summaryrefslogtreecommitdiff
path: root/libjava/java/lang/Math.java
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/java/lang/Math.java')
-rw-r--r--libjava/java/lang/Math.java973
1 files changed, 973 insertions, 0 deletions
diff --git a/libjava/java/lang/Math.java b/libjava/java/lang/Math.java
new file mode 100644
index 000000000..836b8bd86
--- /dev/null
+++ b/libjava/java/lang/Math.java
@@ -0,0 +1,973 @@
+/* java.lang.Math -- common mathematical functions, native allowed
+ Copyright (C) 1998, 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package java.lang;
+
+import gnu.classpath.Configuration;
+
+import java.util.Random;
+
+/**
+ * Helper class containing useful mathematical functions and constants.
+ * <P>
+ *
+ * Note that angles are specified in radians. Conversion functions are
+ * provided for your convenience.
+ *
+ * @author Paul Fisher
+ * @author John Keiser
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @since 1.0
+ */
+public final class Math
+{
+ /**
+ * Math is non-instantiable
+ */
+ private Math()
+ {
+ }
+
+ static
+ {
+ if (Configuration.INIT_LOAD_LIBRARY)
+ {
+ System.loadLibrary("javalang");
+ }
+ }
+
+ /**
+ * A random number generator, initialized on first use.
+ */
+ private static Random rand;
+
+ /**
+ * The most accurate approximation to the mathematical constant <em>e</em>:
+ * <code>2.718281828459045</code>. Used in natural log and exp.
+ *
+ * @see #log(double)
+ * @see #exp(double)
+ */
+ public static final double E = 2.718281828459045;
+
+ /**
+ * The most accurate approximation to the mathematical constant <em>pi</em>:
+ * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
+ * to its circumference.
+ */
+ public static final double PI = 3.141592653589793;
+
+ /**
+ * Take the absolute value of the argument.
+ * (Absolute value means make it positive.)
+ * <P>
+ *
+ * Note that the the largest negative value (Integer.MIN_VALUE) cannot
+ * be made positive. In this case, because of the rules of negation in
+ * a computer, MIN_VALUE is what will be returned.
+ * This is a <em>negative</em> value. You have been warned.
+ *
+ * @param i the number to take the absolute value of
+ * @return the absolute value
+ * @see Integer#MIN_VALUE
+ */
+ public static int abs(int i)
+ {
+ return (i < 0) ? -i : i;
+ }
+
+ /**
+ * Take the absolute value of the argument.
+ * (Absolute value means make it positive.)
+ * <P>
+ *
+ * Note that the the largest negative value (Long.MIN_VALUE) cannot
+ * be made positive. In this case, because of the rules of negation in
+ * a computer, MIN_VALUE is what will be returned.
+ * This is a <em>negative</em> value. You have been warned.
+ *
+ * @param l the number to take the absolute value of
+ * @return the absolute value
+ * @see Long#MIN_VALUE
+ */
+ public static long abs(long l)
+ {
+ return (l < 0) ? -l : l;
+ }
+
+ /**
+ * Take the absolute value of the argument.
+ * (Absolute value means make it positive.)
+ * <P>
+ *
+ * This is equivalent, but faster than, calling
+ * <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
+ *
+ * @param f the number to take the absolute value of
+ * @return the absolute value
+ */
+ public static float abs(float f)
+ {
+ return (f <= 0) ? 0 - f : f;
+ }
+
+ /**
+ * Take the absolute value of the argument.
+ * (Absolute value means make it positive.)
+ *
+ * This is equivalent, but faster than, calling
+ * <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
+ * &lt;&lt; 1) &gt;&gt;&gt; 1);</code>.
