summaryrefslogtreecommitdiff
path: root/libjava/verify.cc
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/verify.cc')
-rw-r--r--libjava/verify.cc3236
1 files changed, 3236 insertions, 0 deletions
diff --git a/libjava/verify.cc b/libjava/verify.cc
new file mode 100644
index 000000000..b002c1c0a
--- /dev/null
+++ b/libjava/verify.cc
@@ -0,0 +1,3236 @@
+// verify.cc - verify bytecode
+
+/* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation
+
+ This file is part of libgcj.
+
+This software is copyrighted work licensed under the terms of the
+Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
+details. */
+
+// Written by Tom Tromey <tromey@redhat.com>
+
+// Define VERIFY_DEBUG to enable debugging output.
+
+#include <config.h>
+
+#include <string.h>
+
+#include <jvm.h>
+#include <gcj/cni.h>
+#include <java-insns.h>
+#include <java-interp.h>
+
+// On Solaris 10/x86, <signal.h> indirectly includes <ia32/sys/reg.h>, which
+// defines PC since g++ predefines __EXTENSIONS__. Undef here to avoid clash
+// with PC member of class _Jv_BytecodeVerifier below.
+#undef PC
+
+#ifdef INTERPRETER
+
+#include <java/lang/Class.h>
+#include <java/lang/VerifyError.h>
+#include <java/lang/Throwable.h>
+#include <java/lang/reflect/Modifier.h>
+#include <java/lang/StringBuffer.h>
+#include <java/lang/NoClassDefFoundError.h>
+
+#ifdef VERIFY_DEBUG
+#include <stdio.h>
+#endif /* VERIFY_DEBUG */
+
+
+// This is used to mark states which are not scheduled for
+// verification.
+#define INVALID_STATE ((state *) -1)
+
+static void debug_print (const char *fmt, ...)
+ __attribute__ ((format (printf, 1, 2)));
+
+static inline void
+debug_print (MAYBE_UNUSED const char *fmt, ...)
+{
+#ifdef VERIFY_DEBUG
+ va_list ap;
+ va_start (ap, fmt);
+ vfprintf (stderr, fmt, ap);
+ va_end (ap);
+#endif /* VERIFY_DEBUG */
+}
+
+// This started as a fairly ordinary verifier, and for the most part
+// it remains so. It works in the obvious way, by modeling the effect
+// of each opcode as it is encountered. For most opcodes, this is a
+// straightforward operation.
+//
+// This verifier does not do type merging. It used to, but this
+// results in difficulty verifying some relatively simple code
+// involving interfaces, and it pushed some verification work into the
+// interpreter.
+//
+// Instead of merging reference types, when we reach a point where two
+// flows of control merge, we simply keep the union of reference types
+// from each branch. Then, when we need to verify a fact about a
+// reference on the stack (e.g., that it is compatible with the
+// argument type of a method), we check to ensure that all possible
+// types satisfy the requirement.
+//
+// Another area this verifier differs from the norm is in its handling
+// of subroutines. The JVM specification has some confusing things to
+// say about subroutines. For instance, it makes claims about not
+// allowing subroutines to merge and it rejects recursive subroutines.
+// For the most part these are red herrings; we used to try to follow
+// these things but they lead to problems. For example, the notion of
+// "being in a subroutine" is not well-defined: is an exception
+// handler in a subroutine? If you never execute the `ret' but
+// instead `goto 1' do you remain in the subroutine?
+//
+// For clarity on what is really required for type safety, read
+// "Simple Verification Technique for Complex Java Bytecode
+// Subroutines" by Alessandro Coglio. Among other things this paper
+// shows that recursive subroutines are not harmful to type safety.
+// We implement something similar to what he proposes. Note that this
+// means that this verifier will accept code that is rejected by some
+// other verifiers.
+//
+// For those not wanting to read the paper, the basic observation is
+// that we can maintain split states in subroutines. We maintain one
+// state for each calling `jsr'. In other words, we re-verify a
+// subroutine once for each caller, using the exact types held by the
+// callers (as opposed to the old approach of merging types and
+// keeping a bitmap registering what did or did not change). This
+// approach lets us continue to verify correctly even when a
+// subroutine is exited via `goto' or `athrow' and not `ret'.
+//
+// In some other areas the JVM specification is (mildly) incorrect,
+// so we diverge. For instance, you cannot
+// violate type safety by allocating an object with `new' and then
+// failing to initialize it, no matter how one branches or where one
+// stores the uninitialized reference. See "Improving the official
+// specification of Java bytecode verification" by Alessandro Coglio.
+//
+// Note that there's no real point in enforcing that padding bytes or
+// the mystery byte of invokeinterface must be 0, but we do that
+// regardless.
+//
+// The verifier is currently neither completely lazy nor eager when it
+// comes to loading classes. It tries to represent types by name when
+// possible, and then loads them when it needs to verify a fact about
+// the type. Checking types by name is valid because we only use
+// names which come from the current class' constant pool. Since all
+// such names are looked up using the same class loader, there is no
+// danger that we might be fooled into comparing different types with
+// the same name.
+//
+// In the future we plan to allow for a completely lazy mode of
+// operation, where the verifier will construct a list of type
+// assertions to be checked later.
+//
+// Some test cases for the verifier live in the "verify" module of the
+// Mauve test suite. However, some of these are presently
+// (2004-01-20) believed to be incorrect. (More precisely the notion
+// of "correct" is not well-defined, and this verifier differs from
+// others while remaining type-safe.) Some other tests live in the
+// libgcj test suite.
+class _Jv_BytecodeVerifier
+{
+private:
+
+ static const int FLAG_INSN_START = 1;
+ static const int FLAG_BRANCH_TARGET = 2;
+
+ struct state;
+ struct type;
+ struct linked_utf8;
+ struct ref_intersection;
+
+ template<typename T>
+ struct linked
+ {
+ T *val;
+ linked<T> *next;
+ };
+
+ // The current PC.
+ int PC;
+ // The PC corresponding to the start of the current instruction.
+ int start_PC;
+
+ // The current state of the stack, locals, etc.
+ state *current_state;
+
+ // At each branch target we keep a linked list of all the states we
+ // can process at that point. We'll only have multiple states at a
+ // given PC if they both have different return-address types in the
+ // same stack or local slot. This array is indexed by PC and holds
+ // the list of all such states.
+ linked<state> **states;
+
+ // We keep a linked list of all the states which we must reverify.
+ // This is the head of the list.
+ state *next_verify_state;
+
+ // We keep some flags for each instruction. The values are the
+ // FLAG_* constants defined above. This is an array indexed by PC.
+ char *flags;
+
+ // The bytecode itself.
+ unsigned char *bytecode;
+ // The exceptions.
+ _Jv_InterpException *exception;
+
+ // Defining class.
+ jclass current_class;
+ // This method.
+ _Jv_InterpMethod *current_method;
+
+ // A linked list of utf8 objects we allocate.
+ linked<_Jv_Utf8Const> *utf8_list;
+
+ // A linked list of all ref_intersection objects we allocate.
+ ref_intersection *isect_list;
+
+ // Create a new Utf-8 constant and return it. We do this to avoid
+ // having our Utf-8 constants prematurely collected.
+ _Jv_Utf8Const *make_utf8_const (char *s, int len)
+ {
+ linked<_Jv_Utf8Const> *lu = (linked<_Jv_Utf8Const> *)
+ _Jv_Malloc (sizeof (linked<_Jv_Utf8Const>)
+ + _Jv_Utf8Const::space_needed(s, len));
+ _Jv_Utf8Const *r = (_Jv_Utf8Const *) (lu + 1);
+ r->init(s, len);
+ lu->val = r;
+ lu->next = utf8_list;
+ utf8_list = lu;
+
+ return r;
+ }
+
+ __attribute__ ((__noreturn__)) void verify_fail (const char *s, jint pc = -1)
+ {
+ using namespace java::lang;
+ StringBuffer *buf = new StringBuffer ();
+
+ buf->append (JvNewStringLatin1 ("verification failed"));
+ if (pc == -1)
+ pc = start_PC;
+ if (pc != -1)
+ {
+ buf->append (JvNewStringLatin1 (" at PC "));
+ buf->append (pc);
+ }
+
+ _Jv_InterpMethod *method = current_method;
+ buf->append (JvNewStringLatin1 (" in "));
+ buf->append (current_class->getName());
+ buf->append ((jchar) ':');
+ buf->append (method->get_method()->name->toString());
+ buf->append ((jchar) '(');
+ buf->append (method->get_method()->signature->toString());
+ buf->append ((jchar) ')');
+
+ buf->append (JvNewStringLatin1 (": "));
+ buf->append (JvNewStringLatin1 (s));
+ throw new java::lang::VerifyError (buf->toString ());
+ }
+
+ // This enum holds a list of tags for all the different types we
+ // need to handle. Reference types are treated specially by the
+ // type class.
+ enum type_val
+ {
+ void_type,
+
+ // The values for primitive types are chosen to correspond to values
+ // specified to newarray.
+ boolean_type = 4,
+ char_type = 5,
+ float_type = 6,
+ double_type = 7,
+ byte_type = 8,
+ short_type = 9,
+ int_type = 10,
+ long_type = 11,
+
+ // Used when overwriting second word of a double or long in the
+ // local variables. Also used after merging local variable states
+ // to indicate an unusable value.
+ unsuitable_type,
+ return_address_type,
+ // This is the second word of a two-word value, i.e., a double or
+ // a long.
+ continuation_type,
+
+ // Everything after `reference_type' must be a reference type.
+ reference_type,
+ null_type,
+ uninitialized_reference_type
+ };
+
+ // This represents a merged class type. Some verifiers (including
+ // earlier versions of this one) will compute the intersection of
+ // two class types when merging states. However, this loses
+ // critical information about interfaces implemented by the various
+ // classes. So instead we keep track of all the actual classes that
+ // have been merged.
+ struct ref_intersection
+ {
+ // Whether or not this type has been resolved.
+ bool is_resolved;
+
+ // Actual type data.
+ union
+ {
+ // For a resolved reference type, this is a pointer to the class.
+ jclass klass;
+ // For other reference types, this it the name of the class.
+ _Jv_Utf8Const *name;
+ } data;
+
+ // Link to the next reference in the intersection.
+ ref_intersection *ref_next;
+
+ // This is used to keep track of all the allocated
+ // ref_intersection objects, so we can free them.
+ // FIXME: we should allocate these in chunks.
+ ref_intersection *alloc_next;
+
+ ref_intersection (jclass klass, _Jv_BytecodeVerifier *verifier)
+ : ref_next (NULL)
+ {
+ is_resolved = true;
+ data.klass = klass;
+ alloc_next = verifier->isect_list;
+ verifier->isect_list = this;
+ }
+
+ ref_intersection (_Jv_Utf8Const *name, _Jv_BytecodeVerifier *verifier)
+ : ref_next (NULL)
+ {
+ is_resolved = false;
+ data.name = name;
+ alloc_next = verifier->isect_list;
+ verifier->isect_list = this;
+ }
+
+ ref_intersection (ref_intersection *dup, ref_intersection *tail,
+ _Jv_BytecodeVerifier *verifier)
+ : ref_next (tail)
+ {
+ is_resolved = dup->is_resolved;
+ data = dup->data;
+ alloc_next = verifier->isect_list;
+ verifier->isect_list = this;
+ }
+
+ bool equals (ref_intersection *other, _Jv_BytecodeVerifier *verifier)
+ {
+ if (! is_resolved && ! other->is_resolved
+ && _Jv_equalUtf8Classnames (data.name, other->data.name))
+ return true;
+ if (! is_resolved)
+ resolve (verifier);
+ if (! other->is_resolved)
+ other->resolve (verifier);
+ return data.klass == other->data.klass;
+ }
+
+ // Merge THIS type into OTHER, returning the result. This will
+ // return OTHER if all the classes in THIS already appear in
+ // OTHER.
