+ }
+
+ public double doubleValue()
+ {
+ return Double.valueOf(toString()).doubleValue();
+ }
+
+ public BigDecimal setScale (int scale) throws ArithmeticException
+ {
+ return setScale (scale, ROUND_UNNECESSARY);
+ }
+
+ public BigDecimal setScale (int scale, int roundingMode)
+ throws ArithmeticException, IllegalArgumentException
+ {
+ // NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
+ // the spec says it should. Nevertheless, if 1.6 doesn't fix this
+ // we should consider removing it.
+ if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
+ return divide (ONE, scale, roundingMode);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is the same as this BigDecimal but whose
+ * representation has a scale of <code>newScale</code>. If the scale is
+ * reduced then rounding may occur, according to the RoundingMode.
+ * @param newScale
+ * @param roundingMode
+ * @return a BigDecimal whose scale is as given, whose value is
+ * <code>this</code> with possible rounding
+ * @throws ArithmeticException if the rounding mode is UNNECESSARY but
+ * rounding is required
+ * @since 1.5
+ */
+ public BigDecimal setScale(int newScale, RoundingMode roundingMode)
+ {
+ return setScale(newScale, roundingMode.ordinal());
+ }
+
+ /**
+ * Returns a new BigDecimal constructed from the BigDecimal(String)
+ * constructor using the Double.toString(double) method to obtain
+ * the String.
+ * @param val the double value used in Double.toString(double)
+ * @return a BigDecimal representation of val
+ * @throws NumberFormatException if val is NaN or infinite
+ * @since 1.5
+ */
+ public static BigDecimal valueOf(double val)
+ {
+ if (Double.isInfinite(val) || Double.isNaN(val))
+ throw new NumberFormatException("argument cannot be NaN or infinite.");
+ return new BigDecimal(Double.toString(val));
+ }
+
+ /**
+ * Returns a BigDecimal whose numerical value is the numerical value
+ * of this BigDecimal multiplied by 10 to the power of <code>n</code>.
+ * @param n the power of ten
+ * @return the new BigDecimal
+ * @since 1.5
+ */
+ public BigDecimal scaleByPowerOfTen(int n)
+ {
+ BigDecimal result = new BigDecimal(intVal, scale - n);
+ result.precision = precision;
+ return result;
+ }
+
+ /**
+ * Returns a BigDecimal whose value is <code>this</code> to the power of
+ * <code>n</code>.
+ * @param n the power
+ * @return the new BigDecimal
+ * @since 1.5
+ */
+ public BigDecimal pow(int n)
+ {
+ if (n < 0 || n > 999999999)
+ throw new ArithmeticException("n must be between 0 and 999999999");
+ BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
+ return result;
+ }
+
+ /**
+ * Returns a BigDecimal whose value is determined by first calling pow(n)
+ * and then by rounding according to the MathContext mc.
+ * @param n the power
+ * @param mc the MathContext
+ * @return the new BigDecimal
+ * @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
+ * inexact but the rounding is RoundingMode.UNNECESSARY
+ * @since 1.5
+ */
+ public BigDecimal pow(int n, MathContext mc)
+ {
+ // FIXME: The specs claim to use the X3.274-1996 algorithm. We
+ // currently do not.
+ return pow(n).round(mc);
+ }
+
+ /**
+ * Returns a BigDecimal whose value is the absolute value of this BigDecimal
+ * with rounding according to the given MathContext.
+ * @param mc the MathContext
+ * @return the new BigDecimal
+ */
+ public BigDecimal abs(MathContext mc)
+ {
+ BigDecimal result = abs();
+ result = result.round(mc);
+ return result;
+ }
+
+ /**
+ * Returns the size of a unit in the last place of this BigDecimal. This
+ * returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
+ * @return the size of a unit in the last place of <code>this</code>.
+ * @since 1.5
+ */
+ public BigDecimal ulp()
+ {
+ return new BigDecimal(BigInteger.ONE, scale);
+ }
+
+ /**
+ * Converts this BigDecimal to a long value.
+ * @return the long value
+ * @throws ArithmeticException if rounding occurs or if overflow occurs
+ * @since 1.5
+ */
+ public long longValueExact()
+ {
+ // Set scale will throw an exception if rounding occurs.
+ BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
+ BigInteger tempVal = temp.intVal;
+ // Check for overflow.
+ long result = intVal.longValue();
+ if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
+ || (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
+ throw new ArithmeticException("this BigDecimal is too " +
+ "large to fit into the return type");
+
+ return intVal.longValue();
+ }
+
+ /**
+ * Converts this BigDecimal into an int by first calling longValueExact
+ * and then checking that the <code>long</code> returned from that
+ * method fits into an <code>int</code>.
+ * @return an int whose value is <code>this</code>
+ * @throws ArithmeticException if this BigDecimal has a fractional part
+ * or is too large to fit into an int.
+ * @since 1.5
+ */
+ public int intValueExact()
+ {
+ long temp = longValueExact();
+ int result = (int)temp;
+ if (result != temp)
+ throw new ArithmeticException ("this BigDecimal cannot fit into an int");
+ return result;
+ }
+
+ /**
+ * Converts this BigDecimal into a byte by first calling longValueExact
+ * and then checking that the <code>long</code> returned from that
+ * method fits into a <code>byte</code>.
+ * @return a byte whose value is <code>this</code>
+ * @throws ArithmeticException if this BigDecimal has a fractional part
+ * or is too large to fit into a byte.
+ * @since 1.5
+ */
+ public byte byteValueExact()
+ {
+ long temp = longValueExact();
+ byte result = (byte)temp;
+ if (result != temp)
+ throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
+ return result;
+ }
+
+ /**
+ * Converts this BigDecimal into a short by first calling longValueExact
+ * and then checking that the <code>long</code> returned from that
+ * method fits into a <code>short</code>.
+ * @return a short whose value is <code>this</code>
+ * @throws ArithmeticException if this BigDecimal has a fractional part
+ * or is too large to fit into a short.
+ * @since 1.5
+ */
+ public short shortValueExact()
+ {
+ long temp = longValueExact();
+ short result = (short)temp;
+ if (result != temp)
+ throw new ArithmeticException ("this BigDecimal cannot fit into a short");
+ return result;
+ }
+}
diff --git a/libjava/classpath/java/math/BigInteger.java b/libjava/classpath/java/math/BigInteger.java
new file mode 100644
index 000000000..953e557a8
--- /dev/null
+++ b/libjava/classpath/java/math/BigInteger.java
@@ -0,0 +1,2676 @@
+/* java.math.BigInteger -- Arbitary precision integers
+ Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.math;
+
+import gnu.classpath.Configuration;
+
+import gnu.java.lang.CPStringBuilder;
+import gnu.java.math.GMP;
+import gnu.java.math.MPN;
+
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.ObjectOutputStream;
+import java.util.Random;
+import java.util.logging.Logger;
+
+/**
+ * Written using on-line Java Platform 1.2 API Specification, as well
+ * as "The Java Class Libraries", 2nd edition (Addison-Wesley, 1998) and
+ * "Applied Cryptography, Second Edition" by Bruce Schneier (Wiley, 1996).
+ *
+ * Based primarily on IntNum.java BitOps.java by Per Bothner (per@bothner.com)
+ * (found in Kawa 1.6.62).
+ *
+ * @author Warren Levy (warrenl@cygnus.com)
+ * @date December 20, 1999.
+ * @status believed complete and correct.
+ */
+public class BigInteger extends Number implements Comparable<BigInteger>
+{
+ private static final Logger log = Logger.getLogger(BigInteger.class.getName());
+
+ /** All integers are stored in 2's-complement form.
+ * If words == null, the ival is the value of this BigInteger.
+ * Otherwise, the first ival elements of words make the value
+ * of this BigInteger, stored in little-endian order, 2's-complement form. */
+ private transient int ival;
+ private transient int[] words;
+
+ // Serialization fields.
+ // the first three, although not used in the code, are present for
+ // compatibility with older RI versions of this class. DO NOT REMOVE.
+ private int bitCount = -1;
+ private int bitLength = -1;
+ private int lowestSetBit = -2;
+ private byte[] magnitude;
+ private int signum;
+ private static final long serialVersionUID = -8287574255936472291L;
+
+
+ /** We pre-allocate integers in the range minFixNum..maxFixNum.
+ * Note that we must at least preallocate 0, 1, and 10. */
+ private static final int minFixNum = -100;
+ private static final int maxFixNum = 1024;
+ private static final int numFixNum = maxFixNum-minFixNum+1;
+ private static final BigInteger[] smallFixNums;
+
+ /** The alter-ego GMP instance for this. */
+ private transient GMP mpz;
+
+ private static final boolean USING_NATIVE = Configuration.WANT_NATIVE_BIG_INTEGER
+ && initializeLibrary();
+
+ static
+ {
+ if (USING_NATIVE)
+ {
+ smallFixNums = null;
+ ZERO = valueOf(0L);
+ ONE = valueOf(1L);
+ TEN = valueOf(10L);
+ }
+ else
+ {
+ smallFixNums = new BigInteger[numFixNum];
+ for (int i = numFixNum; --i >= 0; )
+ smallFixNums[i] = new BigInteger(i + minFixNum);
+
+ ZERO = smallFixNums[-minFixNum];
+ ONE = smallFixNums[1 - minFixNum];
+ TEN = smallFixNums[10 - minFixNum];
+ }
+ }
+
+ /**
+ * The constant zero as a BigInteger.
+ * @since 1.2
+ */
+ public static final BigInteger ZERO;
+
+ /**
+ * The constant one as a BigInteger.
+ * @since 1.2
+ */
+ public static final BigInteger ONE;
+
+ /**
+ * The constant ten as a BigInteger.
+ * @since 1.5
+ */
+ public static final BigInteger TEN;
+
+ /* Rounding modes: */
+ private static final int FLOOR = 1;
+ private static final int CEILING = 2;
+ private static final int TRUNCATE = 3;
+ private static final int ROUND = 4;
+
+ /** When checking the probability of primes, it is most efficient to
+ * first check the factoring of small primes, so we'll use this array.
+ */
+ private static final int[] primes =
+ { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
+ 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
+ 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,
+ 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251 };
+
+ /** HAC (Handbook of Applied Cryptography), Alfred Menezes & al. Table 4.4. */
+ private static final int[] k =
+ {100,150,200,250,300,350,400,500,600,800,1250, Integer.MAX_VALUE};
+ private static final int[] t =
+ { 27, 18, 15, 12, 9, 8, 7, 6, 5, 4, 3, 2};
+
+ private BigInteger()
+ {
+ super();
+
+ if (USING_NATIVE)
+ mpz = new GMP();
+ }
+
+ /* Create a new (non-shared) BigInteger, and initialize to an int. */
+ private BigInteger(int value)
+ {
+ super();
+
+ ival = value;
+ }
+
+ public BigInteger(String s, int radix)
+ {
+ this();
+
+ int len = s.length();
+ int i, digit;
+ boolean negative;
+ byte[] bytes;
+ char ch = s.charAt(0);
+ if (ch == '-')
+ {
+ negative = true;
+ i = 1;
+ bytes = new byte[len - 1];
+ }
+ else
+ {
+ negative = false;
+ i = 0;
+ bytes = new byte[len];
+ }
+ int byte_len = 0;
+ for ( ; i < len; i++)
+ {
+ ch = s.charAt(i);
+ digit = Character.digit(ch, radix);
+ if (digit < 0)
+ throw new NumberFormatException("Invalid character at position #" + i);
+ bytes[byte_len++] = (byte) digit;
+ }
+
+ if (USING_NATIVE)
+ {
+ bytes = null;
+ if (mpz.fromString(s, radix) != 0)
+ throw new NumberFormatException("String \"" + s
+ + "\" is NOT a valid number in base "
+ + radix);
+ }
+ else
+ {
+ BigInteger result;
+ // Testing (len < MPN.chars_per_word(radix)) would be more accurate,
+ // but slightly more expensive, for little practical gain.