+ *
+ * @param d the number to take the absolute value of
+ * @return the absolute value
+ */
+ public static double abs(double d)
+ {
+ return (d <= 0) ? 0 - d : d;
+ }
+
+ /**
+ * Return whichever argument is smaller.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the smaller of the two numbers
+ */
+ public static int min(int a, int b)
+ {
+ return (a < b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is smaller.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the smaller of the two numbers
+ */
+ public static long min(long a, long b)
+ {
+ return (a < b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is smaller. If either argument is NaN, the
+ * result is NaN, and when comparing 0 and -0, -0 is always smaller.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the smaller of the two numbers
+ */
+ public static float min(float a, float b)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return a;
+ // no need to check if b is NaN; < will work correctly
+ // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
+ if (a == 0 && b == 0)
+ return -(-a - b);
+ return (a < b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is smaller. If either argument is NaN, the
+ * result is NaN, and when comparing 0 and -0, -0 is always smaller.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the smaller of the two numbers
+ */
+ public static double min(double a, double b)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return a;
+ // no need to check if b is NaN; < will work correctly
+ // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
+ if (a == 0 && b == 0)
+ return -(-a - b);
+ return (a < b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is larger.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the larger of the two numbers
+ */
+ public static int max(int a, int b)
+ {
+ return (a > b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is larger.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the larger of the two numbers
+ */
+ public static long max(long a, long b)
+ {
+ return (a > b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is larger. If either argument is NaN, the
+ * result is NaN, and when comparing 0 and -0, 0 is always larger.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the larger of the two numbers
+ */
+ public static float max(float a, float b)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return a;
+ // no need to check if b is NaN; > will work correctly
+ // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
+ if (a == 0 && b == 0)
+ return a - -b;
+ return (a > b) ? a : b;
+ }
+
+ /**
+ * Return whichever argument is larger. If either argument is NaN, the
+ * result is NaN, and when comparing 0 and -0, 0 is always larger.
+ *
+ * @param a the first number
+ * @param b a second number
+ * @return the larger of the two numbers
+ */
+ public static double max(double a, double b)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return a;
+ // no need to check if b is NaN; > will work correctly
+ // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
+ if (a == 0 && b == 0)
+ return a - -b;
+ return (a > b) ? a : b;
+ }
+
+ /**
+ * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
+ * NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
+ * and is semi-monotonic.
+ *
+ * @param a the angle (in radians)
+ * @return sin(a)
+ */
+ public static native double sin(double a);
+
+ /**
+ * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
+ * NaN. This is accurate within 1 ulp, and is semi-monotonic.
+ *
+ * @param a the angle (in radians)
+ * @return cos(a)
+ */
+ public static native double cos(double a);
+
+ /**
+ * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
+ * is NaN, and the tangent of 0 retains its sign. This is accurate within 1
+ * ulp, and is semi-monotonic.
+ *
+ * @param a the angle (in radians)
+ * @return tan(a)
+ */
+ public static native double tan(double a);
+
+ /**
+ * The trigonometric function <em>arcsin</em>. The range of angles returned
+ * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
+ * its absolute value is beyond 1, the result is NaN; and the arcsine of
+ * 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
+ *
+ * @param a the sin to turn back into an angle
+ * @return arcsin(a)
+ */
+ public static native double asin(double a);
+
+ /**
+ * The trigonometric function <em>arccos</em>. The range of angles returned
+ * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
+ * its absolute value is beyond 1, the result is NaN. This is accurate
+ * within 1 ulp, and is semi-monotonic.
+ *
+ * @param a the cos to turn back into an angle
+ * @return arccos(a)
+ */
+ public static native double acos(double a);
+
+ /**
+ * The trigonometric function <em>arcsin</em>. The range of angles returned
+ * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
+ * result is NaN; and the arctangent of 0 retains its sign. This is accurate
+ * within 1 ulp, and is semi-monotonic.
+ *
+ * @param a the tan to turn back into an angle
+ * @return arcsin(a)
+ * @see #atan2(double, double)
+ */
+ public static native double atan(double a);
+
+ /**
+ * A special version of the trigonometric function <em>arctan</em>, for
+ * converting rectangular coordinates <em>(x, y)</em> to polar
+ * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
+ * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
+ * <li>If either argument is NaN, the result is NaN.</li>
+ * <li>If the first argument is positive zero and the second argument is
+ * positive, or the first argument is positive and finite and the second
+ * argument is positive infinity, then the result is positive zero.</li>
+ * <li>If the first argument is negative zero and the second argument is
+ * positive, or the first argument is negative and finite and the second
+ * argument is positive infinity, then the result is negative zero.</li>
+ * <li>If the first argument is positive zero and the second argument is
+ * negative, or the first argument is positive and finite and the second
+ * argument is negative infinity, then the result is the double value
+ * closest to pi.</li>
+ * <li>If the first argument is negative zero and the second argument is
+ * negative, or the first argument is negative and finite and the second
+ * argument is negative infinity, then the result is the double value
+ * closest to -pi.</li>
+ * <li>If the first argument is positive and the second argument is
+ * positive zero or negative zero, or the first argument is positive
+ * infinity and the second argument is finite, then the result is the
+ * double value closest to pi/2.</li>
+ * <li>If the first argument is negative and the second argument is
+ * positive zero or negative zero, or the first argument is negative
+ * infinity and the second argument is finite, then the result is the
+ * double value closest to -pi/2.</li>
+ * <li>If both arguments are positive infinity, then the result is the
+ * double value closest to pi/4.</li>
+ * <li>If the first argument is positive infinity and the second argument
+ * is negative infinity, then the result is the double value closest to
+ * 3*pi/4.</li>
+ * <li>If the first argument is negative infinity and the second argument
+ * is positive infinity, then the result is the double value closest to
+ * -pi/4.</li>
+ * <li>If both arguments are negative infinity, then the result is the
+ * double value closest to -3*pi/4.</li>
+ *
+ * </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
+ * use sqrt(x*x+y*y).