+ ref_intersection *merge (ref_intersection *other,
+ _Jv_BytecodeVerifier *verifier)
+ {
+ ref_intersection *tail = other;
+ for (ref_intersection *self = this; self != NULL; self = self->ref_next)
+ {
+ bool add = true;
+ for (ref_intersection *iter = other; iter != NULL;
+ iter = iter->ref_next)
+ {
+ if (iter->equals (self, verifier))
+ {
+ add = false;
+ break;
+ }
+ }
+
+ if (add)
+ tail = new ref_intersection (self, tail, verifier);
+ }
+ return tail;
+ }
+
+ void resolve (_Jv_BytecodeVerifier *verifier)
+ {
+ if (is_resolved)
+ return;
+
+ // This is useful if you want to see which classes have to be resolved
+ // while doing the class verification.
+ debug_print("resolving class: %s\n", data.name->chars());
+
+ using namespace java::lang;
+ java::lang::ClassLoader *loader
+ = verifier->current_class->getClassLoaderInternal();
+
+ // Due to special handling in to_array() array classes will always
+ // be of the "L ... ;" kind. The separator char ('.' or '/' may vary
+ // however.
+ if (data.name->limit()[-1] == ';')
+ {
+ data.klass = _Jv_FindClassFromSignature (data.name->chars(), loader);
+ if (data.klass == NULL)
+ throw new java::lang::NoClassDefFoundError(data.name->toString());
+ }
+ else
+ data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
+ false, loader);
+ is_resolved = true;
+ }
+
+ // See if an object of type OTHER can be assigned to an object of
+ // type *THIS. This might resolve classes in one chain or the
+ // other.
+ bool compatible (ref_intersection *other,
+ _Jv_BytecodeVerifier *verifier)
+ {
+ ref_intersection *self = this;
+
+ for (; self != NULL; self = self->ref_next)
+ {
+ ref_intersection *other_iter = other;
+
+ for (; other_iter != NULL; other_iter = other_iter->ref_next)
+ {
+ // Avoid resolving if possible.
+ if (! self->is_resolved
+ && ! other_iter->is_resolved
+ && _Jv_equalUtf8Classnames (self->data.name,
+ other_iter->data.name))
+ continue;
+
+ if (! self->is_resolved)
+ self->resolve(verifier);
+
+ // If the LHS of the expression is of type
+ // java.lang.Object, assignment will succeed, no matter
+ // what the type of the RHS is. Using this short-cut we
+ // don't need to resolve the class of the RHS at
+ // verification time.
+ if (self->data.klass == &java::lang::Object::class$)
+ continue;
+
+ if (! other_iter->is_resolved)
+ other_iter->resolve(verifier);
+
+ if (! is_assignable_from_slow (self->data.klass,
+ other_iter->data.klass))
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ bool isarray ()
+ {
+ // assert (ref_next == NULL);
+ if (is_resolved)
+ return data.klass->isArray ();
+ else
+ return data.name->first() == '[';
+ }
+
+ bool isinterface (_Jv_BytecodeVerifier *verifier)
+ {
+ // assert (ref_next == NULL);
+ if (! is_resolved)
+ resolve (verifier);
+ return data.klass->isInterface ();
+ }
+
+ bool isabstract (_Jv_BytecodeVerifier *verifier)
+ {
+ // assert (ref_next == NULL);
+ if (! is_resolved)
+ resolve (verifier);
+ using namespace java::lang::reflect;
+ return Modifier::isAbstract (data.klass->getModifiers ());
+ }
+
+ jclass getclass (_Jv_BytecodeVerifier *verifier)
+ {
+ if (! is_resolved)
+ resolve (verifier);
+ return data.klass;
+ }
+
+ int count_dimensions ()
+ {
+ int ndims = 0;
+ if (is_resolved)
+ {
+ jclass k = data.klass;
+ while (k->isArray ())
+ {
+ k = k->getComponentType ();
+ ++ndims;
+ }
+ }
+ else
+ {
+ char *p = data.name->chars();
+ while (*p++ == '[')
+ ++ndims;
+ }
+ return ndims;
+ }
+
+ void *operator new (size_t bytes)
+ {
+ return _Jv_Malloc (bytes);
+ }
+
+ void operator delete (void *mem)
+ {
+ _Jv_Free (mem);
+ }
+ };
+
+ // Return the type_val corresponding to a primitive signature
+ // character. For instance `I' returns `int.class'.
+ type_val get_type_val_for_signature (jchar sig)
+ {
+ type_val rt;
+ switch (sig)
+ {
+ case 'Z':
+ rt = boolean_type;
+ break;
+ case 'B':
+ rt = byte_type;
+ break;
+ case 'C':
+ rt = char_type;
+ break;
+ case 'S':
+ rt = short_type;
+ break;
+ case 'I':
+ rt = int_type;
+ break;
+ case 'J':
+ rt = long_type;
+ break;
+ case 'F':
+ rt = float_type;
+ break;
+ case 'D':
+ rt = double_type;
+ break;
+ case 'V':
+ rt = void_type;
+ break;
+ default:
+ verify_fail ("invalid signature");
+ }
+ return rt;
+ }
+
+ // Return the type_val corresponding to a primitive class.
+ type_val get_type_val_for_signature (jclass k)
+ {
+ return get_type_val_for_signature ((jchar) k->method_count);
+ }
+
+ // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
+ // TARGET haven't been prepared.
+ static bool is_assignable_from_slow (jclass target, jclass source)
+ {
+ // First, strip arrays.
+ while (target->isArray ())
+ {
+ // If target is array, source must be as well.
+ if (! source->isArray ())
+ return false;
+ target = target->getComponentType ();
+ source = source->getComponentType ();
+ }
+
+ // Quick success.
+ if (target == &java::lang::Object::class$)
+ return true;
+
+ do
+ {
+ if (source == target)
+ return true;
+
+ if (target->isPrimitive () || source->isPrimitive ())
+ return false;
+
+ if (target->isInterface ())
+ {
+ for (int i = 0; i < source->interface_count; ++i)
+ {
+ // We use a recursive call because we also need to
+ // check superinterfaces.
+ if (is_assignable_from_slow (target, source->getInterface (i)))
+ return true;
+ }
+ }
+ source = source->getSuperclass ();
+ }
+ while (source != NULL);
+
+ return false;
+ }
+
+ // The `type' class is used to represent a single type in the
+ // verifier.
+ struct type
+ {
+ // The type key.
+ type_val key;
+
+ // For reference types, the representation of the type.
+ ref_intersection *klass;
+
+ // This is used in two situations.
+ //
+ // First, when constructing a new object, it is the PC of the
+ // `new' instruction which created the object. We use the special
+ // value UNINIT to mean that this is uninitialized. The special
+ // value SELF is used for the case where the current method is
+ // itself the <init> method. the special value EITHER is used
+ // when we may optionally allow either an uninitialized or
+ // initialized reference to match.
+ //
+ // Second, when the key is return_address_type, this holds the PC
+ // of the instruction following the `jsr'.
+ int pc;
+
+ static const int UNINIT = -2;
+ static const int SELF = -1;
+ static const int EITHER = -3;
+
+ // Basic constructor.
+ type ()
+ {
+ key = unsuitable_type;
+ klass = NULL;
+ pc = UNINIT;
+ }
+
+ // Make a new instance given the type tag. We assume a generic
+ // `reference_type' means Object.
+ type (type_val k)
+ {
+ key = k;
+ // For reference_type, if KLASS==NULL then that means we are
+ // looking for a generic object of any kind, including an
+ // uninitialized reference.
+ klass = NULL;
+ pc = UNINIT;
+ }
+
+ // Make a new instance given a class.
+ type (jclass k, _Jv_BytecodeVerifier *verifier)
+ {
+ key = reference_type;
+ klass = new ref_intersection (k, verifier);
+ pc = UNINIT;
+ }
+
+ // Make a new instance given the name of a class.
+ type (_Jv_Utf8Const *n, _Jv_BytecodeVerifier *verifier)
+ {
+ key = reference_type;
+ klass = new ref_intersection (n, verifier);
+ pc = UNINIT;
+ }
+
+ // Copy constructor.
+ type (const type &t)
+ {
+ key = t.key;
+ klass = t.klass;
+ pc = t.pc;
+ }
+
+ // These operators are required because libgcj can't link in
+ // -lstdc++.
+ void *operator new[] (size_t bytes)
+ {
+ return _Jv_Malloc (bytes);
+ }
+
+ void operator delete[] (void *mem)
+ {
+ _Jv_Free (mem);
+ }
+
+ type& operator= (type_val k)
+ {
+ key = k;
+ klass = NULL;
+ pc = UNINIT;
+ return *this;
+ }
+
+ type& operator= (const type& t)
+ {
+ key = t.key;
+ klass = t.klass;
+ pc = t.pc;
+ return *this;
+ }
+
+ // Promote a numeric type.
+ type &promote ()
+ {
+ if (key == boolean_type || key == char_type
+ || key == byte_type || key == short_type)
+ key = int_type;
+ return *this;
+ }
+
+ // Mark this type as the uninitialized result of `new'.
+ void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier)
+ {
+ if (key == reference_type)
+ key = uninitialized_reference_type;
+ else
+ verifier->verify_fail ("internal error in type::uninitialized");
+ pc = npc;
+ }
+
+ // Mark this type as now initialized.
+ void set_initialized (int npc)
+ {
+ if (npc != UNINIT && pc == npc && key == uninitialized_reference_type)
+ {
+ key = reference_type;
+ pc = UNINIT;
+ }
+ }
+
+ // Mark this type as a particular return address.
+ void set_return_address (int npc)
+ {
+ pc = npc;
+ }
+
+ // Return true if this type and type OTHER are considered
+ // mergeable for the purposes of state merging. This is related
+ // to subroutine handling. For this purpose two types are
+ // considered unmergeable if they are both return-addresses but
+ // have different PCs.
+ bool state_mergeable_p (const type &other) const
+ {
+ return (key != return_address_type
+ || other.key != return_address_type
+ || pc == other.pc);
+ }
+
+ // Return true if an object of type K can be assigned to a variable
+ // of type *THIS. Handle various special cases too. Might modify
+ // *THIS or K. Note however that this does not perform numeric
+ // promotion.
+ bool compatible (type &k, _Jv_BytecodeVerifier *verifier)
+ {
+ // Any type is compatible with the unsuitable type.
+ if (key == unsuitable_type)
+ return true;
+
+ if (key < reference_type || k.key < reference_type)
+ return key == k.key;
+
+ // The `null' type is convertible to any initialized reference
+ // type.
+ if (key == null_type)
+ return k.key != uninitialized_reference_type;
+ if (k.key == null_type)
+ return key != uninitialized_reference_type;
+
+ // A special case for a generic reference.
+ if (klass == NULL)
+ return true;
+ if (k.klass == NULL)
+ verifier->verify_fail ("programmer error in type::compatible");
+
+ // Handle the special 'EITHER' case, which is only used in a
+ // special case of 'putfield'. Note that we only need to handle
+ // this on the LHS of a check.
+ if (! isinitialized () && pc == EITHER)
+ {
+ // If the RHS is uninitialized, it must be an uninitialized
+ // 'this'.