+ if (len <= 15 && radix <= 16)
+ result = valueOf(Long.parseLong(s, radix));
+ else
+ result = valueOf(bytes, byte_len, negative, radix);
+
+ this.ival = result.ival;
+ this.words = result.words;
+ }
+ }
+
+ public BigInteger(String val)
+ {
+ this(val, 10);
+ }
+
+ /* Create a new (non-shared) BigInteger, and initialize from a byte array. */
+ public BigInteger(byte[] val)
+ {
+ this();
+
+ if (val == null || val.length < 1)
+ throw new NumberFormatException();
+
+ if (USING_NATIVE)
+ mpz.fromByteArray(val);
+ else
+ {
+ words = byteArrayToIntArray(val, val[0] < 0 ? -1 : 0);
+ BigInteger result = make(words, words.length);
+ this.ival = result.ival;
+ this.words = result.words;
+ }
+ }
+
+ public BigInteger(int signum, byte[] magnitude)
+ {
+ this();
+
+ if (magnitude == null || signum > 1 || signum < -1)
+ throw new NumberFormatException();
+
+ if (signum == 0)
+ {
+ int i;
+ for (i = magnitude.length - 1; i >= 0 && magnitude[i] == 0; --i)
+ ;
+ if (i >= 0)
+ throw new NumberFormatException();
+ return;
+ }
+
+ if (USING_NATIVE)
+ mpz.fromSignedMagnitude(magnitude, signum == -1);
+ else
+ {
+ // Magnitude is always positive, so don't ever pass a sign of -1.
+ words = byteArrayToIntArray(magnitude, 0);
+ BigInteger result = make(words, words.length);
+ this.ival = result.ival;
+ this.words = result.words;
+
+ if (signum < 0)
+ setNegative();
+ }
+ }
+
+ public BigInteger(int numBits, Random rnd)
+ {
+ this();
+
+ if (numBits < 0)
+ throw new IllegalArgumentException();
+
+ init(numBits, rnd);
+ }
+
+ private void init(int numBits, Random rnd)
+ {
+ if (USING_NATIVE)
+ {
+ int length = (numBits + 7) / 8;
+ byte[] magnitude = new byte[length];
+ rnd.nextBytes(magnitude);
+ int discardedBitCount = numBits % 8;
+ if (discardedBitCount != 0)
+ {
+ discardedBitCount = 8 - discardedBitCount;
+ magnitude[0] = (byte)((magnitude[0] & 0xFF) >>> discardedBitCount);
+ }
+ mpz.fromSignedMagnitude(magnitude, false);
+ magnitude = null;
+ return;
+ }
+
+ int highbits = numBits & 31;
+ // minimum number of bytes to store the above number of bits
+ int highBitByteCount = (highbits + 7) / 8;
+ // number of bits to discard from the last byte
+ int discardedBitCount = highbits % 8;
+ if (discardedBitCount != 0)
+ discardedBitCount = 8 - discardedBitCount;
+ byte[] highBitBytes = new byte[highBitByteCount];
+ if (highbits > 0)
+ {
+ rnd.nextBytes(highBitBytes);
+ highbits = (highBitBytes[highBitByteCount - 1] & 0xFF) >>> discardedBitCount;
+ for (int i = highBitByteCount - 2; i >= 0; i--)
+ highbits = (highbits << 8) | (highBitBytes[i] & 0xFF);
+ }
+ int nwords = numBits / 32;
+
+ while (highbits == 0 && nwords > 0)
+ {
+ highbits = rnd.nextInt();
+ --nwords;
+ }
+ if (nwords == 0 && highbits >= 0)
+ {
+ ival = highbits;
+ }
+ else
+ {
+ ival = highbits < 0 ? nwords + 2 : nwords + 1;
+ words = new int[ival];
+ words[nwords] = highbits;
+ while (--nwords >= 0)
+ words[nwords] = rnd.nextInt();
+ }
+ }
+
+ public BigInteger(int bitLength, int certainty, Random rnd)
+ {
+ this();
+
+ BigInteger result = new BigInteger();
+ while (true)
+ {
+ result.init(bitLength, rnd);
+ result = result.setBit(bitLength - 1);
+ if (result.isProbablePrime(certainty))
+ break;
+ }
+
+ if (USING_NATIVE)
+ mpz.fromBI(result.mpz);
+ else
+ {
+ this.ival = result.ival;
+ this.words = result.words;
+ }
+ }
+
+ /**
+ * Return a BigInteger that is bitLength bits long with a
+ * probability < 2^-100 of being composite.
+ *
+ * @param bitLength length in bits of resulting number
+ * @param rnd random number generator to use
+ * @throws ArithmeticException if bitLength < 2
+ * @since 1.4
+ */
+ public static BigInteger probablePrime(int bitLength, Random rnd)
+ {
+ if (bitLength < 2)
+ throw new ArithmeticException();
+
+ return new BigInteger(bitLength, 100, rnd);
+ }
+
+ /** Return a (possibly-shared) BigInteger with a given long value. */
+ public static BigInteger valueOf(long val)
+ {
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ result.mpz.fromLong(val);
+ return result;
+ }
+
+ if (val >= minFixNum && val <= maxFixNum)
+ return smallFixNums[(int) val - minFixNum];
+ int i = (int) val;
+ if ((long) i == val)
+ return new BigInteger(i);
+ BigInteger result = alloc(2);
+ result.ival = 2;
+ result.words[0] = i;
+ result.words[1] = (int)(val >> 32);
+ return result;
+ }
+
+ /**
+ * @return <code>true</code> if the GMP-based native implementation library
+ * was successfully loaded. Returns <code>false</code> otherwise.
+ */
+ private static boolean initializeLibrary()
+ {
+ boolean result;
+ try
+ {
+ System.loadLibrary("javamath");
+ GMP.natInitializeLibrary();
+ result = true;
+ }
+ catch (Throwable x)
+ {
+ result = false;
+ if (Configuration.DEBUG)
+ {
+ log.info("Unable to use native BigInteger: " + x);
+ log.info("Will use a pure Java implementation instead");
+ }
+ }
+ return result;
+ }
+
+ /** Make a canonicalized BigInteger from an array of words.
+ * The array may be reused (without copying). */
+ private static BigInteger make(int[] words, int len)
+ {
+ if (words == null)
+ return valueOf(len);
+ len = BigInteger.wordsNeeded(words, len);
+ if (len <= 1)
+ return len == 0 ? ZERO : valueOf(words[0]);
+ BigInteger num = new BigInteger();
+ num.words = words;
+ num.ival = len;
+ return num;
+ }
+
+ /** Convert a big-endian byte array to a little-endian array of words. */
+ private static int[] byteArrayToIntArray(byte[] bytes, int sign)
+ {
+ // Determine number of words needed.
+ int[] words = new int[bytes.length/4 + 1];
+ int nwords = words.length;
+
+ // Create a int out of modulo 4 high order bytes.
+ int bptr = 0;
+ int word = sign;
+ for (int i = bytes.length % 4; i > 0; --i, bptr++)
+ word = (word << 8) | (bytes[bptr] & 0xff);
+ words[--nwords] = word;
+
+ // Elements remaining in byte[] are a multiple of 4.
+ while (nwords > 0)
+ words[--nwords] = bytes[bptr++] << 24 |
+ (bytes[bptr++] & 0xff) << 16 |
+ (bytes[bptr++] & 0xff) << 8 |
+ (bytes[bptr++] & 0xff);
+ return words;
+ }
+
+ /** Allocate a new non-shared BigInteger.
+ * @param nwords number of words to allocate
+ */
+ private static BigInteger alloc(int nwords)
+ {
+ BigInteger result = new BigInteger();
+ if (nwords > 1)
+ result.words = new int[nwords];
+ return result;
+ }
+
+ /** Change words.length to nwords.
+ * We allow words.length to be upto nwords+2 without reallocating.
+ */
+ private void realloc(int nwords)
+ {
+ if (nwords == 0)
+ {
+ if (words != null)
+ {
+ if (ival > 0)
+ ival = words[0];
+ words = null;
+ }
+ }
+ else if (words == null
+ || words.length < nwords
+ || words.length > nwords + 2)
+ {
+ int[] new_words = new int [nwords];
+ if (words == null)
+ {
+ new_words[0] = ival;
+ ival = 1;
+ }
+ else
+ {
+ if (nwords < ival)
+ ival = nwords;
+ System.arraycopy(words, 0, new_words, 0, ival);
+ }
+ words = new_words;
+ }
+ }
+
+ private boolean isNegative()
+ {
+ return (words == null ? ival : words[ival - 1]) < 0;
+ }
+
+ public int signum()
+ {
+ if (USING_NATIVE)
+ return mpz.compare(ZERO.mpz);
+
+ if (ival == 0 && words == null)
+ return 0;
+ int top = words == null ? ival : words[ival-1];
+ return top < 0 ? -1 : 1;
+ }
+
+ private static int compareTo(BigInteger x, BigInteger y)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = y.signum; // force NPE check
+ return x.mpz.compare(y.mpz);
+ }
+
+ if (x.words == null && y.words == null)
+ return x.ival < y.ival ? -1 : x.ival > y.ival ? 1 : 0;
+ boolean x_negative = x.isNegative();
+ boolean y_negative = y.isNegative();
+ if (x_negative != y_negative)
+ return x_negative ? -1 : 1;
+ int x_len = x.words == null ? 1 : x.ival;
+ int y_len = y.words == null ? 1 : y.ival;
+ if (x_len != y_len)
+ return (x_len > y_len) != x_negative ? 1 : -1;
+ return MPN.cmp(x.words, y.words, x_len);
+ }
+
+ /** @since 1.2 */
+ public int compareTo(BigInteger val)
+ {
+ return compareTo(this, val);
+ }
+
+ public BigInteger min(BigInteger val)
+ {
+ return compareTo(this, val) < 0 ? this : val;
+ }
+
+ public BigInteger max(BigInteger val)
+ {
+ return compareTo(this, val) > 0 ? this : val;
+ }
+
+ private boolean isZero()
+ {
+ return words == null && ival == 0;
+ }
+
+ private boolean isOne()
+ {
+ return words == null && ival == 1;
+ }
+
+ /** Calculate how many words are significant in words[0:len-1].
+ * Returns the least value x such that x>0 && words[0:x-1]==words[0:len-1],
+ * when words is viewed as a 2's complement integer.