+ *
+ * @param y the y position
+ * @param x the x position
+ * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
+ * @see #atan(double)
+ */
+ public static native double atan2(double y, double x);
+
+ /**
+ * Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
+ * argument is NaN, the result is NaN; if the argument is positive infinity,
+ * the result is positive infinity; and if the argument is negative
+ * infinity, the result is positive zero. This is accurate within 1 ulp,
+ * and is semi-monotonic.
+ *
+ * @param a the number to raise to the power
+ * @return the number raised to the power of <em>e</em>
+ * @see #log(double)
+ * @see #pow(double, double)
+ */
+ public static native double exp(double a);
+
+ /**
+ * Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
+ * argument is NaN or negative, the result is NaN; if the argument is
+ * positive infinity, the result is positive infinity; and if the argument
+ * is either zero, the result is negative infinity. This is accurate within
+ * 1 ulp, and is semi-monotonic.
+ *
+ * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
+ * <code>ln(a) / ln(b)</code>.
+ *
+ * @param a the number to take the natural log of
+ * @return the natural log of <code>a</code>
+ * @see #exp(double)
+ */
+ public static native double log(double a);
+
+ /**
+ * Take a square root. If the argument is NaN or negative, the result is
+ * NaN; if the argument is positive infinity, the result is positive
+ * infinity; and if the result is either zero, the result is the same.
+ * This is accurate within the limits of doubles.
+ *
+ * <p>For other roots, use pow(a, 1 / rootNumber).
+ *
+ * @param a the numeric argument
+ * @return the square root of the argument
+ * @see #pow(double, double)
+ */
+ public static native double sqrt(double a);
+
+ /**
+ * Raise a number to a power. Special cases:<ul>
+ * <li>If the second argument is positive or negative zero, then the result
+ * is 1.0.</li>
+ * <li>If the second argument is 1.0, then the result is the same as the
+ * first argument.</li>
+ * <li>If the second argument is NaN, then the result is NaN.</li>
+ * <li>If the first argument is NaN and the second argument is nonzero,
+ * then the result is NaN.</li>
+ * <li>If the absolute value of the first argument is greater than 1 and
+ * the second argument is positive infinity, or the absolute value of the
+ * first argument is less than 1 and the second argument is negative
+ * infinity, then the result is positive infinity.</li>
+ * <li>If the absolute value of the first argument is greater than 1 and
+ * the second argument is negative infinity, or the absolute value of the
+ * first argument is less than 1 and the second argument is positive
+ * infinity, then the result is positive zero.</li>
+ * <li>If the absolute value of the first argument equals 1 and the second
+ * argument is infinite, then the result is NaN.</li>
+ * <li>If the first argument is positive zero and the second argument is
+ * greater than zero, or the first argument is positive infinity and the
+ * second argument is less than zero, then the result is positive zero.</li>
+ * <li>If the first argument is positive zero and the second argument is
+ * less than zero, or the first argument is positive infinity and the
+ * second argument is greater than zero, then the result is positive
+ * infinity.</li>
+ * <li>If the first argument is negative zero and the second argument is
+ * greater than zero but not a finite odd integer, or the first argument is
+ * negative infinity and the second argument is less than zero but not a
+ * finite odd integer, then the result is positive zero.</li>
+ * <li>If the first argument is negative zero and the second argument is a
+ * positive finite odd integer, or the first argument is negative infinity
+ * and the second argument is a negative finite odd integer, then the result
+ * is negative zero.</li>
+ * <li>If the first argument is negative zero and the second argument is
+ * less than zero but not a finite odd integer, or the first argument is
+ * negative infinity and the second argument is greater than zero but not a
+ * finite odd integer, then the result is positive infinity.</li>
+ * <li>If the first argument is negative zero and the second argument is a
+ * negative finite odd integer, or the first argument is negative infinity
+ * and the second argument is a positive finite odd integer, then the result
+ * is negative infinity.</li>
+ * <li>If the first argument is less than zero and the second argument is a
+ * finite even integer, then the result is equal to the result of raising
+ * the absolute value of the first argument to the power of the second