+ if (! k.isinitialized () && k.pc != SELF)
+ return false;
+ }
+ else if (isinitialized () != k.isinitialized ())
+ {
+ // An initialized type and an uninitialized type are not
+ // otherwise compatible.
+ return false;
+ }
+ else
+ {
+ // Two uninitialized objects are compatible if either:
+ // * The PCs are identical, or
+ // * One PC is UNINIT.
+ if (! isinitialized ())
+ {
+ if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
+ return false;
+ }
+ }
+
+ return klass->compatible(k.klass, verifier);
+ }
+
+ bool equals (const type &other, _Jv_BytecodeVerifier *vfy)
+ {
+ // Only works for reference types.
+ if ((key != reference_type
+ && key != uninitialized_reference_type)
+ || (other.key != reference_type
+ && other.key != uninitialized_reference_type))
+ return false;
+ // Only for single-valued types.
+ if (klass->ref_next || other.klass->ref_next)
+ return false;
+ return klass->equals (other.klass, vfy);
+ }
+
+ bool isvoid () const
+ {
+ return key == void_type;
+ }
+
+ bool iswide () const
+ {
+ return key == long_type || key == double_type;
+ }
+
+ // Return number of stack or local variable slots taken by this
+ // type.
+ int depth () const
+ {
+ return iswide () ? 2 : 1;
+ }
+
+ bool isarray () const
+ {
+ // We treat null_type as not an array. This is ok based on the
+ // current uses of this method.
+ if (key == reference_type)
+ return klass->isarray ();
+ return false;
+ }
+
+ bool isnull () const
+ {
+ return key == null_type;
+ }
+
+ bool isinterface (_Jv_BytecodeVerifier *verifier)
+ {
+ if (key != reference_type)
+ return false;
+ return klass->isinterface (verifier);
+ }
+
+ bool isabstract (_Jv_BytecodeVerifier *verifier)
+ {
+ if (key != reference_type)
+ return false;
+ return klass->isabstract (verifier);
+ }
+
+ // Return the element type of an array.
+ type element_type (_Jv_BytecodeVerifier *verifier)
+ {
+ if (key != reference_type)
+ verifier->verify_fail ("programmer error in type::element_type()", -1);
+
+ jclass k = klass->getclass (verifier)->getComponentType ();
+ if (k->isPrimitive ())
+ return type (verifier->get_type_val_for_signature (k));
+ return type (k, verifier);
+ }
+
+ // Return the array type corresponding to an initialized
+ // reference. We could expand this to work for other kinds of
+ // types, but currently we don't need to.
+ type to_array (_Jv_BytecodeVerifier *verifier)
+ {
+ if (key != reference_type)
+ verifier->verify_fail ("internal error in type::to_array()");
+
+ // In case the class is already resolved we can simply ask the runtime
+ // to give us the array version.
+ // If it is not resolved we prepend "[" to the classname to make the
+ // array usage verification more lazy. In other words: makes new Foo[300]
+ // pass the verifier if Foo.class is missing.
+ if (klass->is_resolved)
+ {
+ jclass k = klass->getclass (verifier);
+
+ return type (_Jv_GetArrayClass (k, k->getClassLoaderInternal()),
+ verifier);
+ }
+ else
+ {
+ int len = klass->data.name->len();
+
+ // If the classname is given in the Lp1/p2/cn; format we only need
+ // to add a leading '['. The same procedure has to be done for
+ // primitive arrays (ie. provided "[I", the result should be "[[I".
+ // If the classname is given as p1.p2.cn we have to embed it into
+ // "[L" and ';'.
+ if (klass->data.name->limit()[-1] == ';' ||
+ _Jv_isPrimitiveOrDerived(klass->data.name))
+ {
+ // Reserves space for leading '[' and trailing '\0' .
+ char arrayName[len + 2];
+
+ arrayName[0] = '[';
+ strcpy(&arrayName[1], klass->data.name->chars());
+
+#ifdef VERIFY_DEBUG
+ // This is only needed when we want to print the string to the
+ // screen while debugging.
+ arrayName[len + 1] = '\0';
+
+ debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
+#endif
+
+ return type (verifier->make_utf8_const( arrayName, len + 1 ),
+ verifier);
+ }
+ else
+ {
+ // Reserves space for leading "[L" and trailing ';' and '\0' .
+ char arrayName[len + 4];
+
+ arrayName[0] = '[';
+ arrayName[1] = 'L';
+ strcpy(&arrayName[2], klass->data.name->chars());
+ arrayName[len + 2] = ';';
+
+#ifdef VERIFY_DEBUG
+ // This is only needed when we want to print the string to the
+ // screen while debugging.
+ arrayName[len + 3] = '\0';
+
+ debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
+#endif
+
+ return type (verifier->make_utf8_const( arrayName, len + 3 ),
+ verifier);
+ }
+ }
+
+ }
+
+ bool isreference () const
+ {
+ return key >= reference_type;
+ }
+
+ int get_pc () const
+ {
+ return pc;
+ }
+
+ bool isinitialized () const
+ {
+ return key == reference_type || key == null_type;
+ }
+
+ bool isresolved () const
+ {
+ return (key == reference_type
+ || key == null_type
+ || key == uninitialized_reference_type);
+ }
+
+ void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier)
+ {
+ // The way this is written, we don't need to check isarray().
+ if (key != reference_type)
+ verifier->verify_fail ("internal error in verify_dimensions:"
+ " not a reference type");
+
+ if (klass->count_dimensions () < ndims)
+ verifier->verify_fail ("array type has fewer dimensions"
+ " than required");
+ }
+
+ // Merge OLD_TYPE into this. On error throw exception. Return
+ // true if the merge caused a type change.
+ bool merge (type& old_type, bool local_semantics,
+ _Jv_BytecodeVerifier *verifier)
+ {
+ bool changed = false;
+ bool refo = old_type.isreference ();
+ bool refn = isreference ();
+ if (refo && refn)
+ {
+ if (old_type.key == null_type)
+ ;
+ else if (key == null_type)
+ {
+ *this = old_type;
+ changed = true;
+ }
+ else if (isinitialized () != old_type.isinitialized ())
+ verifier->verify_fail ("merging initialized and uninitialized types");
+ else
+ {
+ if (! isinitialized ())
+ {
+ if (pc == UNINIT)
+ pc = old_type.pc;
+ else if (old_type.pc == UNINIT)
+ ;
+ else if (pc != old_type.pc)
+ verifier->verify_fail ("merging different uninitialized types");
+ }
+
+ ref_intersection *merged = old_type.klass->merge (klass,
+ verifier);
+ if (merged != klass)
+ {
+ klass = merged;
+ changed = true;
+ }
+ }
+ }
+ else if (refo || refn || key != old_type.key)
+ {
+ if (local_semantics)
+ {
+ // If we already have an `unsuitable' type, then we
+ // don't need to change again.
+ if (key != unsuitable_type)
+ {
+ key = unsuitable_type;
+ changed = true;
+ }
+ }
+ else
+ verifier->verify_fail ("unmergeable type");
+ }
+ return changed;
+ }
+
+#ifdef VERIFY_DEBUG
+ void print (void) const
+ {
+ char c = '?';
+ switch (key)
+ {
+ case boolean_type: c = 'Z'; break;
+ case byte_type: c = 'B'; break;
+ case char_type: c = 'C'; break;
+ case short_type: c = 'S'; break;
+ case int_type: c = 'I'; break;
+ case long_type: c = 'J'; break;
+ case float_type: c = 'F'; break;
+ case double_type: c = 'D'; break;
+ case void_type: c = 'V'; break;
+ case unsuitable_type: c = '-'; break;
+ case return_address_type: c = 'r'; break;
+ case continuation_type: c = '+'; break;
+ case reference_type: c = 'L'; break;
+ case null_type: c = '@'; break;
+ case uninitialized_reference_type: c = 'U'; break;
+ }
+ debug_print ("%c", c);
+ }
+#endif /* VERIFY_DEBUG */
+ };
+
+ // This class holds all the state information we need for a given
+ // location.
+ struct state
+ {
+ // The current top of the stack, in terms of slots.
+ int stacktop;
+ // The current depth of the stack. This will be larger than
+ // STACKTOP when wide types are on the stack.
+ int stackdepth;
+ // The stack.
+ type *stack;
+ // The local variables.
+ type *locals;
+ // We keep track of the type of `this' specially. This is used to
+ // ensure that an instance initializer invokes another initializer
+ // on `this' before returning. We must keep track of this
+ // specially because otherwise we might be confused by code which
+ // assigns to locals[0] (overwriting `this') and then returns
+ // without really initializing.
+ type this_type;
+
+ // The PC for this state. This is only valid on states which are
+ // permanently attached to a given PC. For an object like
+ // `current_state', which is used transiently, this has no
+ // meaning.
+ int pc;
+ // We keep a linked list of all states requiring reverification.
+ // If this is the special value INVALID_STATE then this state is
+ // not on the list. NULL marks the end of the linked list.
+ state *next;
+
+ // NO_NEXT is the PC value meaning that a new state must be
+ // acquired from the verification list.
+ static const int NO_NEXT = -1;
+
+ state ()
+ : this_type ()
+ {
+ stack = NULL;
+ locals = NULL;
+ next = INVALID_STATE;
+ }
+
+ state (int max_stack, int max_locals)
+ : this_type ()
+ {
+ stacktop = 0;
+ stackdepth = 0;
+ stack = new type[max_stack];
+ for (int i = 0; i < max_stack; ++i)
+ stack[i] = unsuitable_type;
+ locals = new type[max_locals];
+ for (int i = 0; i < max_locals; ++i)
+ locals[i] = unsuitable_type;
+ pc = NO_NEXT;
+ next = INVALID_STATE;
+ }
+
+ state (const state *orig, int max_stack, int max_locals)
+ {
+ stack = new type[max_stack];
+ locals = new type[max_locals];
+ copy (orig, max_stack, max_locals);
+ pc = NO_NEXT;
+ next = INVALID_STATE;
+ }
+
+ ~state ()
+ {
+ if (stack)
+ delete[] stack;
+ if (locals)
+ delete[] locals;
+ }
+
+ void *operator new[] (size_t bytes)
+ {
+ return _Jv_Malloc (bytes);
+ }
+
+ void operator delete[] (void *mem)
+ {
+ _Jv_Free (mem);
+ }
+
+ void *operator new (size_t bytes)
+ {
+ return _Jv_Malloc (bytes);
+ }
+
+ void operator delete (void *mem)
+ {
+ _Jv_Free (mem);
+ }
+
+ void copy (const state *copy, int max_stack, int max_locals)
+ {
+ stacktop = copy->stacktop;
+ stackdepth = copy->stackdepth;
+ for (int i = 0; i < max_stack; ++i)
+ stack[i] = copy->stack[i];
+ for (int i = 0; i < max_locals; ++i)
+ locals[i] = copy->locals[i];
+
+ this_type = copy->this_type;
+ // Don't modify `next' or `pc'.
+ }
+
+ // Modify this state to reflect entry to an exception handler.
+ void set_exception (type t, int max_stack)
+ {
+ stackdepth = 1;
+ stacktop = 1;
+ stack[0] = t;
+ for (int i = stacktop; i < max_stack; ++i)
+ stack[i] = unsuitable_type;
+ }
+
+ inline int get_pc () const
+ {
+ return pc;
+ }
+
+ void set_pc (int npc)
+ {
+ pc = npc;
+ }
+
+ // Merge STATE_OLD into this state. Destructively modifies this
+ // state. Returns true if the new state was in fact changed.
+ // Will throw an exception if the states are not mergeable.