+ */
+ private static int wordsNeeded(int[] words, int len)
+ {
+ int i = len;
+ if (i > 0)
+ {
+ int word = words[--i];
+ if (word == -1)
+ {
+ while (i > 0 && (word = words[i - 1]) < 0)
+ {
+ i--;
+ if (word != -1) break;
+ }
+ }
+ else
+ {
+ while (word == 0 && i > 0 && (word = words[i - 1]) >= 0) i--;
+ }
+ }
+ return i + 1;
+ }
+
+ private BigInteger canonicalize()
+ {
+ if (words != null
+ && (ival = BigInteger.wordsNeeded(words, ival)) <= 1)
+ {
+ if (ival == 1)
+ ival = words[0];
+ words = null;
+ }
+ if (words == null && ival >= minFixNum && ival <= maxFixNum)
+ return smallFixNums[ival - minFixNum];
+ return this;
+ }
+
+ /** Add two ints, yielding a BigInteger. */
+ private static BigInteger add(int x, int y)
+ {
+ return valueOf((long) x + (long) y);
+ }
+
+ /** Add a BigInteger and an int, yielding a new BigInteger. */
+ private static BigInteger add(BigInteger x, int y)
+ {
+ if (x.words == null)
+ return BigInteger.add(x.ival, y);
+ BigInteger result = new BigInteger(0);
+ result.setAdd(x, y);
+ return result.canonicalize();
+ }
+
+ /** Set this to the sum of x and y.
+ * OK if x==this. */
+ private void setAdd(BigInteger x, int y)
+ {
+ if (x.words == null)
+ {
+ set((long) x.ival + (long) y);
+ return;
+ }
+ int len = x.ival;
+ realloc(len + 1);
+ long carry = y;
+ for (int i = 0; i < len; i++)
+ {
+ carry += ((long) x.words[i] & 0xffffffffL);
+ words[i] = (int) carry;
+ carry >>= 32;
+ }
+ if (x.words[len - 1] < 0)
+ carry--;
+ words[len] = (int) carry;
+ ival = wordsNeeded(words, len + 1);
+ }
+
+ /** Destructively add an int to this. */
+ private void setAdd(int y)
+ {
+ setAdd(this, y);
+ }
+
+ /** Destructively set the value of this to a long. */
+ private void set(long y)
+ {
+ int i = (int) y;
+ if ((long) i == y)
+ {
+ ival = i;
+ words = null;
+ }
+ else
+ {
+ realloc(2);
+ words[0] = i;
+ words[1] = (int) (y >> 32);
+ ival = 2;
+ }
+ }
+
+ /** Destructively set the value of this to the given words.
+ * The words array is reused, not copied. */
+ private void set(int[] words, int length)
+ {
+ this.ival = length;
+ this.words = words;
+ }
+
+ /** Destructively set the value of this to that of y. */
+ private void set(BigInteger y)
+ {
+ if (y.words == null)
+ set(y.ival);
+ else if (this != y)
+ {
+ realloc(y.ival);
+ System.arraycopy(y.words, 0, words, 0, y.ival);
+ ival = y.ival;
+ }
+ }
+
+ /** Add two BigIntegers, yielding their sum as another BigInteger. */
+ private static BigInteger add(BigInteger x, BigInteger y, int k)
+ {
+ if (x.words == null && y.words == null)
+ return valueOf((long) k * (long) y.ival + (long) x.ival);
+ if (k != 1)
+ {
+ if (k == -1)
+ y = BigInteger.neg(y);
+ else
+ y = BigInteger.times(y, valueOf(k));
+ }
+ if (x.words == null)
+ return BigInteger.add(y, x.ival);
+ if (y.words == null)
+ return BigInteger.add(x, y.ival);
+ // Both are big
+ if (y.ival > x.ival)
+ { // Swap so x is longer then y.
+ BigInteger tmp = x; x = y; y = tmp;
+ }
+ BigInteger result = alloc(x.ival + 1);
+ int i = y.ival;
+ long carry = MPN.add_n(result.words, x.words, y.words, i);
+ long y_ext = y.words[i - 1] < 0 ? 0xffffffffL : 0;
+ for (; i < x.ival; i++)
+ {
+ carry += ((long) x.words[i] & 0xffffffffL) + y_ext;
+ result.words[i] = (int) carry;
+ carry >>>= 32;
+ }
+ if (x.words[i - 1] < 0)
+ y_ext--;
+ result.words[i] = (int) (carry + y_ext);
+ result.ival = i+1;
+ return result.canonicalize();
+ }
+
+ public BigInteger add(BigInteger val)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = val.signum; // force NPE check
+ BigInteger result = new BigInteger();
+ mpz.add(val.mpz, result.mpz);
+ return result;
+ }
+
+ return add(this, val, 1);
+ }
+
+ public BigInteger subtract(BigInteger val)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = val.signum; // force NPE check
+ BigInteger result = new BigInteger();
+ mpz.subtract(val.mpz, result.mpz);
+ return result;
+ }
+
+ return add(this, val, -1);
+ }
+
+ private static BigInteger times(BigInteger x, int y)
+ {
+ if (y == 0)
+ return ZERO;
+ if (y == 1)
+ return x;
+ int[] xwords = x.words;
+ int xlen = x.ival;
+ if (xwords == null)
+ return valueOf((long) xlen * (long) y);
+ boolean negative;
+ BigInteger result = BigInteger.alloc(xlen + 1);
+ if (xwords[xlen - 1] < 0)
+ {
+ negative = true;
+ negate(result.words, xwords, xlen);
+ xwords = result.words;
+ }
+ else
+ negative = false;
+ if (y < 0)
+ {
+ negative = !negative;
+ y = -y;
+ }
+ result.words[xlen] = MPN.mul_1(result.words, xwords, xlen, y);
+ result.ival = xlen + 1;
+ if (negative)
+ result.setNegative();
+ return result.canonicalize();
+ }
+
+ private static BigInteger times(BigInteger x, BigInteger y)
+ {
+ if (y.words == null)
+ return times(x, y.ival);
+ if (x.words == null)
+ return times(y, x.ival);
+ boolean negative = false;
+ int[] xwords;
+ int[] ywords;
+ int xlen = x.ival;
+ int ylen = y.ival;
+ if (x.isNegative())
+ {
+ negative = true;
+ xwords = new int[xlen];
+ negate(xwords, x.words, xlen);
+ }
+ else
+ {
+ negative = false;
+ xwords = x.words;
+ }
+ if (y.isNegative())
+ {
+ negative = !negative;
+ ywords = new int[ylen];
+ negate(ywords, y.words, ylen);
+ }
+ else
+ ywords = y.words;
+ // Swap if x is shorter then y.
+ if (xlen < ylen)
+ {
+ int[] twords = xwords; xwords = ywords; ywords = twords;
+ int tlen = xlen; xlen = ylen; ylen = tlen;
+ }
+ BigInteger result = BigInteger.alloc(xlen+ylen);
+ MPN.mul(result.words, xwords, xlen, ywords, ylen);
+ result.ival = xlen+ylen;
+ if (negative)
+ result.setNegative();
+ return result.canonicalize();
+ }
+
+ public BigInteger multiply(BigInteger y)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = y.signum; // force NPE check
+ BigInteger result = new BigInteger();
+ mpz.multiply(y.mpz, result.mpz);
+ return result;
+ }
+
+ return times(this, y);
+ }
+
+ private static void divide(long x, long y,
+ BigInteger quotient, BigInteger remainder,
+ int rounding_mode)
+ {
+ boolean xNegative, yNegative;
+ if (x < 0)
+ {
+ xNegative = true;
+ if (x == Long.MIN_VALUE)
+ {
+ divide(valueOf(x), valueOf(y),
+ quotient, remainder, rounding_mode);
+ return;
+ }
+ x = -x;
+ }
+ else
+ xNegative = false;
+
+ if (y < 0)
+ {
+ yNegative = true;
+ if (y == Long.MIN_VALUE)
+ {
+ if (rounding_mode == TRUNCATE)
+ { // x != Long.Min_VALUE implies abs(x) < abs(y)
+ if (quotient != null)
+ quotient.set(0);
+ if (remainder != null)
+ remainder.set(x);
+ }
+ else
+ divide(valueOf(x), valueOf(y),
+ quotient, remainder, rounding_mode);
+ return;
+ }
+ y = -y;
+ }
+ else
+ yNegative = false;
+
+ long q = x / y;
+ long r = x % y;
+ boolean qNegative = xNegative ^ yNegative;
+
+ boolean add_one = false;
+ if (r != 0)
+ {
+ switch (rounding_mode)
+ {
+ case TRUNCATE:
+ break;
+ case CEILING:
+ case FLOOR:
+ if (qNegative == (rounding_mode == FLOOR))
+ add_one = true;
+ break;
+ case ROUND:
+ add_one = r > ((y - (q & 1)) >> 1);
+ break;
+ }
+ }
+ if (quotient != null)
+ {
+ if (add_one)
+ q++;
+ if (qNegative)
+ q = -q;
+ quotient.set(q);
+ }
+ if (remainder != null)
+ {
+ // The remainder is by definition: X-Q*Y
+ if (add_one)
+ {
+ // Subtract the remainder from Y.
+ r = y - r;
+ // In this case, abs(Q*Y) > abs(X).
+ // So sign(remainder) = -sign(X).
+ xNegative = ! xNegative;
+ }
+ else
+ {
+ // If !add_one, then: abs(Q*Y) <= abs(X).
+ // So sign(remainder) = sign(X).
+ }
+ if (xNegative)
+ r = -r;
+ remainder.set(r);
+ }
+ }
+
+ /** Divide two integers, yielding quotient and remainder.
+ * @param x the numerator in the division
+ * @param y the denominator in the division
+ * @param quotient is set to the quotient of the result (iff quotient!=null)
+ * @param remainder is set to the remainder of the result
+ * (iff remainder!=null)
+ * @param rounding_mode one of FLOOR, CEILING, TRUNCATE, or ROUND.
+ */
+ private static void divide(BigInteger x, BigInteger y,
+ BigInteger quotient, BigInteger remainder,
+ int rounding_mode)
+ {
+ if ((x.words == null || x.ival <= 2)
+ && (y.words == null || y.ival <= 2))
+ {
+ long x_l = x.longValue();
+ long y_l = y.longValue();
+ if (x_l != Long.MIN_VALUE && y_l != Long.MIN_VALUE)
+ {
+ divide(x_l, y_l, quotient, remainder, rounding_mode);
+ return;
+ }
+ }
+
+ boolean xNegative = x.isNegative();
+ boolean yNegative = y.isNegative();
+ boolean qNegative = xNegative ^ yNegative;
+
+ int ylen = y.words == null ? 1 : y.ival;
+ int[] ywords = new int[ylen];
+ y.getAbsolute(ywords);
+ while (ylen > 1 && ywords[ylen - 1] == 0) ylen--;
+
+ int xlen = x.words == null ? 1 : x.ival;
+ int[] xwords = new int[xlen+2];
+ x.getAbsolute(xwords);
+ while (xlen > 1 && xwords[xlen-1] == 0) xlen--;
+
+ int qlen, rlen;
+
+ int cmpval = MPN.cmp(xwords, xlen, ywords, ylen);
+ if (cmpval < 0) // abs(x) < abs(y)
+ { // quotient = 0; remainder = num.