+ * argument.</li>
+ * <li>If the first argument is less than zero and the second argument is a
+ * finite odd integer, then the result is equal to the negative of the
+ * result of raising the absolute value of the first argument to the power
+ * of the second argument.</li>
+ * <li>If the first argument is finite and less than zero and the second
+ * argument is finite and not an integer, then the result is NaN.</li>
+ * <li>If both arguments are integers, then the result is exactly equal to
+ * the mathematical result of raising the first argument to the power of
+ * the second argument if that result can in fact be represented exactly as
+ * a double value.</li>
+ *
+ * </ul><p>(In the foregoing descriptions, a floating-point value is
+ * considered to be an integer if and only if it is a fixed point of the
+ * method {@link #ceil(double)} or, equivalently, a fixed point of the
+ * method {@link #floor(double)}. A value is a fixed point of a one-argument
+ * method if and only if the result of applying the method to the value is
+ * equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
+ *
+ * @param a the number to raise
+ * @param b the power to raise it to
+ * @return a<sup>b</sup>
+ */
+ public static native double pow(double a, double b);
+
+ /**
+ * Get the IEEE 754 floating point remainder on two numbers. This is the
+ * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
+ * double to <code>x / y</code> (ties go to the even n); for a zero
+ * remainder, the sign is that of <code>x</code>. If either argument is NaN,
+ * the first argument is infinite, or the second argument is zero, the result
+ * is NaN; if x is finite but y is infinite, the result is x. This is
+ * accurate within the limits of doubles.
+ *
+ * @param x the dividend (the top half)
+ * @param y the divisor (the bottom half)
+ * @return the IEEE 754-defined floating point remainder of x/y
+ * @see #rint(double)
+ */
+ public static native double IEEEremainder(double x, double y);
+
+ /**
+ * Take the nearest integer that is that is greater than or equal to the
+ * argument. If the argument is NaN, infinite, or zero, the result is the
+ * same; if the argument is between -1 and 0, the result is negative zero.
+ * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
+ *
+ * @param a the value to act upon
+ * @return the nearest integer &gt;= <code>a</code>
+ */
+ public static native double ceil(double a);
+
+ /**
+ * Take the nearest integer that is that is less than or equal to the
+ * argument. If the argument is NaN, infinite, or zero, the result is the
+ * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
+ *
+ * @param a the value to act upon
+ * @return the nearest integer &lt;= <code>a</code>
+ */
+ public static native double floor(double a);
+
+ /**
+ * Take the nearest integer to the argument. If it is exactly between
+ * two integers, the even integer is taken. If the argument is NaN,
+ * infinite, or zero, the result is the same.
+ *
+ * @param a the value to act upon
+ * @return the nearest integer to <code>a</code>
+ */
+ public static native double rint(double a);
+
+ /**
+ * Take the nearest integer to the argument. This is equivalent to
+ * <code>(int) Math.floor(a + 0.5f)</code>. If the argument is NaN, the result
+ * is 0; otherwise if the argument is outside the range of int, the result
+ * will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
+ *
+ * @param a the argument to round
+ * @return the nearest integer to the argument
+ * @see Integer#MIN_VALUE
+ * @see Integer#MAX_VALUE
+ */
+ public static int round(float a)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return 0;
+ return (int) floor(a + 0.5f);
+ }
+
+ /**
+ * Take the nearest long to the argument. This is equivalent to
+ * <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
+ * result is 0; otherwise if the argument is outside the range of long, the
+ * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
+ *
+ * @param a the argument to round
+ * @return the nearest long to the argument
+ * @see Long#MIN_VALUE
+ * @see Long#MAX_VALUE
+ */
+ public static long round(double a)
+ {
+ // this check for NaN, from JLS 15.21.1, saves a method call
+ if (a != a)
+ return 0;
+ return (long) floor(a + 0.5d);
+ }
+
+ /**
+ * Get a random number. This behaves like Random.nextDouble(), seeded by
+ * System.currentTimeMillis() when first called. In other words, the number
+ * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
+ * This random sequence is only used by this method, and is threadsafe,
+ * although you may want your own random number generator if it is shared
+ * among threads.