+ bool merge (state *state_old, int max_locals,
+ _Jv_BytecodeVerifier *verifier)
+ {
+ bool changed = false;
+
+ // Special handling for `this'. If one or the other is
+ // uninitialized, then the merge is uninitialized.
+ if (this_type.isinitialized ())
+ this_type = state_old->this_type;
+
+ // Merge stacks.
+ if (state_old->stacktop != stacktop) // FIXME stackdepth instead?
+ verifier->verify_fail ("stack sizes differ");
+ for (int i = 0; i < state_old->stacktop; ++i)
+ {
+ if (stack[i].merge (state_old->stack[i], false, verifier))
+ changed = true;
+ }
+
+ // Merge local variables.
+ for (int i = 0; i < max_locals; ++i)
+ {
+ if (locals[i].merge (state_old->locals[i], true, verifier))
+ changed = true;
+ }
+
+ return changed;
+ }
+
+ // Ensure that `this' has been initialized.
+ void check_this_initialized (_Jv_BytecodeVerifier *verifier)
+ {
+ if (this_type.isreference () && ! this_type.isinitialized ())
+ verifier->verify_fail ("`this' is uninitialized");
+ }
+
+ // Set type of `this'.
+ void set_this_type (const type &k)
+ {
+ this_type = k;
+ }
+
+ // Mark each `new'd object we know of that was allocated at PC as
+ // initialized.
+ void set_initialized (int pc, int max_locals)
+ {
+ for (int i = 0; i < stacktop; ++i)
+ stack[i].set_initialized (pc);
+ for (int i = 0; i < max_locals; ++i)
+ locals[i].set_initialized (pc);
+ this_type.set_initialized (pc);
+ }
+
+ // This tests to see whether two states can be considered "merge
+ // compatible". If both states have a return-address in the same
+ // slot, and the return addresses are different, then they are not
+ // compatible and we must not try to merge them.
+ bool state_mergeable_p (state *other, int max_locals,
+ _Jv_BytecodeVerifier *verifier)
+ {
+ // This is tricky: if the stack sizes differ, then not only are
+ // these not mergeable, but in fact we should give an error, as
+ // we've found two execution paths that reach a branch target
+ // with different stack depths. FIXME stackdepth instead?
+ if (stacktop != other->stacktop)
+ verifier->verify_fail ("stack sizes differ");
+
+ for (int i = 0; i < stacktop; ++i)
+ if (! stack[i].state_mergeable_p (other->stack[i]))
+ return false;
+ for (int i = 0; i < max_locals; ++i)
+ if (! locals[i].state_mergeable_p (other->locals[i]))
+ return false;
+ return true;
+ }
+
+ void reverify (_Jv_BytecodeVerifier *verifier)
+ {
+ if (next == INVALID_STATE)
+ {
+ next = verifier->next_verify_state;
+ verifier->next_verify_state = this;
+ }
+ }
+
+#ifdef VERIFY_DEBUG
+ void print (const char *leader, int pc,
+ int max_stack, int max_locals) const
+ {
+ debug_print ("%s [%4d]: [stack] ", leader, pc);
+ int i;
+ for (i = 0; i < stacktop; ++i)
+ stack[i].print ();
+ for (; i < max_stack; ++i)
+ debug_print (".");
+ debug_print (" [local] ");
+ for (i = 0; i < max_locals; ++i)
+ locals[i].print ();
+ debug_print (" | %p\n", this);
+ }
+#else
+ inline void print (const char *, int, int, int) const
+ {
+ }
+#endif /* VERIFY_DEBUG */
+ };
+
+ type pop_raw ()
+ {
+ if (current_state->stacktop <= 0)
+ verify_fail ("stack empty");
+ type r = current_state->stack[--current_state->stacktop];
+ current_state->stackdepth -= r.depth ();
+ if (current_state->stackdepth < 0)
+ verify_fail ("stack empty", start_PC);
+ return r;
+ }
+
+ type pop32 ()
+ {
+ type r = pop_raw ();
+ if (r.iswide ())
+ verify_fail ("narrow pop of wide type");
+ return r;
+ }
+
+ type pop_type (type match)
+ {
+ match.promote ();
+ type t = pop_raw ();
+ if (! match.compatible (t, this))
+ verify_fail ("incompatible type on stack");
+ return t;
+ }
+
+ // Pop a reference which is guaranteed to be initialized. MATCH
+ // doesn't have to be a reference type; in this case this acts like
+ // pop_type.
+ type pop_init_ref (type match)
+ {
+ type t = pop_raw ();
+ if (t.isreference () && ! t.isinitialized ())
+ verify_fail ("initialized reference required");
+ else if (! match.compatible (t, this))
+ verify_fail ("incompatible type on stack");
+ return t;
+ }
+
+ // Pop a reference type or a return address.
+ type pop_ref_or_return ()
+ {
+ type t = pop_raw ();
+ if (! t.isreference () && t.key != return_address_type)
+ verify_fail ("expected reference or return address on stack");
+ return t;
+ }
+
+ void push_type (type t)
+ {
+ // If T is a numeric type like short, promote it to int.
+ t.promote ();
+
+ int depth = t.depth ();
+ if (current_state->stackdepth + depth > current_method->max_stack)
+ verify_fail ("stack overflow");
+ current_state->stack[current_state->stacktop++] = t;
+ current_state->stackdepth += depth;
+ }
+
+ void set_variable (int index, type t)
+ {
+ // If T is a numeric type like short, promote it to int.
+ t.promote ();
+
+ int depth = t.depth ();
+ if (index > current_method->max_locals - depth)
+ verify_fail ("invalid local variable");
+ current_state->locals[index] = t;
+
+ if (depth == 2)
+ current_state->locals[index + 1] = continuation_type;
+ if (index > 0 && current_state->locals[index - 1].iswide ())
+ current_state->locals[index - 1] = unsuitable_type;
+ }
+
+ type get_variable (int index, type t)
+ {
+ int depth = t.depth ();
+ if (index > current_method->max_locals - depth)
+ verify_fail ("invalid local variable");
+ if (! t.compatible (current_state->locals[index], this))
+ verify_fail ("incompatible type in local variable");
+ if (depth == 2)
+ {
+ type t (continuation_type);
+ if (! current_state->locals[index + 1].compatible (t, this))
+ verify_fail ("invalid local variable");
+ }
+ return current_state->locals[index];
+ }
+
+ // Make sure ARRAY is an array type and that its elements are
+ // compatible with type ELEMENT. Returns the actual element type.
+ type require_array_type (type array, type element)
+ {
+ // An odd case. Here we just pretend that everything went ok. If
+ // the requested element type is some kind of reference, return
+ // the null type instead.
+ if (array.isnull ())
+ return element.isreference () ? type (null_type) : element;
+
+ if (! array.isarray ())
+ verify_fail ("array required");
+
+ type t = array.element_type (this);
+ if (! element.compatible (t, this))
+ {
+ // Special case for byte arrays, which must also be boolean
+ // arrays.
+ bool ok = true;
+ if (element.key == byte_type)
+ {
+ type e2 (boolean_type);
+ ok = e2.compatible (t, this);
+ }
+ if (! ok)
+ verify_fail ("incompatible array element type");
+ }
+
+ // Return T and not ELEMENT, because T might be specialized.
+ return t;
+ }
+
+ jint get_byte ()
+ {
+ if (PC >= current_method->code_length)
+ verify_fail ("premature end of bytecode");
+ return (jint) bytecode[PC++] & 0xff;
+ }
+
+ jint get_ushort ()
+ {
+ jint b1 = get_byte ();
+ jint b2 = get_byte ();
+ return (jint) ((b1 << 8) | b2) & 0xffff;
+ }
+
+ jint get_short ()
+ {
+ jint b1 = get_byte ();
+ jint b2 = get_byte ();
+ jshort s = (b1 << 8) | b2;
+ return (jint) s;
+ }
+
+ jint get_int ()
+ {
+ jint b1 = get_byte ();
+ jint b2 = get_byte ();
+ jint b3 = get_byte ();
+ jint b4 = get_byte ();
+ return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
+ }
+
+ int compute_jump (int offset)
+ {
+ int npc = start_PC + offset;
+ if (npc < 0 || npc >= current_method->code_length)
+ verify_fail ("branch out of range", start_PC);
+ return npc;
+ }
+
+ // Add a new state to the state list at NPC.
+ state *add_new_state (int npc, state *old_state)
+ {
+ state *new_state = new state (old_state, current_method->max_stack,
+ current_method->max_locals);
+ debug_print ("== New state in add_new_state\n");
+ new_state->print ("New", npc, current_method->max_stack,
+ current_method->max_locals);
+ linked<state> *nlink
+ = (linked<state> *) _Jv_Malloc (sizeof (linked<state>));
+ nlink->val = new_state;
+ nlink->next = states[npc];
+ states[npc] = nlink;
+ new_state->set_pc (npc);
+ return new_state;
+ }
+
+ // Merge the indicated state into the state at the branch target and
+ // schedule a new PC if there is a change. NPC is the PC of the
+ // branch target, and FROM_STATE is the state at the source of the
+ // branch. This method returns true if the destination state
+ // changed and requires reverification, false otherwise.
+ void merge_into (int npc, state *from_state)
+ {
+ // Iterate over all target states and merge our state into each,
+ // if applicable. FIXME one improvement we could make here is
+ // "state destruction". Merging a new state into an existing one
+ // might cause a return_address_type to be merged to
+ // unsuitable_type. In this case the resulting state may now be
+ // mergeable with other states currently held in parallel at this
+ // location. So in this situation we could pairwise compare and
+ // reduce the number of parallel states.
+ bool applicable = false;
+ for (linked<state> *iter = states[npc]; iter != NULL; iter = iter->next)
+ {
+ state *new_state = iter->val;
+ if (new_state->state_mergeable_p (from_state,
+ current_method->max_locals, this))
+ {
+ applicable = true;
+
+ debug_print ("== Merge states in merge_into\n");
+ from_state->print ("Frm", start_PC, current_method->max_stack,
+ current_method->max_locals);
+ new_state->print (" To", npc, current_method->max_stack,
+ current_method->max_locals);
+ bool changed = new_state->merge (from_state,
+ current_method->max_locals,
+ this);
+ new_state->print ("New", npc, current_method->max_stack,
+ current_method->max_locals);
+
+ if (changed)
+ new_state->reverify (this);
+ }
+ }
+
+ if (! applicable)
+ {
+ // Either we don't yet have a state at NPC, or we have a
+ // return-address type that is in conflict with all existing
+ // state. So, we need to create a new entry.
+ state *new_state = add_new_state (npc, from_state);
+ // A new state added in this way must always be reverified.
+ new_state->reverify (this);
+ }
+ }
+
+ void push_jump (int offset)
+ {
+ int npc = compute_jump (offset);
+ // According to the JVM Spec, we need to check for uninitialized
+ // objects here. However, this does not actually affect type
+ // safety, and the Eclipse java compiler generates code that
+ // violates this constraint.
+ merge_into (npc, current_state);
+ }
+
+ void push_exception_jump (type t, int pc)
+ {
+ // According to the JVM Spec, we need to check for uninitialized
+ // objects here. However, this does not actually affect type
+ // safety, and the Eclipse java compiler generates code that
+ // violates this constraint.