+ int[] rwords = xwords; xwords = ywords; ywords = rwords;
+ rlen = xlen; qlen = 1; xwords[0] = 0;
+ }
+ else if (cmpval == 0) // abs(x) == abs(y)
+ {
+ xwords[0] = 1; qlen = 1; // quotient = 1
+ ywords[0] = 0; rlen = 1; // remainder = 0;
+ }
+ else if (ylen == 1)
+ {
+ qlen = xlen;
+ // Need to leave room for a word of leading zeros if dividing by 1
+ // and the dividend has the high bit set. It might be safe to
+ // increment qlen in all cases, but it certainly is only necessary
+ // in the following case.
+ if (ywords[0] == 1 && xwords[xlen-1] < 0)
+ qlen++;
+ rlen = 1;
+ ywords[0] = MPN.divmod_1(xwords, xwords, xlen, ywords[0]);
+ }
+ else // abs(x) > abs(y)
+ {
+ // Normalize the denominator, i.e. make its most significant bit set by
+ // shifting it normalization_steps bits to the left. Also shift the
+ // numerator the same number of steps (to keep the quotient the same!).
+
+ int nshift = MPN.count_leading_zeros(ywords[ylen - 1]);
+ if (nshift != 0)
+ {
+ // Shift up the denominator setting the most significant bit of
+ // the most significant word.
+ MPN.lshift(ywords, 0, ywords, ylen, nshift);
+
+ // Shift up the numerator, possibly introducing a new most
+ // significant word.
+ int x_high = MPN.lshift(xwords, 0, xwords, xlen, nshift);
+ xwords[xlen++] = x_high;
+ }
+
+ if (xlen == ylen)
+ xwords[xlen++] = 0;
+ MPN.divide(xwords, xlen, ywords, ylen);
+ rlen = ylen;
+ MPN.rshift0 (ywords, xwords, 0, rlen, nshift);
+
+ qlen = xlen + 1 - ylen;
+ if (quotient != null)
+ {
+ for (int i = 0; i < qlen; i++)
+ xwords[i] = xwords[i+ylen];
+ }
+ }
+
+ if (ywords[rlen-1] < 0)
+ {
+ ywords[rlen] = 0;
+ rlen++;
+ }
+
+ // Now the quotient is in xwords, and the remainder is in ywords.
+
+ boolean add_one = false;
+ if (rlen > 1 || ywords[0] != 0)
+ { // Non-zero remainder i.e. in-exact quotient.
+ switch (rounding_mode)
+ {
+ case TRUNCATE:
+ break;
+ case CEILING:
+ case FLOOR:
+ if (qNegative == (rounding_mode == FLOOR))
+ add_one = true;
+ break;
+ case ROUND:
+ // int cmp = compareTo(remainder<<1, abs(y));
+ BigInteger tmp = remainder == null ? new BigInteger() : remainder;
+ tmp.set(ywords, rlen);
+ tmp = shift(tmp, 1);
+ if (yNegative)
+ tmp.setNegative();
+ int cmp = compareTo(tmp, y);
+ // Now cmp == compareTo(sign(y)*(remainder<<1), y)
+ if (yNegative)
+ cmp = -cmp;
+ add_one = (cmp == 1) || (cmp == 0 && (xwords[0]&1) != 0);
+ }
+ }
+ if (quotient != null)
+ {
+ quotient.set(xwords, qlen);
+ if (qNegative)
+ {
+ if (add_one) // -(quotient + 1) == ~(quotient)
+ quotient.setInvert();
+ else
+ quotient.setNegative();
+ }
+ else if (add_one)
+ quotient.setAdd(1);
+ }
+ if (remainder != null)
+ {
+ // The remainder is by definition: X-Q*Y
+ remainder.set(ywords, rlen);
+ if (add_one)
+ {
+ // Subtract the remainder from Y:
+ // abs(R) = abs(Y) - abs(orig_rem) = -(abs(orig_rem) - abs(Y)).
+ BigInteger tmp;
+ if (y.words == null)
+ {
+ tmp = remainder;
+ tmp.set(yNegative ? ywords[0] + y.ival : ywords[0] - y.ival);
+ }
+ else
+ tmp = BigInteger.add(remainder, y, yNegative ? 1 : -1);
+ // Now tmp <= 0.
+ // In this case, abs(Q) = 1 + floor(abs(X)/abs(Y)).
+ // Hence, abs(Q*Y) > abs(X).
+ // So sign(remainder) = -sign(X).
+ if (xNegative)
+ remainder.setNegative(tmp);
+ else
+ remainder.set(tmp);
+ }
+ else
+ {
+ // If !add_one, then: abs(Q*Y) <= abs(X).
+ // So sign(remainder) = sign(X).
+ if (xNegative)
+ remainder.setNegative();
+ }
+ }
+ }
+
+ public BigInteger divide(BigInteger val)
+ {
+ if (USING_NATIVE)
+ {
+ if (val.compareTo(ZERO) == 0)
+ throw new ArithmeticException("divisor is zero");
+
+ BigInteger result = new BigInteger();
+ mpz.quotient(val.mpz, result.mpz);
+ return result;
+ }
+
+ if (val.isZero())
+ throw new ArithmeticException("divisor is zero");
+
+ BigInteger quot = new BigInteger();
+ divide(this, val, quot, null, TRUNCATE);
+ return quot.canonicalize();
+ }
+
+ public BigInteger remainder(BigInteger val)
+ {
+ if (USING_NATIVE)
+ {
+ if (val.compareTo(ZERO) == 0)
+ throw new ArithmeticException("divisor is zero");
+
+ BigInteger result = new BigInteger();
+ mpz.remainder(val.mpz, result.mpz);
+ return result;
+ }
+
+ if (val.isZero())
+ throw new ArithmeticException("divisor is zero");
+
+ BigInteger rem = new BigInteger();
+ divide(this, val, null, rem, TRUNCATE);
+ return rem.canonicalize();
+ }
+
+ public BigInteger[] divideAndRemainder(BigInteger val)
+ {
+ if (USING_NATIVE)
+ {
+ if (val.compareTo(ZERO) == 0)
+ throw new ArithmeticException("divisor is zero");
+
+ BigInteger q = new BigInteger();
+ BigInteger r = new BigInteger();
+ mpz.quotientAndRemainder(val.mpz, q.mpz, r.mpz);
+ return new BigInteger[] { q, r };
+ }
+
+ if (val.isZero())
+ throw new ArithmeticException("divisor is zero");
+
+ BigInteger[] result = new BigInteger[2];
+ result[0] = new BigInteger();
+ result[1] = new BigInteger();
+ divide(this, val, result[0], result[1], TRUNCATE);
+ result[0].canonicalize();
+ result[1].canonicalize();
+ return result;
+ }
+
+ public BigInteger mod(BigInteger m)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = m.signum; // force NPE check
+ if (m.compareTo(ZERO) < 1)
+ throw new ArithmeticException("non-positive modulus");
+
+ BigInteger result = new BigInteger();
+ mpz.modulo(m.mpz, result.mpz);
+ return result;
+ }
+
+ if (m.isNegative() || m.isZero())
+ throw new ArithmeticException("non-positive modulus");
+
+ BigInteger rem = new BigInteger();
+ divide(this, m, null, rem, FLOOR);
+ return rem.canonicalize();
+ }
+
+ /** Calculate the integral power of a BigInteger.
+ * @param exponent the exponent (must be non-negative)
+ */
+ public BigInteger pow(int exponent)
+ {
+ if (exponent <= 0)
+ {
+ if (exponent == 0)
+ return ONE;
+ throw new ArithmeticException("negative exponent");
+ }
+
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ mpz.pow(exponent, result.mpz);
+ return result;
+ }
+
+ if (isZero())
+ return this;
+ int plen = words == null ? 1 : ival; // Length of pow2.
+ int blen = ((bitLength() * exponent) >> 5) + 2 * plen;
+ boolean negative = isNegative() && (exponent & 1) != 0;
+ int[] pow2 = new int [blen];
+ int[] rwords = new int [blen];
+ int[] work = new int [blen];
+ getAbsolute(pow2); // pow2 = abs(this);
+ int rlen = 1;
+ rwords[0] = 1; // rwords = 1;
+ for (;;) // for (i = 0; ; i++)
+ {
+ // pow2 == this**(2**i)
+ // prod = this**(sum(j=0..i-1, (exponent>>j)&1))
+ if ((exponent & 1) != 0)
+ { // r *= pow2
+ MPN.mul(work, pow2, plen, rwords, rlen);
+ int[] temp = work; work = rwords; rwords = temp;
+ rlen += plen;
+ while (rwords[rlen - 1] == 0) rlen--;
+ }
+ exponent >>= 1;
+ if (exponent == 0)
+ break;
+ // pow2 *= pow2;
+ MPN.mul(work, pow2, plen, pow2, plen);
+ int[] temp = work; work = pow2; pow2 = temp; // swap to avoid a copy
+ plen *= 2;
+ while (pow2[plen - 1] == 0) plen--;
+ }
+ if (rwords[rlen - 1] < 0)
+ rlen++;
+ if (negative)
+ negate(rwords, rwords, rlen);
+ return BigInteger.make(rwords, rlen);
+ }
+
+ private static int[] euclidInv(int a, int b, int prevDiv)
+ {
+ if (b == 0)
+ throw new ArithmeticException("not invertible");
+
+ if (b == 1)
+ // Success: values are indeed invertible!
+ // Bottom of the recursion reached; start unwinding.
+ return new int[] { -prevDiv, 1 };
+
+ int[] xy = euclidInv(b, a % b, a / b); // Recursion happens here.
+ a = xy[0]; // use our local copy of 'a' as a work var
+ xy[0] = a * -prevDiv + xy[1];
+ xy[1] = a;
+ return xy;
+ }
+
+ private static void euclidInv(BigInteger a, BigInteger b,
+ BigInteger prevDiv, BigInteger[] xy)
+ {
+ if (b.isZero())
+ throw new ArithmeticException("not invertible");
+
+ if (b.isOne())
+ {
+ // Success: values are indeed invertible!
+ // Bottom of the recursion reached; start unwinding.
+ xy[0] = neg(prevDiv);
+ xy[1] = ONE;
+ return;
+ }
+
+ // Recursion happens in the following conditional!
+
+ // If a just contains an int, then use integer math for the rest.
+ if (a.words == null)
+ {
+ int[] xyInt = euclidInv(b.ival, a.ival % b.ival, a.ival / b.ival);
+ xy[0] = new BigInteger(xyInt[0]);
+ xy[1] = new BigInteger(xyInt[1]);
+ }
+ else
+ {
+ BigInteger rem = new BigInteger();
+ BigInteger quot = new BigInteger();
+ divide(a, b, quot, rem, FLOOR);
+ // quot and rem may not be in canonical form. ensure
+ rem.canonicalize();
+ quot.canonicalize();
+ euclidInv(b, rem, quot, xy);
+ }
+
+ BigInteger t = xy[0];
+ xy[0] = add(xy[1], times(t, prevDiv), -1);
+ xy[1] = t;
+ }
+
+ public BigInteger modInverse(BigInteger y)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = y.signum; // force NPE check
+ if (mpz.compare(ZERO.mpz) < 1)
+ throw new ArithmeticException("non-positive modulo");
+
+ BigInteger result = new BigInteger();
+ mpz.modInverse(y.mpz, result.mpz);
+ return result;
+ }
+
+ if (y.isNegative() || y.isZero())
+ throw new ArithmeticException("non-positive modulo");
+
+ // Degenerate cases.