+ *
+ * @return a random number
+ * @see Random#nextDouble()
+ * @see System#currentTimeMillis()
+ */
+ public static synchronized double random()
+ {
+ if (rand == null)
+ rand = new Random();
+ return rand.nextDouble();
+ }
+
+ /**
+ * Convert from degrees to radians. The formula for this is
+ * radians = degrees * (pi/180); however it is not always exact given the
+ * limitations of floating point numbers.
+ *
+ * @param degrees an angle in degrees
+ * @return the angle in radians
+ * @since 1.2
+ */
+ public static double toRadians(double degrees)
+ {
+ return (degrees * PI) / 180;
+ }
+
+ /**
+ * Convert from radians to degrees. The formula for this is
+ * degrees = radians * (180/pi); however it is not always exact given the
+ * limitations of floating point numbers.
+ *
+ * @param rads an angle in radians
+ * @return the angle in degrees
+ * @since 1.2
+ */
+ public static double toDegrees(double rads)
+ {
+ return (rads * 180) / PI;
+ }
+
+ /**
+ * <p>
+ * Take a cube root. If the argument is <code>NaN</code>, an infinity or
+ * zero, then the original value is returned. The returned result is
+ * within 1 ulp of the exact result. For a finite value, <code>x</code>,
+ * the cube root of <code>-x</code> is equal to the negation of the cube root
+ * of <code>x</code>.
+ * </p>
+ * <p>
+ * For a square root, use <code>sqrt</code>. For other roots, use
+ * <code>pow(a, 1 / rootNumber)</code>.
+ * </p>
+ *
+ * @param a the numeric argument
+ * @return the cube root of the argument
+ * @see #sqrt(double)
+ * @see #pow(double, double)
+ * @since 1.5
+ */
+ public static native double cbrt(double a);
+
+ /**
+ * <p>
+ * Returns the hyperbolic cosine of the given value. For a value,
+ * <code>x</code>, the hyperbolic cosine is <code>(e<sup>x</sup> +
+ * e<sup>-x</sup>)/2</code>
+ * with <code>e</code> being <a href="#E">Euler's number</a>. The returned
+ * result is within 2.5 ulps of the exact result.
+ * </p>
+ * <p>
+ * If the supplied value is <code>NaN</code>, then the original value is
+ * returned. For either infinity, positive infinity is returned.
+ * The hyperbolic cosine of zero is 1.0.
+ * </p>
+ *
+ * @param a the numeric argument
+ * @return the hyperbolic cosine of <code>a</code>.
+ * @since 1.5
+ */
+ public static native double cosh(double a);
+
+ /**
+ * <p>
+ * Returns <code>e<sup>a</sup> - 1. For values close to 0, the
+ * result of <code>expm1(a) + 1</code> tend to be much closer to the
+ * exact result than simply <code>exp(x)</code>. The result is within
+ * 1 ulp of the exact result, and results are semi-monotonic. For finite
+ * inputs, the returned value is greater than or equal to -1.0. Once
+ * a result enters within half a ulp of this limit, the limit is returned.
+ * </p>
+ * <p>
+ * For <code>NaN</code>, positive infinity and zero, the original value
+ * is returned. Negative infinity returns a result of -1.0 (the limit).
+ * </p>
+ *
+ * @param a the numeric argument
+ * @return <code>e<sup>a</sup> - 1</code>
+ * @since 1.5
+ */
+ public static native double expm1(double a);
+
+ /**
+ * <p>
+ * Returns the hypotenuse, <code>a<sup>2</sup> + b<sup>2</sup></code>,
+ * without intermediate overflow or underflow. The returned result is
+ * within 1 ulp of the exact result. If one parameter is held constant,
+ * then the result in the other parameter is semi-monotonic.
+ * </p>
+ * <p>
+ * If either of the arguments is an infinity, then the returned result
+ * is positive infinity. Otherwise, if either argument is <code>NaN</code>,
+ * then <code>NaN</code> is returned.