+ state s (current_state, current_method->max_stack,
+ current_method->max_locals);
+ if (current_method->max_stack < 1)
+ verify_fail ("stack overflow at exception handler");
+ s.set_exception (t, current_method->max_stack);
+ merge_into (pc, &s);
+ }
+
+ state *pop_jump ()
+ {
+ state *new_state = next_verify_state;
+ if (new_state == INVALID_STATE)
+ verify_fail ("programmer error in pop_jump");
+ if (new_state != NULL)
+ {
+ next_verify_state = new_state->next;
+ new_state->next = INVALID_STATE;
+ }
+ return new_state;
+ }
+
+ void invalidate_pc ()
+ {
+ PC = state::NO_NEXT;
+ }
+
+ void note_branch_target (int pc)
+ {
+ // Don't check `pc <= PC', because we've advanced PC after
+ // fetching the target and we haven't yet checked the next
+ // instruction.
+ if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
+ verify_fail ("branch not to instruction start", start_PC);
+ flags[pc] |= FLAG_BRANCH_TARGET;
+ }
+
+ void skip_padding ()
+ {
+ while ((PC % 4) > 0)
+ if (get_byte () != 0)
+ verify_fail ("found nonzero padding byte");
+ }
+
+ // Do the work for a `ret' instruction. INDEX is the index into the
+ // local variables.
+ void handle_ret_insn (int index)
+ {
+ type ret_addr = get_variable (index, return_address_type);
+ // It would be nice if we could do this. However, the JVM Spec
+ // doesn't say that this is what happens. It is implied that
+ // reusing a return address is invalid, but there's no actual
+ // prohibition against it.
+ // set_variable (index, unsuitable_type);
+
+ int npc = ret_addr.get_pc ();
+ // We might be returning to a `jsr' that is at the end of the
+ // bytecode. This is ok if we never return from the called
+ // subroutine, but if we see this here it is an error.
+ if (npc >= current_method->code_length)
+ verify_fail ("fell off end");
+
+ // According to the JVM Spec, we need to check for uninitialized
+ // objects here. However, this does not actually affect type
+ // safety, and the Eclipse java compiler generates code that
+ // violates this constraint.
+ merge_into (npc, current_state);
+ invalidate_pc ();
+ }
+
+ void handle_jsr_insn (int offset)
+ {
+ int npc = compute_jump (offset);
+
+ // According to the JVM Spec, we need to check for uninitialized
+ // objects here. However, this does not actually affect type
+ // safety, and the Eclipse java compiler generates code that
+ // violates this constraint.
+
+ // Modify our state as appropriate for entry into a subroutine.
+ type ret_addr (return_address_type);
+ ret_addr.set_return_address (PC);
+ push_type (ret_addr);
+ merge_into (npc, current_state);
+ invalidate_pc ();
+ }
+
+ jclass construct_primitive_array_type (type_val prim)
+ {
+ jclass k = NULL;
+ switch (prim)
+ {
+ case boolean_type:
+ k = JvPrimClass (boolean);
+ break;
+ case char_type:
+ k = JvPrimClass (char);
+ break;
+ case float_type:
+ k = JvPrimClass (float);
+ break;
+ case double_type:
+ k = JvPrimClass (double);
+ break;
+ case byte_type:
+ k = JvPrimClass (byte);
+ break;
+ case short_type:
+ k = JvPrimClass (short);
+ break;
+ case int_type:
+ k = JvPrimClass (int);
+ break;
+ case long_type:
+ k = JvPrimClass (long);
+ break;
+
+ // These aren't used here but we call them out to avoid
+ // warnings.
+ case void_type:
+ case unsuitable_type:
+ case return_address_type:
+ case continuation_type:
+ case reference_type:
+ case null_type:
+ case uninitialized_reference_type:
+ default:
+ verify_fail ("unknown type in construct_primitive_array_type");
+ }
+ k = _Jv_GetArrayClass (k, NULL);
+ return k;
+ }
+
+ // This pass computes the location of branch targets and also
+ // instruction starts.
+ void branch_prepass ()
+ {
+ flags = (char *) _Jv_Malloc (current_method->code_length);
+
+ for (int i = 0; i < current_method->code_length; ++i)
+ flags[i] = 0;
+
+ PC = 0;
+ while (PC < current_method->code_length)
+ {
+ // Set `start_PC' early so that error checking can have the
+ // correct value.
+ start_PC = PC;
+ flags[PC] |= FLAG_INSN_START;
+
+ java_opcode opcode = (java_opcode) bytecode[PC++];
+ switch (opcode)
+ {
+ case op_nop:
+ case op_aconst_null:
+ case op_iconst_m1:
+ case op_iconst_0:
+ case op_iconst_1:
+ case op_iconst_2:
+ case op_iconst_3:
+ case op_iconst_4:
+ case op_iconst_5:
+ case op_lconst_0:
+ case op_lconst_1:
+ case op_fconst_0:
+ case op_fconst_1:
+ case op_fconst_2:
+ case op_dconst_0:
+ case op_dconst_1:
+ case op_iload_0:
+ case op_iload_1:
+ case op_iload_2:
+ case op_iload_3:
+ case op_lload_0:
+ case op_lload_1:
+ case op_lload_2:
+ case op_lload_3:
+ case op_fload_0:
+ case op_fload_1:
+ case op_fload_2:
+ case op_fload_3:
+ case op_dload_0:
+ case op_dload_1:
+ case op_dload_2:
+ case op_dload_3:
+ case op_aload_0:
+ case op_aload_1:
+ case op_aload_2:
+ case op_aload_3:
+ case op_iaload:
+ case op_laload:
+ case op_faload:
+ case op_daload:
+ case op_aaload:
+ case op_baload:
+ case op_caload:
+ case op_saload:
+ case op_istore_0:
+ case op_istore_1:
+ case op_istore_2:
+ case op_istore_3:
+ case op_lstore_0:
+ case op_lstore_1:
+ case op_lstore_2:
+ case op_lstore_3:
+ case op_fstore_0:
+ case op_fstore_1:
+ case op_fstore_2:
+ case op_fstore_3:
+ case op_dstore_0:
+ case op_dstore_1:
+ case op_dstore_2:
+ case op_dstore_3:
+ case op_astore_0:
+ case op_astore_1:
+ case op_astore_2:
+ case op_astore_3:
+ case op_iastore:
+ case op_lastore:
+ case op_fastore:
+ case op_dastore:
+ case op_aastore:
+ case op_bastore:
+ case op_castore:
+ case op_sastore:
+ case op_pop:
+ case op_pop2:
+ case op_dup:
+ case op_dup_x1:
+ case op_dup_x2:
+ case op_dup2:
+ case op_dup2_x1:
+ case op_dup2_x2:
+ case op_swap:
+ case op_iadd:
+ case op_isub:
+ case op_imul:
+ case op_idiv:
+ case op_irem:
+ case op_ishl:
+ case op_ishr:
+ case op_iushr:
+ case op_iand:
+ case op_ior:
+ case op_ixor:
+ case op_ladd:
+ case op_lsub:
+ case op_lmul:
+ case op_ldiv:
+ case op_lrem:
+ case op_lshl:
+ case op_lshr:
+ case op_lushr:
+ case op_land:
+ case op_lor:
+ case op_lxor:
+ case op_fadd:
+ case op_fsub:
+ case op_fmul:
+ case op_fdiv:
+ case op_frem:
+ case op_dadd:
+ case op_dsub:
+ case op_dmul:
+ case op_ddiv:
+ case op_drem:
+ case op_ineg:
+ case op_i2b:
+ case op_i2c:
+ case op_i2s:
+ case op_lneg:
+ case op_fneg:
+ case op_dneg:
+ case op_i2l:
+ case op_i2f:
+ case op_i2d:
+ case op_l2i:
+ case op_l2f:
+ case op_l2d:
+ case op_f2i:
+ case op_f2l:
+ case op_f2d:
+ case op_d2i:
+ case op_d2l:
+ case op_d2f:
+ case op_lcmp:
+ case op_fcmpl:
+ case op_fcmpg:
+ case op_dcmpl:
+ case op_dcmpg:
+ case op_monitorenter:
+ case op_monitorexit:
+ case op_ireturn:
+ case op_lreturn:
+ case op_freturn:
+ case op_dreturn:
+ case op_areturn:
+ case op_return:
+ case op_athrow:
+ case op_arraylength:
+ break;
+
+ case op_bipush:
+ case op_ldc:
+ case op_iload:
+ case op_lload:
+ case op_fload:
+ case op_dload:
+ case op_aload:
+ case op_istore:
+ case op_lstore:
+ case op_fstore:
+ case op_dstore:
+ case op_astore:
+ case op_ret:
+ case op_newarray:
+ get_byte ();
+ break;
+
+ case op_iinc:
+ case op_sipush:
+ case op_ldc_w:
+ case op_ldc2_w:
+ case op_getstatic:
+ case op_getfield:
+ case op_putfield:
+ case op_putstatic:
+ case op_new:
+ case op_anewarray:
+ case op_instanceof:
+ case op_checkcast:
+ case op_invokespecial:
+ case op_invokestatic:
+ case op_invokevirtual:
+ get_short ();
+ break;
+
+ case op_multianewarray:
+ get_short ();
+ get_byte ();
+ break;
+
+ case op_jsr:
+ case op_ifeq:
+ case op_ifne:
+ case op_iflt:
+ case op_ifge:
+ case op_ifgt:
+ case op_ifle:
+ case op_if_icmpeq:
+ case op_if_icmpne:
+ case op_if_icmplt:
+ case op_if_icmpge:
+ case op_if_icmpgt:
+ case op_if_icmple:
+ case op_if_acmpeq:
+ case op_if_acmpne:
+ case op_ifnull:
+ case op_ifnonnull:
+ case op_goto:
+ note_branch_target (compute_jump (get_short ()));
+ break;
+
+ case op_tableswitch:
+ {
+ skip_padding ();
+ note_branch_target (compute_jump (get_int ()));
+ jint low = get_int ();
+ jint hi = get_int ();
+ if (low > hi)
+ verify_fail ("invalid tableswitch", start_PC);
+ for (int i = low; i <= hi; ++i)
+ note_branch_target (compute_jump (get_int ()));
+ }
+ break;
+
+ case op_lookupswitch:
+ {
+ skip_padding ();
+ note_branch_target (compute_jump (get_int ()));
+ int npairs = get_int ();
+ if (npairs < 0)
+ verify_fail ("too few pairs in lookupswitch", start_PC);
+ while (npairs-- > 0)
+ {
+ get_int ();
+ note_branch_target (compute_jump (get_int ()));
+ }
+ }
+ break;
+
+ case op_invokeinterface:
+ get_short ();
+ get_byte ();
+ get_byte ();
+ break;
+
+ case op_wide:
+ {
+ opcode = (java_opcode) get_byte ();
+ get_short ();
+ if (opcode == op_iinc)
+ get_short ();
+ }
+ break;
+
+ case op_jsr_w:
+ case op_goto_w:
+ note_branch_target (compute_jump (get_int ()));
+ break;
+
+ // These are unused here, but we call them out explicitly
+ // so that -Wswitch-enum doesn't complain.
+ case op_putfield_1:
+ case op_putfield_2:
+ case op_putfield_4:
+ case op_putfield_8:
+ case op_putfield_a:
+ case op_putstatic_1:
+ case op_putstatic_2:
+ case op_putstatic_4:
+ case op_putstatic_8:
+ case op_putstatic_a:
+ case op_getfield_1:
+ case op_getfield_2s:
+ case op_getfield_2u:
+ case op_getfield_4:
+ case op_getfield_8:
+ case op_getfield_a:
+ case op_getstatic_1:
+ case op_getstatic_2s:
+ case op_getstatic_2u:
+ case op_getstatic_4:
+ case op_getstatic_8:
+ case op_getstatic_a:
+ case op_breakpoint:
+ default:
+ verify_fail ("unrecognized instruction in branch_prepass",
+ start_PC);
+ }
+
+ // See if any previous branch tried to branch to the middle of
+ // this instruction.