+ if (y.isOne())
+ return ZERO;
+ if (isOne())
+ return ONE;
+
+ // Use Euclid's algorithm as in gcd() but do this recursively
+ // rather than in a loop so we can use the intermediate results as we
+ // unwind from the recursion.
+ // Used http://www.math.nmsu.edu/~crypto/EuclideanAlgo.html as reference.
+ BigInteger result = new BigInteger();
+ boolean swapped = false;
+
+ if (y.words == null)
+ {
+ // The result is guaranteed to be less than the modulus, y (which is
+ // an int), so simplify this by working with the int result of this
+ // modulo y. Also, if this is negative, make it positive via modulo
+ // math. Note that BigInteger.mod() must be used even if this is
+ // already an int as the % operator would provide a negative result if
+ // this is negative, BigInteger.mod() never returns negative values.
+ int xval = (words != null || isNegative()) ? mod(y).ival : ival;
+ int yval = y.ival;
+
+ // Swap values so x > y.
+ if (yval > xval)
+ {
+ int tmp = xval; xval = yval; yval = tmp;
+ swapped = true;
+ }
+ // Normally, the result is in the 2nd element of the array, but
+ // if originally x < y, then x and y were swapped and the result
+ // is in the 1st element of the array.
+ result.ival =
+ euclidInv(yval, xval % yval, xval / yval)[swapped ? 0 : 1];
+
+ // Result can't be negative, so make it positive by adding the
+ // original modulus, y.ival (not the possibly "swapped" yval).
+ if (result.ival < 0)
+ result.ival += y.ival;
+ }
+ else
+ {
+ // As above, force this to be a positive value via modulo math.
+ BigInteger x = isNegative() ? this.mod(y) : this;
+
+ // Swap values so x > y.
+ if (x.compareTo(y) < 0)
+ {
+ result = x; x = y; y = result; // use 'result' as a work var
+ swapped = true;
+ }
+ // As above (for ints), result will be in the 2nd element unless
+ // the original x and y were swapped.
+ BigInteger rem = new BigInteger();
+ BigInteger quot = new BigInteger();
+ divide(x, y, quot, rem, FLOOR);
+ // quot and rem may not be in canonical form. ensure
+ rem.canonicalize();
+ quot.canonicalize();
+ BigInteger[] xy = new BigInteger[2];
+ euclidInv(y, rem, quot, xy);
+ result = swapped ? xy[0] : xy[1];
+
+ // Result can't be negative, so make it positive by adding the
+ // original modulus, y (which is now x if they were swapped).
+ if (result.isNegative())
+ result = add(result, swapped ? x : y, 1);
+ }
+
+ return result;
+ }
+
+ public BigInteger modPow(BigInteger exponent, BigInteger m)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = exponent.signum; // force NPE check
+ if (m.mpz.compare(ZERO.mpz) < 1)
+ throw new ArithmeticException("non-positive modulo");
+
+ BigInteger result = new BigInteger();
+ mpz.modPow(exponent.mpz, m.mpz, result.mpz);
+ return result;
+ }
+
+ if (m.isNegative() || m.isZero())
+ throw new ArithmeticException("non-positive modulo");
+
+ if (exponent.isNegative())
+ return modInverse(m).modPow(exponent.negate(), m);
+ if (exponent.isOne())
+ return mod(m);
+
+ // To do this naively by first raising this to the power of exponent
+ // and then performing modulo m would be extremely expensive, especially
+ // for very large numbers. The solution is found in Number Theory
+ // where a combination of partial powers and moduli can be done easily.
+ //
+ // We'll use the algorithm for Additive Chaining which can be found on
+ // p. 244 of "Applied Cryptography, Second Edition" by Bruce Schneier.
+ BigInteger s = ONE;
+ BigInteger t = this;
+ BigInteger u = exponent;
+
+ while (!u.isZero())
+ {
+ if (u.and(ONE).isOne())
+ s = times(s, t).mod(m);
+ u = u.shiftRight(1);
+ t = times(t, t).mod(m);
+ }
+
+ return s;
+ }
+
+ /** Calculate Greatest Common Divisor for non-negative ints. */
+ private static int gcd(int a, int b)
+ {
+ // Euclid's algorithm, copied from libg++.
+ int tmp;
+ if (b > a)
+ {
+ tmp = a; a = b; b = tmp;
+ }
+ for(;;)
+ {
+ if (b == 0)
+ return a;
+ if (b == 1)
+ return b;
+ tmp = b;
+ b = a % b;
+ a = tmp;
+ }
+ }
+
+ public BigInteger gcd(BigInteger y)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = y.signum; // force NPE check
+ BigInteger result = new BigInteger();
+ mpz.gcd(y.mpz, result.mpz);
+ return result;
+ }
+
+ int xval = ival;
+ int yval = y.ival;
+ if (words == null)
+ {
+ if (xval == 0)
+ return abs(y);
+ if (y.words == null
+ && xval != Integer.MIN_VALUE && yval != Integer.MIN_VALUE)
+ {
+ if (xval < 0)
+ xval = -xval;
+ if (yval < 0)
+ yval = -yval;
+ return valueOf(gcd(xval, yval));
+ }
+ xval = 1;
+ }
+ if (y.words == null)
+ {
+ if (yval == 0)
+ return abs(this);
+ yval = 1;
+ }
+ int len = (xval > yval ? xval : yval) + 1;
+ int[] xwords = new int[len];
+ int[] ywords = new int[len];
+ getAbsolute(xwords);
+ y.getAbsolute(ywords);
+ len = MPN.gcd(xwords, ywords, len);
+ BigInteger result = new BigInteger(0);
+ result.ival = len;
+ result.words = xwords;
+ return result.canonicalize();
+ }
+
+ /**
+ * <p>Returns <code>true</code> if this BigInteger is probably prime,
+ * <code>false</code> if it's definitely composite. If <code>certainty</code>
+ * is <code><= 0</code>, <code>true</code> is returned.</p>
+ *
+ * @param certainty a measure of the uncertainty that the caller is willing
+ * to tolerate: if the call returns <code>true</code> the probability that
+ * this BigInteger is prime exceeds <code>(1 - 1/2<sup>certainty</sup>)</code>.
+ * The execution time of this method is proportional to the value of this
+ * parameter.
+ * @return <code>true</code> if this BigInteger is probably prime,
+ * <code>false</code> if it's definitely composite.
+ */
+ public boolean isProbablePrime(int certainty)
+ {
+ if (certainty < 1)
+ return true;
+
+ if (USING_NATIVE)
+ return mpz.testPrimality(certainty) != 0;
+
+ /** We'll use the Rabin-Miller algorithm for doing a probabilistic
+ * primality test. It is fast, easy and has faster decreasing odds of a
+ * composite passing than with other tests. This means that this
+ * method will actually have a probability much greater than the
+ * 1 - .5^certainty specified in the JCL (p. 117), but I don't think
+ * anyone will complain about better performance with greater certainty.
+ *
+ * The Rabin-Miller algorithm can be found on pp. 259-261 of "Applied
+ * Cryptography, Second Edition" by Bruce Schneier.
+ */
+
+ // First rule out small prime factors
+ BigInteger rem = new BigInteger();
+ int i;
+ for (i = 0; i < primes.length; i++)
+ {
+ if (words == null && ival == primes[i])
+ return true;
+
+ divide(this, smallFixNums[primes[i] - minFixNum], null, rem, TRUNCATE);
+ if (rem.canonicalize().isZero())
+ return false;
+ }
+
+ // Now perform the Rabin-Miller test.
+
+ // Set b to the number of times 2 evenly divides (this - 1).
+ // I.e. 2^b is the largest power of 2 that divides (this - 1).
+ BigInteger pMinus1 = add(this, -1);
+ int b = pMinus1.getLowestSetBit();
+
+ // Set m such that this = 1 + 2^b * m.
+ BigInteger m = pMinus1.divide(valueOf(2L).pow(b));
+
+ // The HAC (Handbook of Applied Cryptography), Alfred Menezes & al. Note
+ // 4.49 (controlling the error probability) gives the number of trials
+ // for an error probability of 1/2**80, given the number of bits in the
+ // number to test. we shall use these numbers as is if/when 'certainty'
+ // is less or equal to 80, and twice as much if it's greater.
+ int bits = this.bitLength();
+ for (i = 0; i < k.length; i++)
+ if (bits <= k[i])
+ break;
+ int trials = t[i];
+ if (certainty > 80)
+ trials *= 2;
+ BigInteger z;
+ for (int t = 0; t < trials; t++)
+ {
+ // The HAC (Handbook of Applied Cryptography), Alfred Menezes & al.
+ // Remark 4.28 states: "...A strategy that is sometimes employed
+ // is to fix the bases a to be the first few primes instead of
+ // choosing them at random.
+ z = smallFixNums[primes[t] - minFixNum].modPow(m, this);
+ if (z.isOne() || z.equals(pMinus1))
+ continue; // Passes the test; may be prime.
+
+ for (i = 0; i < b; )
+ {
+ if (z.isOne())
+ return false;
+ i++;
+ if (z.equals(pMinus1))
+ break; // Passes the test; may be prime.
+
+ z = z.modPow(valueOf(2), this);
+ }
+
+ if (i == b && !z.equals(pMinus1))
+ return false;
+ }
+ return true;
+ }
+
+ private void setInvert()
+ {
+ if (words == null)
+ ival = ~ival;
+ else
+ {
+ for (int i = ival; --i >= 0; )
+ words[i] = ~words[i];
+ }
+ }
+
+ private void setShiftLeft(BigInteger x, int count)
+ {
+ int[] xwords;
+ int xlen;
+ if (x.words == null)
+ {
+ if (count < 32)
+ {
+ set((long) x.ival << count);
+ return;
+ }
+ xwords = new int[1];
+ xwords[0] = x.ival;
+ xlen = 1;
+ }
+ else
+ {
+ xwords = x.words;
+ xlen = x.ival;
+ }
+ int word_count = count >> 5;
+ count &= 31;
+ int new_len = xlen + word_count;
+ if (count == 0)
+ {
+ realloc(new_len);
+ for (int i = xlen; --i >= 0; )
+ words[i+word_count] = xwords[i];
+ }
+ else
+ {
+ new_len++;
+ realloc(new_len);
+ int shift_out = MPN.lshift(words, word_count, xwords, xlen, count);
+ count = 32 - count;
+ words[new_len-1] = (shift_out << count) >> count; // sign-extend.