+ * </p>
+ *
+ * @param a the first parameter.
+ * @param b the second parameter.
+ * @return the hypotenuse matching the supplied parameters.
+ * @since 1.5
+ */
+ public static native double hypot(double a, double b);
+
+ /**
+ * <p>
+ * Returns the base 10 logarithm of the supplied value. The returned
+ * result is within 1 ulp of the exact result, and the results are
+ * semi-monotonic.
+ * </p>
+ * <p>
+ * Arguments of either <code>NaN</code> or less than zero return
+ * <code>NaN</code>. An argument of positive infinity returns positive
+ * infinity. Negative infinity is returned if either positive or negative
+ * zero is supplied. Where the argument is the result of
+ * <code>10<sup>n</sup</code>, then <code>n</code> is returned.
+ * </p>
+ *
+ * @param a the numeric argument.
+ * @return the base 10 logarithm of <code>a</code>.
+ * @since 1.5
+ */
+ public static native double log10(double a);
+
+ /**
+ * <p>
+ * Returns the natural logarithm resulting from the sum of the argument,
+ * <code>a</code> and 1. For values close to 0, the
+ * result of <code>log1p(a)</code> tend to be much closer to the
+ * exact result than simply <code>log(1.0+a)</code>. The returned
+ * result is within 1 ulp of the exact result, and the results are
+ * semi-monotonic.
+ * </p>
+ * <p>
+ * Arguments of either <code>NaN</code> or less than -1 return
+ * <code>NaN</code>. An argument of positive infinity or zero
+ * returns the original argument. Negative infinity is returned from an
+ * argument of -1.
+ * </p>
+ *
+ * @param a the numeric argument.
+ * @return the natural logarithm of <code>a</code> + 1.
+ * @since 1.5
+ */
+ public static native double log1p(double a);
+
+ /**
+ * <p>
+ * Returns the sign of the argument as follows:
+ * </p>
+ * <ul>
+ * <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
+ * <li>If <code>a</code> is less than zero, the result is -1.0.</li>
+ * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
+ * <li>If <code>a</code> is positive or negative zero, the result is the
+ * same.</li>
+ * </ul>
+ *
+ * @param a the numeric argument.
+ * @return the sign of the argument.
+ * @since 1.5.
+ */
+ public static double signum(double a)
+ {
+ if (Double.isNaN(a))
+ return Double.NaN;
+ if (a > 0)
+ return 1.0;
+ if (a < 0)
+ return -1.0;
+ return a;
+ }
+
+ /**
+ * <p>
+ * Returns the sign of the argument as follows:
+ * </p>
+ * <ul>
+ * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
+ * <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
+ * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
+ * <li>If <code>a</code> is positive or negative zero, the result is the
+ * same.</li>
+ * </ul>
+ *
+ * @param a the numeric argument.
+ * @return the sign of the argument.
+ * @since 1.5.
+ */
+ public static float signum(float a)
+ {
+ if (Float.isNaN(a))
+ return Float.NaN;
+ if (a > 0)
+ return 1.0f;
+ if (a < 0)
+ return -1.0f;
+ return a;
+ }
+
+ /**
+ * <p>
+ * Returns the hyperbolic sine of the given value. For a value,
+ * <code>x</code>, the hyperbolic sine is <code>(e<sup>x</sup> -
+ * e<sup>-x</sup>)/2</code>
+ * with <code>e</code> being <a href="#E">Euler's number</a>. The returned
+ * result is within 2.5 ulps of the exact result.
+ * </p>
+ * <p>
+ * If the supplied value is <code>NaN</code>, an infinity or a zero, then the
+ * original value is returned.
+ * </p>
+ *
+ * @param a the numeric argument
+ * @return the hyperbolic sine of <code>a</code>.
+ * @since 1.5
+ */
+ public static native double sinh(double a);
+
+ /**
+ * <p>
+ * Returns the hyperbolic tangent of the given value. For a value,
+ * <code>x</code>, the hyperbolic tangent is <code>(e<sup>x</sup> -
+ * e<sup>-x</sup>)/(e<sup>x</sup> + e<sup>-x</sup>)</code>
+ * (i.e. <code>sinh(a)/cosh(a)</code>)
+ * with <code>e</code> being <a href="#E">Euler's number</a>. The returned
+ * result is within 2.5 ulps of the exact result. The absolute value
+ * of the exact result is always less than 1. Computed results are thus
+ * less than or equal to 1 for finite arguments, with results within
+ * half a ulp of either positive or negative 1 returning the appropriate
+ * limit value (i.e. as if the argument was an infinity).