+ for (int pc = start_PC + 1; pc < PC; ++pc)
+ {
+ if ((flags[pc] & FLAG_BRANCH_TARGET))
+ verify_fail ("branch to middle of instruction", pc);
+ }
+ }
+
+ // Verify exception handlers.
+ for (int i = 0; i < current_method->exc_count; ++i)
+ {
+ if (! (flags[exception[i].handler_pc.i] & FLAG_INSN_START))
+ verify_fail ("exception handler not at instruction start",
+ exception[i].handler_pc.i);
+ if (! (flags[exception[i].start_pc.i] & FLAG_INSN_START))
+ verify_fail ("exception start not at instruction start",
+ exception[i].start_pc.i);
+ if (exception[i].end_pc.i != current_method->code_length
+ && ! (flags[exception[i].end_pc.i] & FLAG_INSN_START))
+ verify_fail ("exception end not at instruction start",
+ exception[i].end_pc.i);
+
+ flags[exception[i].handler_pc.i] |= FLAG_BRANCH_TARGET;
+ }
+ }
+
+ void check_pool_index (int index)
+ {
+ if (index < 0 || index >= current_class->constants.size)
+ verify_fail ("constant pool index out of range", start_PC);
+ }
+
+ type check_class_constant (int index)
+ {
+ check_pool_index (index);
+ _Jv_Constants *pool = &current_class->constants;
+ if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
+ return type (pool->data[index].clazz, this);
+ else if (pool->tags[index] == JV_CONSTANT_Class)
+ return type (pool->data[index].utf8, this);
+ verify_fail ("expected class constant", start_PC);
+ }
+
+ type check_constant (int index)
+ {
+ check_pool_index (index);
+ _Jv_Constants *pool = &current_class->constants;
+ int tag = pool->tags[index];
+ if (tag == JV_CONSTANT_ResolvedString || tag == JV_CONSTANT_String)
+ return type (&java::lang::String::class$, this);
+ else if (tag == JV_CONSTANT_Integer)
+ return type (int_type);
+ else if (tag == JV_CONSTANT_Float)
+ return type (float_type);
+ else if (current_method->is_15
+ && (tag == JV_CONSTANT_ResolvedClass || tag == JV_CONSTANT_Class))
+ return type (&java::lang::Class::class$, this);
+ verify_fail ("String, int, or float constant expected", start_PC);
+ }
+
+ type check_wide_constant (int index)
+ {
+ check_pool_index (index);
+ _Jv_Constants *pool = &current_class->constants;
+ if (pool->tags[index] == JV_CONSTANT_Long)
+ return type (long_type);
+ else if (pool->tags[index] == JV_CONSTANT_Double)
+ return type (double_type);
+ verify_fail ("long or double constant expected", start_PC);
+ }
+
+ // Helper for both field and method. These are laid out the same in
+ // the constant pool.
+ type handle_field_or_method (int index, int expected,
+ _Jv_Utf8Const **name,
+ _Jv_Utf8Const **fmtype)
+ {
+ check_pool_index (index);
+ _Jv_Constants *pool = &current_class->constants;
+ if (pool->tags[index] != expected)
+ verify_fail ("didn't see expected constant", start_PC);
+ // Once we know we have a Fieldref or Methodref we assume that it
+ // is correctly laid out in the constant pool. I think the code
+ // in defineclass.cc guarantees this.
+ _Jv_ushort class_index, name_and_type_index;
+ _Jv_loadIndexes (&pool->data[index],
+ class_index,
+ name_and_type_index);
+ _Jv_ushort name_index, desc_index;
+ _Jv_loadIndexes (&pool->data[name_and_type_index],
+ name_index, desc_index);
+
+ *name = pool->data[name_index].utf8;
+ *fmtype = pool->data[desc_index].utf8;
+
+ return check_class_constant (class_index);
+ }
+
+ // Return field's type, compute class' type if requested.
+ // If PUTFIELD is true, use the special 'putfield' semantics.
+ type check_field_constant (int index, type *class_type = NULL,
+ bool putfield = false)
+ {
+ _Jv_Utf8Const *name, *field_type;
+ type ct = handle_field_or_method (index,
+ JV_CONSTANT_Fieldref,
+ &name, &field_type);
+ if (class_type)
+ *class_type = ct;
+ type result;
+ if (field_type->first() == '[' || field_type->first() == 'L')
+ result = type (field_type, this);
+ else
+ result = get_type_val_for_signature (field_type->first());
+
+ // We have an obscure special case here: we can use `putfield' on
+ // a field declared in this class, even if `this' has not yet been
+ // initialized.
+ if (putfield
+ && ! current_state->this_type.isinitialized ()
+ && current_state->this_type.pc == type::SELF
+ && current_state->this_type.equals (ct, this)
+ // We don't look at the signature, figuring that if it is
+ // wrong we will fail during linking. FIXME?
+ && _Jv_Linker::has_field_p (current_class, name))
+ // Note that we don't actually know whether we're going to match
+ // against 'this' or some other object of the same type. So,
+ // here we set things up so that it doesn't matter. This relies
+ // on knowing what our caller is up to.
+ class_type->set_uninitialized (type::EITHER, this);
+
+ return result;
+ }
+
+ type check_method_constant (int index, bool is_interface,
+ _Jv_Utf8Const **method_name,
+ _Jv_Utf8Const **method_signature)
+ {
+ return handle_field_or_method (index,
+ (is_interface
+ ? JV_CONSTANT_InterfaceMethodref
+ : JV_CONSTANT_Methodref),
+ method_name, method_signature);
+ }
+
+ type get_one_type (char *&p)
+ {
+ char *start = p;
+
+ int arraycount = 0;
+ while (*p == '[')
+ {
+ ++arraycount;
+ ++p;
+ }
+
+ char v = *p++;
+
+ if (v == 'L')
+ {
+ while (*p != ';')
+ ++p;
+ ++p;
+ _Jv_Utf8Const *name = make_utf8_const (start, p - start);
+ return type (name, this);
+ }
+
+ // Casting to jchar here is ok since we are looking at an ASCII
+ // character.
+ type_val rt = get_type_val_for_signature (jchar (v));
+
+ if (arraycount == 0)
+ {
+ // Callers of this function eventually push their arguments on
+ // the stack. So, promote them here.
+ return type (rt).promote ();
+ }
+
+ jclass k = construct_primitive_array_type (rt);
+ while (--arraycount > 0)
+ k = _Jv_GetArrayClass (k, NULL);
+ return type (k, this);
+ }
+
+ void compute_argument_types (_Jv_Utf8Const *signature,
+ type *types)
+ {
+ char *p = signature->chars();
+
+ // Skip `('.
+ ++p;
+
+ int i = 0;
+ while (*p != ')')
+ types[i++] = get_one_type (p);
+ }
+
+ type compute_return_type (_Jv_Utf8Const *signature)
+ {
+ char *p = signature->chars();
+ while (*p != ')')
+ ++p;
+ ++p;
+ return get_one_type (p);
+ }
+
+ void check_return_type (type onstack)
+ {
+ type rt = compute_return_type (current_method->self->signature);
+ if (! rt.compatible (onstack, this))
+ verify_fail ("incompatible return type");
+ }
+
+ // Initialize the stack for the new method. Returns true if this
+ // method is an instance initializer.
+ bool initialize_stack ()
+ {
+ int var = 0;
+ bool is_init = _Jv_equalUtf8Consts (current_method->self->name,
+ gcj::init_name);
+ bool is_clinit = _Jv_equalUtf8Consts (current_method->self->name,
+ gcj::clinit_name);
+
+ using namespace java::lang::reflect;
+ if (! Modifier::isStatic (current_method->self->accflags))
+ {
+ type kurr (current_class, this);
+ if (is_init)
+ {
+ kurr.set_uninitialized (type::SELF, this);
+ is_init = true;
+ }
+ else if (is_clinit)
+ verify_fail ("<clinit> method must be static");
+ set_variable (0, kurr);
+ current_state->set_this_type (kurr);
+ ++var;
+ }
+ else
+ {
+ if (is_init)
+ verify_fail ("<init> method must be non-static");
+ }
+
+ // We have to handle wide arguments specially here.
+ int arg_count = _Jv_count_arguments (current_method->self->signature);
+ type arg_types[arg_count];
+ compute_argument_types (current_method->self->signature, arg_types);
+ for (int i = 0; i < arg_count; ++i)
+ {
+ set_variable (var, arg_types[i]);
+ ++var;
+ if (arg_types[i].iswide ())
+ ++var;
+ }
+
+ return is_init;
+ }
+
+ void verify_instructions_0 ()
+ {
+ current_state = new state (current_method->max_stack,
+ current_method->max_locals);
+
+ PC = 0;
+ start_PC = 0;
+
+ // True if we are verifying an instance initializer.
+ bool this_is_init = initialize_stack ();
+
+ states = (linked<state> **) _Jv_Malloc (sizeof (linked<state> *)
+ * current_method->code_length);
+ for (int i = 0; i < current_method->code_length; ++i)
+ states[i] = NULL;
+
+ next_verify_state = NULL;
+
+ while (true)
+ {
+ // If the PC was invalidated, get a new one from the work list.
+ if (PC == state::NO_NEXT)
+ {
+ state *new_state = pop_jump ();
+ // If it is null, we're done.
+ if (new_state == NULL)
+ break;
+
+ PC = new_state->get_pc ();
+ debug_print ("== State pop from pending list\n");
+ // Set up the current state.
+ current_state->copy (new_state, current_method->max_stack,
+ current_method->max_locals);
+ }
+ else
+ {
+ // We only have to do this checking in the situation where
+ // control flow falls through from the previous
+ // instruction. Otherwise merging is done at the time we
+ // push the branch. Note that we'll catch the
+ // off-the-end problem just below.
+ if (PC < current_method->code_length && states[PC] != NULL)
+ {
+ // We've already visited this instruction. So merge
+ // the states together. It is simplest, but not most
+ // efficient, to just always invalidate the PC here.
+ merge_into (PC, current_state);
+ invalidate_pc ();
+ continue;
+ }
+ }
+
+ // Control can't fall off the end of the bytecode. We need to
+ // check this in both cases, not just the fall-through case,
+ // because we don't check to see whether a `jsr' appears at
+ // the end of the bytecode until we process a `ret'.
+ if (PC >= current_method->code_length)
+ verify_fail ("fell off end");
+
+ // We only have to keep saved state at branch targets. If
+ // we're at a branch target and the state here hasn't been set
+ // yet, we set it now. You might notice that `ret' targets
+ // won't necessarily have FLAG_BRANCH_TARGET set. This
+ // doesn't matter, since those states will be filled in by
+ // merge_into.
+ if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
+ add_new_state (PC, current_state);
+
+ // Set this before handling exceptions so that debug output is
+ // sane.
+ start_PC = PC;
+
+ // Update states for all active exception handlers. Ordinarily
+ // there are not many exception handlers. So we simply run
+ // through them all.