+ }
+ ival = new_len;
+ for (int i = word_count; --i >= 0; )
+ words[i] = 0;
+ }
+
+ private void setShiftRight(BigInteger x, int count)
+ {
+ if (x.words == null)
+ set(count < 32 ? x.ival >> count : x.ival < 0 ? -1 : 0);
+ else if (count == 0)
+ set(x);
+ else
+ {
+ boolean neg = x.isNegative();
+ int word_count = count >> 5;
+ count &= 31;
+ int d_len = x.ival - word_count;
+ if (d_len <= 0)
+ set(neg ? -1 : 0);
+ else
+ {
+ if (words == null || words.length < d_len)
+ realloc(d_len);
+ MPN.rshift0 (words, x.words, word_count, d_len, count);
+ ival = d_len;
+ if (neg)
+ words[d_len-1] |= -2 << (31 - count);
+ }
+ }
+ }
+
+ private void setShift(BigInteger x, int count)
+ {
+ if (count > 0)
+ setShiftLeft(x, count);
+ else
+ setShiftRight(x, -count);
+ }
+
+ private static BigInteger shift(BigInteger x, int count)
+ {
+ if (x.words == null)
+ {
+ if (count <= 0)
+ return valueOf(count > -32 ? x.ival >> (-count) : x.ival < 0 ? -1 : 0);
+ if (count < 32)
+ return valueOf((long) x.ival << count);
+ }
+ if (count == 0)
+ return x;
+ BigInteger result = new BigInteger(0);
+ result.setShift(x, count);
+ return result.canonicalize();
+ }
+
+ public BigInteger shiftLeft(int n)
+ {
+ if (n == 0)
+ return this;
+
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ if (n < 0)
+ mpz.shiftRight(-n, result.mpz);
+ else
+ mpz.shiftLeft(n, result.mpz);
+ return result;
+ }
+
+ return shift(this, n);
+ }
+
+ public BigInteger shiftRight(int n)
+ {
+ if (n == 0)
+ return this;
+
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ if (n < 0)
+ mpz.shiftLeft(-n, result.mpz);
+ else
+ mpz.shiftRight(n, result.mpz);
+ return result;
+ }
+
+ return shift(this, -n);
+ }
+
+ private void format(int radix, CPStringBuilder buffer)
+ {
+ if (words == null)
+ buffer.append(Integer.toString(ival, radix));
+ else if (ival <= 2)
+ buffer.append(Long.toString(longValue(), radix));
+ else
+ {
+ boolean neg = isNegative();
+ int[] work;
+ if (neg || radix != 16)
+ {
+ work = new int[ival];
+ getAbsolute(work);
+ }
+ else
+ work = words;
+ int len = ival;
+
+ if (radix == 16)
+ {
+ if (neg)
+ buffer.append('-');
+ int buf_start = buffer.length();
+ for (int i = len; --i >= 0; )
+ {
+ int word = work[i];
+ for (int j = 8; --j >= 0; )
+ {
+ int hex_digit = (word >> (4 * j)) & 0xF;
+ // Suppress leading zeros:
+ if (hex_digit > 0 || buffer.length() > buf_start)
+ buffer.append(Character.forDigit(hex_digit, 16));
+ }
+ }
+ }
+ else
+ {
+ int i = buffer.length();
+ for (;;)
+ {
+ int digit = MPN.divmod_1(work, work, len, radix);
+ buffer.append(Character.forDigit(digit, radix));
+ while (len > 0 && work[len-1] == 0) len--;
+ if (len == 0)
+ break;
+ }
+ if (neg)
+ buffer.append('-');
+ /* Reverse buffer. */
+ int j = buffer.length() - 1;
+ while (i < j)
+ {
+ char tmp = buffer.charAt(i);
+ buffer.setCharAt(i, buffer.charAt(j));
+ buffer.setCharAt(j, tmp);
+ i++; j--;
+ }
+ }
+ }
+ }
+
+ public String toString()
+ {
+ return toString(10);
+ }
+
+ public String toString(int radix)
+ {
+ if (USING_NATIVE)
+ return mpz.toString(radix);
+
+ if (words == null)
+ return Integer.toString(ival, radix);
+ if (ival <= 2)
+ return Long.toString(longValue(), radix);
+ int buf_size = ival * (MPN.chars_per_word(radix) + 1);
+ CPStringBuilder buffer = new CPStringBuilder(buf_size);
+ format(radix, buffer);
+ return buffer.toString();
+ }
+
+ public int intValue()
+ {
+ if (USING_NATIVE)
+ {
+ int result = mpz.absIntValue();
+ return mpz.compare(ZERO.mpz) < 0 ? - result : result;
+ }
+
+ if (words == null)
+ return ival;
+ return words[0];
+ }
+
+ public long longValue()
+ {
+ if (USING_NATIVE)
+ {
+ long result;
+ result = (abs().shiftRight(32)).mpz.absIntValue();
+ result <<= 32;
+ result |= mpz.absIntValue() & 0xFFFFFFFFL;
+ return this.compareTo(ZERO) < 0 ? - result : result;
+ }
+
+ if (words == null)
+ return ival;
+ if (ival == 1)
+ return words[0];
+ return ((long)words[1] << 32) + ((long)words[0] & 0xffffffffL);
+ }
+
+ public int hashCode()
+ {
+ // FIXME: May not match hashcode of JDK.
+ if (USING_NATIVE)
+ {
+ // TODO: profile to decide whether to make it native
+ byte[] bytes = this.toByteArray();
+ int result = 0;
+ for (int i = 0; i < bytes.length; i++)
+ result ^= (bytes[i] & 0xFF) << (8 * (i % 4));
+ return result;
+ }
+
+ return words == null ? ival : (words[0] + words[ival - 1]);
+ }
+
+ /* Assumes x and y are both canonicalized. */
+ private static boolean equals(BigInteger x, BigInteger y)
+ {
+ if (USING_NATIVE)
+ return x.mpz.compare(y.mpz) == 0;
+
+ if (x.words == null && y.words == null)
+ return x.ival == y.ival;
+ if (x.words == null || y.words == null || x.ival != y.ival)
+ return false;
+ for (int i = x.ival; --i >= 0; )
+ {
+ if (x.words[i] != y.words[i])
+ return false;
+ }
+ return true;
+ }
+
+ /* Assumes this and obj are both canonicalized. */
+ public boolean equals(Object obj)
+ {
+ if (! (obj instanceof BigInteger))
+ return false;
+ return equals(this, (BigInteger) obj);
+ }
+
+ private static BigInteger valueOf(byte[] digits, int byte_len,
+ boolean negative, int radix)
+ {
+ int chars_per_word = MPN.chars_per_word(radix);
+ int[] words = new int[byte_len / chars_per_word + 1];
+ int size = MPN.set_str(words, digits, byte_len, radix);
+ if (size == 0)
+ return ZERO;
+ if (words[size-1] < 0)
+ words[size++] = 0;
+ if (negative)
+ negate(words, words, size);
+ return make(words, size);
+ }
+
+ public double doubleValue()
+ {
+ if (USING_NATIVE)
+ return mpz.doubleValue();
+
+ if (words == null)
+ return (double) ival;
+ if (ival <= 2)
+ return (double) longValue();
+ if (isNegative())
+ return neg(this).roundToDouble(0, true, false);
+ return roundToDouble(0, false, false);
+ }
+
+ public float floatValue()
+ {
+ return (float) doubleValue();
+ }
+
+ /** Return true if any of the lowest n bits are one.
+ * (false if n is negative). */
+ private boolean checkBits(int n)
+ {
+ if (n <= 0)
+ return false;
+ if (words == null)
+ return n > 31 || ((ival & ((1 << n) - 1)) != 0);
+ int i;
+ for (i = 0; i < (n >> 5) ; i++)
+ if (words[i] != 0)
+ return true;
+ return (n & 31) != 0 && (words[i] & ((1 << (n & 31)) - 1)) != 0;
+ }
+
+ /** Convert a semi-processed BigInteger to double.
+ * Number must be non-negative. Multiplies by a power of two, applies sign,
+ * and converts to double, with the usual java rounding.
+ * @param exp power of two, positive or negative, by which to multiply
+ * @param neg true if negative
+ * @param remainder true if the BigInteger is the result of a truncating
+ * division that had non-zero remainder. To ensure proper rounding in
+ * this case, the BigInteger must have at least 54 bits. */
+ private double roundToDouble(int exp, boolean neg, boolean remainder)
+ {
+ // Compute length.
+ int il = bitLength();
+
+ // Exponent when normalized to have decimal point directly after
+ // leading one. This is stored excess 1023 in the exponent bit field.
+ exp += il - 1;
+
+ // Gross underflow. If exp == -1075, we let the rounding
+ // computation determine whether it is minval or 0 (which are just
+ // 0x0000 0000 0000 0001 and 0x0000 0000 0000 0000 as bit
+ // patterns).
+ if (exp < -1075)
+ return neg ? -0.0 : 0.0;
+
+ // gross overflow
+ if (exp > 1023)
+ return neg ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
+
+ // number of bits in mantissa, including the leading one.
+ // 53 unless it's denormalized
+ int ml = (exp >= -1022 ? 53 : 53 + exp + 1022);
+
+ // Get top ml + 1 bits. The extra one is for rounding.
+ long m;
+ int excess_bits = il - (ml + 1);
+ if (excess_bits > 0)
+ m = ((words == null) ? ival >> excess_bits
+ : MPN.rshift_long(words, ival, excess_bits));
+ else
+ m = longValue() << (- excess_bits);
+
+ // Special rounding for maxval. If the number exceeds maxval by
+ // any amount, even if it's less than half a step, it overflows.
+ if (exp == 1023 && ((m >> 1) == (1L << 53) - 1))
+ {
+ if (remainder || checkBits(il - ml))
+ return neg ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
+ else
+ return neg ? - Double.MAX_VALUE : Double.MAX_VALUE;
+ }
+
+ // Normal round-to-even rule: round up if the bit dropped is a one, and
+ // the bit above it or any of the bits below it is a one.
+ if ((m & 1) == 1
+ && ((m & 2) == 2 || remainder || checkBits(excess_bits)))
+ {
+ m += 2;
+ // Check if we overflowed the mantissa
+ if ((m & (1L << 54)) != 0)
+ {
+ exp++;
+ // renormalize
+ m >>= 1;
+ }
+ // Check if a denormalized mantissa was just rounded up to a
+ // normalized one.
+ else if (ml == 52 && (m & (1L << 53)) != 0)
+ exp++;
+ }
+
+ // Discard the rounding bit
+ m >>= 1;
+
+ long bits_sign = neg ? (1L << 63) : 0;
+ exp += 1023;
+ long bits_exp = (exp <= 0) ? 0 : ((long)exp) << 52;
+ long bits_mant = m & ~(1L << 52);
+ return Double.longBitsToDouble(bits_sign | bits_exp | bits_mant);
+ }
+
+ /** Copy the abolute value of this into an array of words.
+ * Assumes words.length >= (this.words == null ? 1 : this.ival).
+ * Result is zero-extended, but need not be a valid 2's complement number.
+ */
+ private void getAbsolute(int[] words)
+ {
+ int len;
+ if (this.words == null)
+ {
+ len = 1;
+ words[0] = this.ival;
+ }
+ else
+ {
+ len = this.ival;
+ for (int i = len; --i >= 0; )
+ words[i] = this.words[i];
+ }
+ if (words[len - 1] < 0)
+ negate(words, words, len);
+ for (int i = words.length; --i > len; )
+ words[i] = 0;
+ }
+
+ /** Set dest[0:len-1] to the negation of src[0:len-1].
+ * Return true if overflow (i.e. if src is -2**(32*len-1)).
+ * Ok for src==dest. */
+ private static boolean negate(int[] dest, int[] src, int len)
+ {
+ long carry = 1;
+ boolean negative = src[len-1] < 0;
+ for (int i = 0; i < len; i++)
+ {
+ carry += ((long) (~src[i]) & 0xffffffffL);
+ dest[i] = (int) carry;
+ carry >>= 32;
+ }
+ return (negative && dest[len-1] < 0);
+ }
+
+ /** Destructively set this to the negative of x.