+ * </p>
+ * <p>
+ * If the supplied value is <code>NaN</code> or zero, then the original
+ * value is returned. Positive infinity returns +1.0 and negative infinity
+ * returns -1.0.
+ * </p>
+ *
+ * @param a the numeric argument
+ * @return the hyperbolic tangent of <code>a</code>.
+ * @since 1.5
+ */
+ public static native double tanh(double a);
+
+ /**
+ * Return the ulp for the given double argument. The ulp is the
+ * difference between the argument and the next larger double. Note
+ * that the sign of the double argument is ignored, that is,
+ * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
+ * If the argument is an infinity, then +Inf is returned. If the
+ * argument is zero (either positive or negative), then
+ * {@link Double#MIN_VALUE} is returned.
+ * @param d the double whose ulp should be returned
+ * @return the difference between the argument and the next larger double
+ * @since 1.5
+ */
+ public static double ulp(double d)
+ {
+ if (Double.isNaN(d))
+ return d;
+ if (Double.isInfinite(d))
+ return Double.POSITIVE_INFINITY;
+ // This handles both +0.0 and -0.0.
+ if (d == 0.0)
+ return Double.MIN_VALUE;
+ long bits = Double.doubleToLongBits(d);
+ final int mantissaBits = 52;
+ final int exponentBits = 11;
+ final long mantMask = (1L << mantissaBits) - 1;
+ long mantissa = bits & mantMask;
+ final long expMask = (1L << exponentBits) - 1;
+ long exponent = (bits >>> mantissaBits) & expMask;
+
+ // Denormal number, so the answer is easy.
+ if (exponent == 0)
+ {
+ long result = (exponent << mantissaBits) | 1L;
+ return Double.longBitsToDouble(result);
+ }
+
+ // Conceptually we want to have '1' as the mantissa. Then we would
+ // shift the mantissa over to make a normal number. If this underflows
+ // the exponent, we will make a denormal result.
+ long newExponent = exponent - mantissaBits;
+ long newMantissa;
+ if (newExponent > 0)
+ newMantissa = 0;
+ else
+ {
+ newMantissa = 1L << -(newExponent - 1);
+ newExponent = 0;
+ }
+ return Double.longBitsToDouble((newExponent << mantissaBits) | newMantissa);
+ }
+
+ /**
+ * Return the ulp for the given float argument. The ulp is the
+ * difference between the argument and the next larger float. Note
+ * that the sign of the float argument is ignored, that is,
+ * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
+ * If the argument is an infinity, then +Inf is returned. If the
+ * argument is zero (either positive or negative), then
+ * {@link Float#MIN_VALUE} is returned.
+ * @param f the float whose ulp should be returned
+ * @return the difference between the argument and the next larger float
+ * @since 1.5
+ */
+ public static float ulp(float f)
+ {
+ if (Float.isNaN(f))
+ return f;
+ if (Float.isInfinite(f))
+ return Float.POSITIVE_INFINITY;
+ // This handles both +0.0 and -0.0.
+ if (f == 0.0)
+ return Float.MIN_VALUE;
+ int bits = Float.floatToIntBits(f);
+ final int mantissaBits = 23;
+ final int exponentBits = 8;
+ final int mantMask = (1 << mantissaBits) - 1;
+ int mantissa = bits & mantMask;
+ final int expMask = (1 << exponentBits) - 1;
+ int exponent = (bits >>> mantissaBits) & expMask;
+
+ // Denormal number, so the answer is easy.
+ if (exponent == 0)
+ {
+ int result = (exponent << mantissaBits) | 1;
+ return Float.intBitsToFloat(result);
+ }
+
+ // Conceptually we want to have '1' as the mantissa. Then we would
+ // shift the mantissa over to make a normal number. If this underflows
+ // the exponent, we will make a denormal result.
+ int newExponent = exponent - mantissaBits;
+ int newMantissa;
+ if (newExponent > 0)
+ newMantissa = 0;
+ else
+ {
+ newMantissa = 1 << -(newExponent - 1);
+ newExponent = 0;
+ }
+ return Float.intBitsToFloat((newExponent << mantissaBits) | newMantissa);
+ }
+}