+ for (int i = 0; i < current_method->exc_count; ++i)
+ {
+ if (PC >= exception[i].start_pc.i && PC < exception[i].end_pc.i)
+ {
+ type handler (&java::lang::Throwable::class$, this);
+ if (exception[i].handler_type.i != 0)
+ handler = check_class_constant (exception[i].handler_type.i);
+ push_exception_jump (handler, exception[i].handler_pc.i);
+ }
+ }
+
+ current_state->print (" ", PC, current_method->max_stack,
+ current_method->max_locals);
+ java_opcode opcode = (java_opcode) bytecode[PC++];
+ switch (opcode)
+ {
+ case op_nop:
+ break;
+
+ case op_aconst_null:
+ push_type (null_type);
+ break;
+
+ case op_iconst_m1:
+ case op_iconst_0:
+ case op_iconst_1:
+ case op_iconst_2:
+ case op_iconst_3:
+ case op_iconst_4:
+ case op_iconst_5:
+ push_type (int_type);
+ break;
+
+ case op_lconst_0:
+ case op_lconst_1:
+ push_type (long_type);
+ break;
+
+ case op_fconst_0:
+ case op_fconst_1:
+ case op_fconst_2:
+ push_type (float_type);
+ break;
+
+ case op_dconst_0:
+ case op_dconst_1:
+ push_type (double_type);
+ break;
+
+ case op_bipush:
+ get_byte ();
+ push_type (int_type);
+ break;
+
+ case op_sipush:
+ get_short ();
+ push_type (int_type);
+ break;
+
+ case op_ldc:
+ push_type (check_constant (get_byte ()));
+ break;
+ case op_ldc_w:
+ push_type (check_constant (get_ushort ()));
+ break;
+ case op_ldc2_w:
+ push_type (check_wide_constant (get_ushort ()));
+ break;
+
+ case op_iload:
+ push_type (get_variable (get_byte (), int_type));
+ break;
+ case op_lload:
+ push_type (get_variable (get_byte (), long_type));
+ break;
+ case op_fload:
+ push_type (get_variable (get_byte (), float_type));
+ break;
+ case op_dload:
+ push_type (get_variable (get_byte (), double_type));
+ break;
+ case op_aload:
+ push_type (get_variable (get_byte (), reference_type));
+ break;
+
+ case op_iload_0:
+ case op_iload_1:
+ case op_iload_2:
+ case op_iload_3:
+ push_type (get_variable (opcode - op_iload_0, int_type));
+ break;
+ case op_lload_0:
+ case op_lload_1:
+ case op_lload_2:
+ case op_lload_3:
+ push_type (get_variable (opcode - op_lload_0, long_type));
+ break;
+ case op_fload_0:
+ case op_fload_1:
+ case op_fload_2:
+ case op_fload_3:
+ push_type (get_variable (opcode - op_fload_0, float_type));
+ break;
+ case op_dload_0:
+ case op_dload_1:
+ case op_dload_2:
+ case op_dload_3:
+ push_type (get_variable (opcode - op_dload_0, double_type));
+ break;
+ case op_aload_0:
+ case op_aload_1:
+ case op_aload_2:
+ case op_aload_3:
+ push_type (get_variable (opcode - op_aload_0, reference_type));
+ break;
+ case op_iaload:
+ pop_type (int_type);
+ push_type (require_array_type (pop_init_ref (reference_type),
+ int_type));
+ break;
+ case op_laload:
+ pop_type (int_type);
+ push_type (require_array_type (pop_init_ref (reference_type),
+ long_type));
+ break;
+ case op_faload:
+ pop_type (int_type);
+ push_type (require_array_type (pop_init_ref (reference_type),
+ float_type));
+ break;
+ case op_daload:
+ pop_type (int_type);
+ push_type (require_array_type (pop_init_ref (reference_type),
+ double_type));
+ break;
+ case op_aaload:
+ pop_type (int_type);
+ push_type (require_array_type (pop_init_ref (reference_type),
+ reference_type));
+ break;
+ case op_baload:
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), byte_type);
+ push_type (int_type);
+ break;
+ case op_caload:
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), char_type);
+ push_type (int_type);
+ break;
+ case op_saload:
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), short_type);
+ push_type (int_type);
+ break;
+ case op_istore:
+ set_variable (get_byte (), pop_type (int_type));
+ break;
+ case op_lstore:
+ set_variable (get_byte (), pop_type (long_type));
+ break;
+ case op_fstore:
+ set_variable (get_byte (), pop_type (float_type));
+ break;
+ case op_dstore:
+ set_variable (get_byte (), pop_type (double_type));
+ break;
+ case op_astore:
+ set_variable (get_byte (), pop_ref_or_return ());
+ break;
+ case op_istore_0:
+ case op_istore_1:
+ case op_istore_2:
+ case op_istore_3:
+ set_variable (opcode - op_istore_0, pop_type (int_type));
+ break;
+ case op_lstore_0:
+ case op_lstore_1:
+ case op_lstore_2:
+ case op_lstore_3:
+ set_variable (opcode - op_lstore_0, pop_type (long_type));
+ break;
+ case op_fstore_0:
+ case op_fstore_1:
+ case op_fstore_2:
+ case op_fstore_3:
+ set_variable (opcode - op_fstore_0, pop_type (float_type));
+ break;
+ case op_dstore_0:
+ case op_dstore_1:
+ case op_dstore_2:
+ case op_dstore_3:
+ set_variable (opcode - op_dstore_0, pop_type (double_type));
+ break;
+ case op_astore_0:
+ case op_astore_1:
+ case op_astore_2:
+ case op_astore_3:
+ set_variable (opcode - op_astore_0, pop_ref_or_return ());
+ break;
+ case op_iastore:
+ pop_type (int_type);
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), int_type);
+ break;
+ case op_lastore:
+ pop_type (long_type);
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), long_type);
+ break;
+ case op_fastore:
+ pop_type (float_type);
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), float_type);
+ break;
+ case op_dastore:
+ pop_type (double_type);
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), double_type);
+ break;
+ case op_aastore:
+ pop_type (reference_type);
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), reference_type);
+ break;
+ case op_bastore:
+ pop_type (int_type);
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), byte_type);
+ break;
+ case op_castore:
+ pop_type (int_type);
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), char_type);
+ break;
+ case op_sastore:
+ pop_type (int_type);
+ pop_type (int_type);
+ require_array_type (pop_init_ref (reference_type), short_type);
+ break;
+ case op_pop:
+ pop32 ();
+ break;
+ case op_pop2:
+ {
+ type t = pop_raw ();
+ if (! t.iswide ())
+ pop32 ();
+ }
+ break;
+ case op_dup:
+ {
+ type t = pop32 ();
+ push_type (t);
+ push_type (t);
+ }
+ break;
+ case op_dup_x1:
+ {
+ type t1 = pop32 ();
+ type t2 = pop32 ();
+ push_type (t1);
+ push_type (t2);
+ push_type (t1);
+ }
+ break;
+ case op_dup_x2:
+ {
+ type t1 = pop32 ();
+ type t2 = pop_raw ();
+ if (! t2.iswide ())
+ {
+ type t3 = pop32 ();
+ push_type (t1);
+ push_type (t3);
+ }
+ else
+ push_type (t1);
+ push_type (t2);
+ push_type (t1);
+ }
+ break;
+ case op_dup2:
+ {
+ type t = pop_raw ();
+ if (! t.iswide ())
+ {
+ type t2 = pop32 ();
+ push_type (t2);
+ push_type (t);
+ push_type (t2);
+ }
+ else
+ push_type (t);
+ push_type (t);
+ }
+ break;
+ case op_dup2_x1:
+ {
+ type t1 = pop_raw ();
+ type t2 = pop32 ();
+ if (! t1.iswide ())
+ {
+ type t3 = pop32 ();
+ push_type (t2);
+ push_type (t1);
+ push_type (t3);
+ }
+ else
+ push_type (t1);
+ push_type (t2);
+ push_type (t1);
+ }
+ break;
+ case op_dup2_x2:
+ {
+ type t1 = pop_raw ();
+ if (t1.iswide ())
+ {
+ type t2 = pop_raw ();
+ if (t2.iswide ())
+ {
+ push_type (t1);
+ push_type (t2);
+ }
+ else
+ {
+ type t3 = pop32 ();
+ push_type (t1);
+ push_type (t3);
+ push_type (t2);
+ }
+ push_type (t1);
+ }
+ else
+ {
+ type t2 = pop32 ();
+ type t3 = pop_raw ();
+ if (t3.iswide ())
+ {
+ push_type (t2);
+ push_type (t1);
+ }
+ else
+ {
+ type t4 = pop32 ();
+ push_type (t2);
+ push_type (t1);
+ push_type (t4);
+ }
+ push_type (t3);
+ push_type (t2);
+ push_type (t1);
+ }
+ }
+ break;
+ case op_swap:
+ {
+ type t1 = pop32 ();
+ type t2 = pop32 ();
+ push_type (t1);
+ push_type (t2);
+ }
+ break;
+ case op_iadd:
+ case op_isub:
+ case op_imul:
+ case op_idiv:
+ case op_irem:
+ case op_ishl:
+ case op_ishr:
+ case op_iushr:
+ case op_iand:
+ case op_ior:
+ case op_ixor:
+ pop_type (int_type);
+ push_type (pop_type (int_type));
+ break;
+ case op_ladd:
+ case op_lsub:
+ case op_lmul:
+ case op_ldiv:
+ case op_lrem:
+ case op_land:
+ case op_lor:
+ case op_lxor:
+ pop_type (long_type);
+ push_type (pop_type (long_type));
+ break;
+ case op_lshl:
+ case op_lshr:
+ case op_lushr:
+ pop_type (int_type);
+ push_type (pop_type (long_type));
+ break;
+ case op_fadd:
+ case op_fsub:
+ case op_fmul:
+ case op_fdiv:
+ case op_frem:
+ pop_type (float_type);
+ push_type (pop_type (float_type));
+ break;
+ case op_dadd:
+ case op_dsub:
+ case op_dmul:
+ case op_ddiv:
+ case op_drem:
+ pop_type (double_type);
+ push_type (pop_type (double_type));
+ break;
+ case op_ineg:
+ case op_i2b:
+ case op_i2c:
+ case op_i2s:
+ push_type (pop_type (int_type));
+ break;
+ case op_lneg:
+ push_type (pop_type (long_type));
+ break;
+ case op_fneg:
+ push_type (pop_type (float_type));
+ break;
+ case op_dneg:
+ push_type (pop_type (double_type));
+ break;
+ case op_iinc:
+ get_variable (get_byte (), int_type);
+ get_byte ();
+ break;
+ case op_i2l:
+ pop_type (int_type);
+ push_type (long_type);
+ break;
+ case op_i2f:
+ pop_type (int_type);
+ push_type (float_type);
+ break;
+ case op_i2d:
+ pop_type (int_type);
+ push_type (double_type);
+ break;
+ case op_l2i:
+ pop_type (long_type);
+ push_type (int_type);
+ break;
+ case op_l2f:
+ pop_type (long_type);
+ push_type (float_type);
+ break;
+ case op_l2d:
+ pop_type (long_type);
+ push_type (double_type);
+ break;
+ case op_f2i:
+ pop_type (float_type);
+ push_type (int_type);
+ break;
+ case op_f2l:
+ pop_type (float_type);
+ push_type (long_type);
+ break;
+ case op_f2d:
+ pop_type (float_type);
+ push_type (double_type);
+ break;
+ case op_d2i:
+ pop_type (double_type);
+ push_type (int_type);
+ break;
+ case op_d2l:
+ pop_type (double_type);
+ push_type (long_type);
+ break;
+ case op_d2f:
+ pop_type (double_type);
+ push_type (float_type);
+ break;
+ case op_lcmp:
+ pop_type (long_type);
+ pop_type (long_type);
+ push_type (int_type);
+ break;
+ case op_fcmpl:
+ case op_fcmpg:
+ pop_type (float_type);
+ pop_type (float_type);
+ push_type (int_type);
+ break;
+ case op_dcmpl:
+ case op_dcmpg:
+ pop_type (double_type);
+ pop_type (double_type);
+ push_type (int_type);
+ break;
+ case op_ifeq:
+ case op_ifne:
+ case op_iflt:
+ case op_ifge:
+ case op_ifgt:
+ case op_ifle:
+ pop_type (int_type);
+ push_jump (get_short ());
+ break;
+ case op_if_icmpeq:
+ case op_if_icmpne:
+ case op_if_icmplt:
+ case op_if_icmpge:
+ case op_if_icmpgt:
+ case op_if_icmple:
+ pop_type (int_type);
+ pop_type (int_type);
+ push_jump (get_short ());
+ break;
+ case op_if_acmpeq:
+ case op_if_acmpne:
+ pop_type (reference_type);
+ pop_type (reference_type);
+ push_jump (get_short ());
+ break;
+ case op_goto:
+ push_jump (get_short ());
+ invalidate_pc ();
+ break;
+ case op_jsr:
+ handle_jsr_insn (get_short ());
+ break;
+ case op_ret:
+ handle_ret_insn (get_byte ());
+ break;
+ case op_tableswitch:
+ {
+ pop_type (int_type);
+ skip_padding ();
+ push_jump (get_int ());
+ jint low = get_int ();
+ jint high = get_int ();
+ // Already checked LOW -vs- HIGH.