+ * It is OK if x==this.*/
+ private void setNegative(BigInteger x)
+ {
+ int len = x.ival;
+ if (x.words == null)
+ {
+ if (len == Integer.MIN_VALUE)
+ set(- (long) len);
+ else
+ set(-len);
+ return;
+ }
+ realloc(len + 1);
+ if (negate(words, x.words, len))
+ words[len++] = 0;
+ ival = len;
+ }
+
+ /** Destructively negate this. */
+ private void setNegative()
+ {
+ setNegative(this);
+ }
+
+ private static BigInteger abs(BigInteger x)
+ {
+ return x.isNegative() ? neg(x) : x;
+ }
+
+ public BigInteger abs()
+ {
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ mpz.abs(result.mpz);
+ return result;
+ }
+
+ return abs(this);
+ }
+
+ private static BigInteger neg(BigInteger x)
+ {
+ if (x.words == null && x.ival != Integer.MIN_VALUE)
+ return valueOf(- x.ival);
+ BigInteger result = new BigInteger(0);
+ result.setNegative(x);
+ return result.canonicalize();
+ }
+
+ public BigInteger negate()
+ {
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ mpz.negate(result.mpz);
+ return result;
+ }
+
+ return neg(this);
+ }
+
+ /** Calculates ceiling(log2(this < 0 ? -this : this+1))
+ * See Common Lisp: the Language, 2nd ed, p. 361.
+ */
+ public int bitLength()
+ {
+ if (USING_NATIVE)
+ return mpz.bitLength();
+
+ if (words == null)
+ return MPN.intLength(ival);
+ return MPN.intLength(words, ival);
+ }
+
+ public byte[] toByteArray()
+ {
+ if (signum() == 0)
+ return new byte[1];
+
+ if (USING_NATIVE)
+ {
+ // the minimal number of bytes required to represent the MPI is function
+ // of (a) its bit-length, and (b) its sign. only when this MPI is both
+ // positive, and its bit-length is a multiple of 8 do we add one zero
+ // bit for its sign. we do this so if we construct a new MPI from the
+ // resulting byte array, we wouldn't mistake a positive number, whose
+ // bit-length is a multiple of 8, for a similar-length negative one.
+ int bits = bitLength();
+ if (bits % 8 == 0 || this.signum() == 1)
+ bits++;
+ byte[] bytes = new byte[(bits + 7) / 8];
+ mpz.toByteArray(bytes);
+ return bytes;
+ }
+
+ // Determine number of bytes needed. The method bitlength returns
+ // the size without the sign bit, so add one bit for that and then
+ // add 7 more to emulate the ceil function using integer math.
+ byte[] bytes = new byte[(bitLength() + 1 + 7) / 8];
+ int nbytes = bytes.length;
+
+ int wptr = 0;
+ int word;
+
+ // Deal with words array until one word or less is left to process.
+ // If BigInteger is an int, then it is in ival and nbytes will be <= 4.
+ while (nbytes > 4)
+ {
+ word = words[wptr++];
+ for (int i = 4; i > 0; --i, word >>= 8)
+ bytes[--nbytes] = (byte) word;
+ }
+
+ // Deal with the last few bytes. If BigInteger is an int, use ival.
+ word = (words == null) ? ival : words[wptr];
+ for ( ; nbytes > 0; word >>= 8)
+ bytes[--nbytes] = (byte) word;
+
+ return bytes;
+ }
+
+ /** Return the boolean opcode (for bitOp) for swapped operands.
+ * I.e. bitOp(swappedOp(op), x, y) == bitOp(op, y, x).
+ */
+ private static int swappedOp(int op)
+ {
+ return
+ "\000\001\004\005\002\003\006\007\010\011\014\015\012\013\016\017"
+ .charAt(op);
+ }
+
+ /** Do one the the 16 possible bit-wise operations of two BigIntegers. */
+ private static BigInteger bitOp(int op, BigInteger x, BigInteger y)
+ {
+ switch (op)
+ {
+ case 0: return ZERO;
+ case 1: return x.and(y);
+ case 3: return x;
+ case 5: return y;
+ case 15: return valueOf(-1);
+ }
+ BigInteger result = new BigInteger();
+ setBitOp(result, op, x, y);
+ return result.canonicalize();
+ }
+
+ /** Do one the the 16 possible bit-wise operations of two BigIntegers. */
+ private static void setBitOp(BigInteger result, int op,
+ BigInteger x, BigInteger y)
+ {
+ if ((y.words != null) && (x.words == null || x.ival < y.ival))
+ {
+ BigInteger temp = x; x = y; y = temp;
+ op = swappedOp(op);
+ }
+ int xi;
+ int yi;
+ int xlen, ylen;
+ if (y.words == null)
+ {
+ yi = y.ival;
+ ylen = 1;
+ }
+ else
+ {
+ yi = y.words[0];
+ ylen = y.ival;
+ }
+ if (x.words == null)
+ {
+ xi = x.ival;
+ xlen = 1;
+ }
+ else
+ {
+ xi = x.words[0];
+ xlen = x.ival;
+ }
+ if (xlen > 1)
+ result.realloc(xlen);
+ int[] w = result.words;
+ int i = 0;
+ // Code for how to handle the remainder of x.
+ // 0: Truncate to length of y.
+ // 1: Copy rest of x.
+ // 2: Invert rest of x.
+ int finish = 0;
+ int ni;
+ switch (op)
+ {
+ case 0: // clr
+ ni = 0;
+ break;
+ case 1: // and
+ for (;;)
+ {
+ ni = xi & yi;
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ if (yi < 0) finish = 1;
+ break;
+ case 2: // andc2
+ for (;;)
+ {
+ ni = xi & ~yi;
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ if (yi >= 0) finish = 1;
+ break;
+ case 3: // copy x
+ ni = xi;
+ finish = 1; // Copy rest
+ break;
+ case 4: // andc1
+ for (;;)
+ {
+ ni = ~xi & yi;
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ if (yi < 0) finish = 2;
+ break;
+ case 5: // copy y
+ for (;;)
+ {
+ ni = yi;
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ break;
+ case 6: // xor
+ for (;;)
+ {
+ ni = xi ^ yi;
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ finish = yi < 0 ? 2 : 1;
+ break;
+ case 7: // ior
+ for (;;)
+ {
+ ni = xi | yi;
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ if (yi >= 0) finish = 1;
+ break;
+ case 8: // nor
+ for (;;)
+ {
+ ni = ~(xi | yi);
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ if (yi >= 0) finish = 2;
+ break;
+ case 9: // eqv [exclusive nor]
+ for (;;)
+ {
+ ni = ~(xi ^ yi);
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ finish = yi >= 0 ? 2 : 1;
+ break;
+ case 10: // c2
+ for (;;)
+ {
+ ni = ~yi;
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ break;
+ case 11: // orc2
+ for (;;)
+ {
+ ni = xi | ~yi;
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ if (yi < 0) finish = 1;
+ break;
+ case 12: // c1
+ ni = ~xi;
+ finish = 2;
+ break;
+ case 13: // orc1
+ for (;;)
+ {
+ ni = ~xi | yi;
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ if (yi >= 0) finish = 2;
+ break;
+ case 14: // nand
+ for (;;)
+ {
+ ni = ~(xi & yi);
+ if (i+1 >= ylen) break;
+ w[i++] = ni; xi = x.words[i]; yi = y.words[i];
+ }
+ if (yi < 0) finish = 2;
+ break;
+ default:
+ case 15: // set
+ ni = -1;
+ break;
+ }
+ // Here i==ylen-1; w[0]..w[i-1] have the correct result;
+ // and ni contains the correct result for w[i+1].
+ if (i+1 == xlen)
+ finish = 0;
+ switch (finish)
+ {
+ case 0:
+ if (i == 0 && w == null)
+ {
+ result.ival = ni;
+ return;
+ }
+ w[i++] = ni;
+ break;
+ case 1: w[i] = ni; while (++i < xlen) w[i] = x.words[i]; break;
+ case 2: w[i] = ni; while (++i < xlen) w[i] = ~x.words[i]; break;
+ }
+ result.ival = i;
+ }
+
+ /** Return the logical (bit-wise) "and" of a BigInteger and an int. */
+ private static BigInteger and(BigInteger x, int y)
+ {
+ if (x.words == null)
+ return valueOf(x.ival & y);
+ if (y >= 0)
+ return valueOf(x.words[0] & y);
+ int len = x.ival;
+ int[] words = new int[len];
+ words[0] = x.words[0] & y;
+ while (--len > 0)
+ words[len] = x.words[len];
+ return make(words, x.ival);
+ }
+
+ /** Return the logical (bit-wise) "and" of two BigIntegers. */
+ public BigInteger and(BigInteger y)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = y.signum; // force NPE check
+ BigInteger result = new BigInteger();
+ mpz.and(y.mpz, result.mpz);
+ return result;
+ }
+
+ if (y.words == null)
+ return and(this, y.ival);
+ else if (words == null)
+ return and(y, ival);
+
+ BigInteger x = this;
+ if (ival < y.ival)
+ {
+ BigInteger temp = this; x = y; y = temp;
+ }
+ int i;
+ int len = y.isNegative() ? x.ival : y.ival;
+ int[] words = new int[len];
+ for (i = 0; i < y.ival; i++)
+ words[i] = x.words[i] & y.words[i];
+ for ( ; i < len; i++)
+ words[i] = x.words[i];
+ return make(words, len);
+ }
+
+ /** Return the logical (bit-wise) "(inclusive) or" of two BigIntegers. */
+ public BigInteger or(BigInteger y)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = y.signum; // force NPE check
+ BigInteger result = new BigInteger();
+ mpz.or(y.mpz, result.mpz);
+ return result;
+ }
+
+ return bitOp(7, this, y);
+ }
+
+ /** Return the logical (bit-wise) "exclusive or" of two BigIntegers. */
+ public BigInteger xor(BigInteger y)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = y.signum; // force NPE check
+ BigInteger result = new BigInteger();
+ mpz.xor(y.mpz, result.mpz);
+ return result;
+ }
+
+ return bitOp(6, this, y);
+ }
+
+ /** Return the logical (bit-wise) negation of a BigInteger. */
+ public BigInteger not()
+ {
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ mpz.not(result.mpz);
+ return result;
+ }
+
+ return bitOp(12, this, ZERO);
+ }
+
+ public BigInteger andNot(BigInteger val)
+ {
+ if (USING_NATIVE)
+ {
+ int dummy = val.signum; // force NPE check
+ BigInteger result = new BigInteger();
+ mpz.andNot(val.mpz, result.mpz);
+ return result;
+ }
+
+ return and(val.not());
+ }
+
+ public BigInteger clearBit(int n)
+ {
+ if (n < 0)
+ throw new ArithmeticException();
+
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ mpz.setBit(n, false, result.mpz);
+ return result;
+ }
+
+ return and(ONE.shiftLeft(n).not());
+ }
+
+ public BigInteger setBit(int n)
+ {
+ if (n < 0)
+ throw new ArithmeticException();
+
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ mpz.setBit(n, true, result.mpz);
+ return result;
+ }
+
+ return or(ONE.shiftLeft(n));
+ }
+
+ public boolean testBit(int n)
+ {
+ if (n < 0)
+ throw new ArithmeticException();
+
+ if (USING_NATIVE)
+ return mpz.testBit(n) != 0;
+
+ return !and(ONE.shiftLeft(n)).isZero();
+ }
+
+ public BigInteger flipBit(int n)
+ {
+ if (n < 0)
+ throw new ArithmeticException();
+
+ if (USING_NATIVE)
+ {
+ BigInteger result = new BigInteger();
+ mpz.flipBit(n, result.mpz);
+ return result;
+ }
+
+ return xor(ONE.shiftLeft(n));
+ }
+
+ public int getLowestSetBit()
+ {
+ if (USING_NATIVE)
+ return mpz.compare(ZERO.mpz) == 0 ? -1 : mpz.lowestSetBit();
+
+ if (isZero())
+ return -1;
+
+ if (words == null)
+ return MPN.findLowestBit(ival);
+ else
+ return MPN.findLowestBit(words);
+ }
+
+ // bit4count[I] is number of '1' bits in I.
+ private static final byte[] bit4_count = { 0, 1, 1, 2, 1, 2, 2, 3,
+ 1, 2, 2, 3, 2, 3, 3, 4};
+
+ private static int bitCount(int i)
+ {
+ int count = 0;
+ while (i != 0)
+ {
+ count += bit4_count[i & 15];
+ i >>>= 4;
+ }
+ return count;
+ }
+
+ private static int bitCount(int[] x, int len)
+ {
+ int count = 0;
+ while (--len >= 0)
+ count += bitCount(x[len]);
+ return count;
+ }
+
+ /** Count one bits in a BigInteger.
+ * If argument is negative, count zero bits instead. */
+ public int bitCount()
+ {
+ if (USING_NATIVE)
+ return mpz.bitCount();
+
+ int i, x_len;
+ int[] x_words = words;
+ if (x_words == null)
+ {
+ x_len = 1;
+ i = bitCount(ival);
+ }
+ else
+ {
+ x_len = ival;
+ i = bitCount(x_words, x_len);
+ }
+ return isNegative() ? x_len * 32 - i : i;
+ }
+
+ private void readObject(ObjectInputStream s)
+ throws IOException, ClassNotFoundException
+ {
+ if (USING_NATIVE)
+ {
+ mpz = new GMP();
+ s.defaultReadObject();
+ if (signum != 0)
+ mpz.fromByteArray(magnitude);
+ // else it's zero and we need to do nothing
+ }
+ else
+ {
+ s.defaultReadObject();
+ if (magnitude.length == 0 || signum == 0)
+ {
+ this.ival = 0;
+ this.words = null;
+ }
+ else
+ {
+ words = byteArrayToIntArray(magnitude, signum < 0 ? -1 : 0);
+ BigInteger result = make(words, words.length);
+ this.ival = result.ival;
+ this.words = result.words;
+ }
+ }
+ }
+
+ private void writeObject(ObjectOutputStream s)
+ throws IOException, ClassNotFoundException
+ {
+ signum = signum();
+ magnitude = signum == 0 ? new byte[0] : toByteArray();
+ s.defaultWriteObject();
+ magnitude = null; // not needed anymore
+ }
+
+ // inner class(es) ..........................................................
+
+}
diff --git a/libjava/classpath/java/math/MathContext.java b/libjava/classpath/java/math/MathContext.java
new file mode 100644
index 000000000..161149540
--- /dev/null
+++ b/libjava/classpath/java/math/MathContext.java
@@ -0,0 +1,198 @@
+/* MathContext.java --
+ Copyright (C) 1999, 2000, 2002, 2004, 2005 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.math;
+
+import java.io.Serializable;
+
+/**
+ * Immutable objects describing settings such as rounding mode and digit
+ * precision for numerical operations such as those in the BigDecimal class.
+ * @author Anthony Balkissoon abalkiss at redhat dot com
+ *
+ */
+public final class MathContext implements Serializable
+{
+ /** A MathContext for unlimited precision arithmetic * */
+ public static final MathContext UNLIMITED =
+ new MathContext(0, RoundingMode.HALF_UP);
+
+ /**
+ * A MathContext for the IEEE 754R Decimal32 format - 7 digit preicision and
+ * HALF_EVEN rounding.
+ */
+ public static final MathContext DECIMAL32 =
+ new MathContext(7, RoundingMode.HALF_EVEN);
+
+ /**
+ * A MathContext for the IEEE 754R Decimal64 format - 16 digit preicision and
+ * HALF_EVEN rounding.
+ */
+ public static final MathContext DECIMAL64 =
+ new MathContext(16, RoundingMode.HALF_EVEN);
+
+ /**
+ * A MathContext for the IEEE 754R Decimal128 format - 34 digit preicision and
+ * HALF_EVEN rounding.
+ */
+ public static final MathContext DECIMAL128 =
+ new MathContext(34, RoundingMode.HALF_EVEN);
+
+ /**
+ * This is the serialVersionUID reported here:
+ * java.sun.com/j2se/1.5.0/docs/api/serialized-form.html#java.math.MathContext
+ */
+ private static final long serialVersionUID = 5579720004786848255L;
+
+ private int precision;
+
+ private RoundingMode roundMode;
+
+ /**
+ * Constructs a new MathContext with the specified precision and with HALF_UP
+ * rounding.
+ * @param setPrecision the precision for the new MathContext
+ *
+ * @throws IllegalArgumentException if precision is < 0.
+ */
+ public MathContext(int setPrecision)
+ {
+ this(setPrecision, RoundingMode.HALF_UP);
+ }
+
+ /**
+ * Constructs a new MathContext with the specified precision and rounding
+ * mode.
+ * @param setPrecision the precision
+ * @param setRoundingMode the rounding mode
+ *
+ * @throws IllegalArgumentException if precision is < 0.
+ */
+ public MathContext(int setPrecision, RoundingMode setRoundingMode)
+ {
+ if (setPrecision < 0)
+ throw new IllegalArgumentException("Precision cannot be less than zero.");
+ precision = setPrecision;
+ roundMode = setRoundingMode;
+ }
+
+ /**
+ * Constructs a MathContext from a String that has the same form as one
+ * produced by the toString() method.
+ * @param val
+ *
+ * @throws IllegalArgumentException if the String is not in the correct
+ * format or if the precision specified is < 0.
+ */
+ public MathContext(String val)
+ {
+ try
+ {
+ int roundingModeIndex = val.indexOf("roundingMode", 10);
+ precision = Integer.parseInt(val.substring(10, roundingModeIndex - 1));
+ roundMode = RoundingMode.valueOf(val.substring(roundingModeIndex + 13));
+ }
+ catch (NumberFormatException nfe)
+ {
+ throw new IllegalArgumentException("String not in correct format");
+ }
+ catch (IllegalArgumentException iae)
+ {
+ throw new IllegalArgumentException("String not in correct format");
+ }
+ if (precision < 0)
+ throw new IllegalArgumentException("Precision cannot be less than 0.");
+ }
+
+ /**
+ * Returns true if x is a MathContext and has the same precision setting
+ * and rounding mode as this MathContext.
+ *
+ * @return true if the above conditions hold
+ */
+ public boolean equals(Object x)
+ {
+ if (!(x instanceof MathContext))
+ return false;
+ MathContext mc = (MathContext)x;
+ return mc.precision == this.precision
+ && mc.roundMode.equals(this.roundMode);
+ }
+
+ /**
+ * Returns the precision setting.
+ * @return the precision setting.
+ */
+ public int getPrecision()
+ {
+ return precision;
+ }
+
+ /**
+ * Returns the rounding mode setting. This will be one of
+ * RoundingMode.CEILING, RoundingMode.DOWN, RoundingMode.FLOOR,
+ * RoundingMode.HALF_DOWN, RoundingMode.HALF_EVEN, RoundingMode.HALF_UP,
+ * RoundingMode.UNNECESSARY, or RoundingMode.UP.
+ * @return the rounding mode setting.
+ */
+ public RoundingMode getRoundingMode()
+ {
+ return roundMode;
+ }
+
+ /**
+ * Returns "precision=p roundingMode=MODE" where p is an int giving the
+ * precision and MODE is UP, DOWN, HALF_UP, HALF_DOWN, HALF_EVEN, CEILING,
+ * FLOOR, or UNNECESSARY corresponding to rounding modes.
+ *
+ * @return a String describing this MathContext
+ */
+ public String toString()
+ {
+ return "precision="+precision+" roundingMode="+roundMode;
+ }
+
+ /**
+ * Returns the hashcode for this MathContext.
+ * @return the hashcode for this MathContext.
+ */
+ public int hashCode()
+ {
+ return precision ^ roundMode.hashCode();
+ }
+}
diff --git a/libjava/classpath/java/math/RoundingMode.java b/libjava/classpath/java/math/RoundingMode.java
new file mode 100644
index 000000000..140f0a36e
--- /dev/null
+++ b/libjava/classpath/java/math/RoundingMode.java
@@ -0,0 +1,89 @@
+/* RoundingMode.java -- An Enum to replace BigDecimal rounding constants.
+ Copyright (C) 1999, 2000, 2002, 2004, 2005 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.math;
+
+/**
+ * An enum to specify rounding behaviour for numerical operations that may
+ * discard precision.
+ * @author Anthony Balkissoon abalkiss at redhat dot com
+ *
+ */
+public enum RoundingMode
+{
+ UP, DOWN, CEILING, FLOOR, HALF_UP, HALF_DOWN, HALF_EVEN, UNNECESSARY;
+
+ /**
+ * For compatability with Sun's JDK
+ */
+ private static final long serialVersionUID = 432302042773881265L;
+
+ /**
+ * Returns the RoundingMode object corresponding to the legacy rounding modes
+ * in BigDecimal.
+ * @param rm the legacy rounding mode
+ * @return the corresponding RoundingMode
+ */
+ public static RoundingMode valueOf(int rm)
+ {
+ switch (rm)
+ {
+ case BigDecimal.ROUND_CEILING:
+ return CEILING;
+ case BigDecimal.ROUND_FLOOR:
+ return FLOOR;
+ case BigDecimal.ROUND_DOWN:
+ return DOWN;
+ case BigDecimal.ROUND_UP:
+ return UP;
+ case BigDecimal.ROUND_HALF_UP:
+ return HALF_UP;
+ case BigDecimal.ROUND_HALF_DOWN:
+ return HALF_DOWN;
+ case BigDecimal.ROUND_HALF_EVEN:
+ return HALF_EVEN;
+ case BigDecimal.ROUND_UNNECESSARY:
+ return UNNECESSARY;
+ default:
+ throw new
+ IllegalArgumentException("invalid argument: " + rm +
+ ". Argument should be one of the " +
+ "rounding modes defined in BigDecimal.");
+ }
+ }
+}
diff --git a/libjava/classpath/java/math/package.html b/libjava/classpath/java/math/package.html
new file mode 100644
index 000000000..62d12ea16
--- /dev/null
+++ b/libjava/classpath/java/math/package.html
@@ -0,0 +1,46 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
+<!-- package.html - describes classes in java.math package.
+ Copyright (C) 2002 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. -->
+
+<html>
+<head><title>GNU Classpath - java.math</title></head>
+
+<body>
+<p>Arbitrary large decimals and integers.</p>
+
+</body>
+</html>