+ for (int i = low; i <= high; ++i)
+ push_jump (get_int ());
+ invalidate_pc ();
+ }
+ break;
+
+ case op_lookupswitch:
+ {
+ pop_type (int_type);
+ skip_padding ();
+ push_jump (get_int ());
+ jint npairs = get_int ();
+ // Already checked NPAIRS >= 0.
+ jint lastkey = 0;
+ for (int i = 0; i < npairs; ++i)
+ {
+ jint key = get_int ();
+ if (i > 0 && key <= lastkey)
+ verify_fail ("lookupswitch pairs unsorted", start_PC);
+ lastkey = key;
+ push_jump (get_int ());
+ }
+ invalidate_pc ();
+ }
+ break;
+ case op_ireturn:
+ check_return_type (pop_type (int_type));
+ invalidate_pc ();
+ break;
+ case op_lreturn:
+ check_return_type (pop_type (long_type));
+ invalidate_pc ();
+ break;
+ case op_freturn:
+ check_return_type (pop_type (float_type));
+ invalidate_pc ();
+ break;
+ case op_dreturn:
+ check_return_type (pop_type (double_type));
+ invalidate_pc ();
+ break;
+ case op_areturn:
+ check_return_type (pop_init_ref (reference_type));
+ invalidate_pc ();
+ break;
+ case op_return:
+ // We only need to check this when the return type is
+ // void, because all instance initializers return void.
+ if (this_is_init)
+ current_state->check_this_initialized (this);
+ check_return_type (void_type);
+ invalidate_pc ();
+ break;
+ case op_getstatic:
+ push_type (check_field_constant (get_ushort ()));
+ break;
+ case op_putstatic:
+ pop_type (check_field_constant (get_ushort ()));
+ break;
+ case op_getfield:
+ {
+ type klass;
+ type field = check_field_constant (get_ushort (), &klass);
+ pop_type (klass);
+ push_type (field);
+ }
+ break;
+ case op_putfield:
+ {
+ type klass;
+ type field = check_field_constant (get_ushort (), &klass, true);
+ pop_type (field);
+ pop_type (klass);
+ }
+ break;
+
+ case op_invokevirtual:
+ case op_invokespecial:
+ case op_invokestatic:
+ case op_invokeinterface:
+ {
+ _Jv_Utf8Const *method_name, *method_signature;
+ type class_type
+ = check_method_constant (get_ushort (),
+ opcode == op_invokeinterface,
+ &method_name,
+ &method_signature);
+ // NARGS is only used when we're processing
+ // invokeinterface. It is simplest for us to compute it
+ // here and then verify it later.
+ int nargs = 0;
+ if (opcode == op_invokeinterface)
+ {
+ nargs = get_byte ();
+ if (get_byte () != 0)
+ verify_fail ("invokeinterface dummy byte is wrong");
+ }
+
+ bool is_init = false;
+ if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
+ {
+ is_init = true;
+ if (opcode != op_invokespecial)
+ verify_fail ("can't invoke <init>");
+ }
+ else if (method_name->first() == '<')
+ verify_fail ("can't invoke method starting with `<'");
+
+ // Pop arguments and check types.
+ int arg_count = _Jv_count_arguments (method_signature);
+ type arg_types[arg_count];
+ compute_argument_types (method_signature, arg_types);
+ for (int i = arg_count - 1; i >= 0; --i)
+ {
+ // This is only used for verifying the byte for
+ // invokeinterface.
+ nargs -= arg_types[i].depth ();
+ pop_init_ref (arg_types[i]);
+ }
+
+ if (opcode == op_invokeinterface
+ && nargs != 1)
+ verify_fail ("wrong argument count for invokeinterface");
+
+ if (opcode != op_invokestatic)
+ {
+ type t = class_type;
+ if (is_init)
+ {
+ // In this case the PC doesn't matter.
+ t.set_uninitialized (type::UNINIT, this);
+ // FIXME: check to make sure that the <init>
+ // call is to the right class.
+ // It must either be super or an exact class
+ // match.
+ }
+ type raw = pop_raw ();
+ if (! t.compatible (raw, this))
+ verify_fail ("incompatible type on stack");
+
+ if (is_init)
+ current_state->set_initialized (raw.get_pc (),
+ current_method->max_locals);
+ }
+
+ type rt = compute_return_type (method_signature);
+ if (! rt.isvoid ())
+ push_type (rt);
+ }
+ break;
+
+ case op_new:
+ {
+ type t = check_class_constant (get_ushort ());
+ if (t.isarray ())
+ verify_fail ("type is array");
+ t.set_uninitialized (start_PC, this);
+ push_type (t);
+ }
+ break;
+
+ case op_newarray:
+ {
+ int atype = get_byte ();
+ // We intentionally have chosen constants to make this
+ // valid.
+ if (atype < boolean_type || atype > long_type)
+ verify_fail ("type not primitive", start_PC);
+ pop_type (int_type);
+ type t (construct_primitive_array_type (type_val (atype)), this);
+ push_type (t);
+ }
+ break;
+ case op_anewarray:
+ pop_type (int_type);
+ push_type (check_class_constant (get_ushort ()).to_array (this));
+ break;
+ case op_arraylength:
+ {
+ type t = pop_init_ref (reference_type);
+ if (! t.isarray () && ! t.isnull ())
+ verify_fail ("array type expected");
+ push_type (int_type);
+ }
+ break;
+ case op_athrow:
+ pop_type (type (&java::lang::Throwable::class$, this));
+ invalidate_pc ();
+ break;
+ case op_checkcast:
+ pop_init_ref (reference_type);
+ push_type (check_class_constant (get_ushort ()));
+ break;
+ case op_instanceof:
+ pop_init_ref (reference_type);
+ check_class_constant (get_ushort ());
+ push_type (int_type);
+ break;
+ case op_monitorenter:
+ pop_init_ref (reference_type);
+ break;
+ case op_monitorexit:
+ pop_init_ref (reference_type);
+ break;
+ case op_wide:
+ {
+ switch (get_byte ())
+ {
+ case op_iload:
+ push_type (get_variable (get_ushort (), int_type));
+ break;
+ case op_lload:
+ push_type (get_variable (get_ushort (), long_type));
+ break;
+ case op_fload:
+ push_type (get_variable (get_ushort (), float_type));
+ break;
+ case op_dload:
+ push_type (get_variable (get_ushort (), double_type));
+ break;
+ case op_aload:
+ push_type (get_variable (get_ushort (), reference_type));
+ break;
+ case op_istore:
+ set_variable (get_ushort (), pop_type (int_type));
+ break;
+ case op_lstore:
+ set_variable (get_ushort (), pop_type (long_type));
+ break;
+ case op_fstore:
+ set_variable (get_ushort (), pop_type (float_type));
+ break;
+ case op_dstore:
+ set_variable (get_ushort (), pop_type (double_type));
+ break;
+ case op_astore:
+ set_variable (get_ushort (), pop_init_ref (reference_type));
+ break;
+ case op_ret:
+ handle_ret_insn (get_short ());
+ break;
+ case op_iinc:
+ get_variable (get_ushort (), int_type);
+ get_short ();
+ break;
+ default:
+ verify_fail ("unrecognized wide instruction", start_PC);
+ }
+ }
+ break;
+ case op_multianewarray:
+ {
+ type atype = check_class_constant (get_ushort ());
+ int dim = get_byte ();
+ if (dim < 1)
+ verify_fail ("too few dimensions to multianewarray", start_PC);
+ atype.verify_dimensions (dim, this);
+ for (int i = 0; i < dim; ++i)
+ pop_type (int_type);
+ push_type (atype);
+ }
+ break;
+ case op_ifnull:
+ case op_ifnonnull:
+ pop_type (reference_type);
+ push_jump (get_short ());
+ break;
+ case op_goto_w:
+ push_jump (get_int ());
+ invalidate_pc ();
+ break;
+ case op_jsr_w:
+ handle_jsr_insn (get_int ());
+ break;
+
+ // These are unused here, but we call them out explicitly
+ // so that -Wswitch-enum doesn't complain.
+ case op_putfield_1:
+ case op_putfield_2:
+ case op_putfield_4:
+ case op_putfield_8:
+ case op_putfield_a:
+ case op_putstatic_1:
+ case op_putstatic_2:
+ case op_putstatic_4:
+ case op_putstatic_8:
+ case op_putstatic_a:
+ case op_getfield_1:
+ case op_getfield_2s:
+ case op_getfield_2u:
+ case op_getfield_4:
+ case op_getfield_8:
+ case op_getfield_a:
+ case op_getstatic_1:
+ case op_getstatic_2s:
+ case op_getstatic_2u:
+ case op_getstatic_4:
+ case op_getstatic_8:
+ case op_getstatic_a:
+ case op_breakpoint:
+ default:
+ // Unrecognized opcode.
+ verify_fail ("unrecognized instruction in verify_instructions_0",
+ start_PC);
+ }
+ }
+ }
+
+public:
+
+ void verify_instructions ()
+ {
+ branch_prepass ();
+ verify_instructions_0 ();
+ }
+
+ _Jv_BytecodeVerifier (_Jv_InterpMethod *m)
+ {
+ // We just print the text as utf-8. This is just for debugging
+ // anyway.
+ debug_print ("--------------------------------\n");
+ debug_print ("-- Verifying method `%s'\n", m->self->name->chars());
+
+ current_method = m;
+ bytecode = m->bytecode ();
+ exception = m->exceptions ();
+ current_class = m->defining_class;
+
+ states = NULL;
+ flags = NULL;
+ utf8_list = NULL;
+ isect_list = NULL;
+ }
+
+ ~_Jv_BytecodeVerifier ()
+ {
+ if (flags)
+ _Jv_Free (flags);
+
+ while (utf8_list != NULL)
+ {
+ linked<_Jv_Utf8Const> *n = utf8_list->next;
+ _Jv_Free (utf8_list);
+ utf8_list = n;
+ }
+
+ while (isect_list != NULL)
+ {
+ ref_intersection *next = isect_list->alloc_next;
+ delete isect_list;
+ isect_list = next;
+ }
+
+ if (states)
+ {
+ for (int i = 0; i < current_method->code_length; ++i)
+ {
+ linked<state> *iter = states[i];
+ while (iter != NULL)
+ {
+ linked<state> *next = iter->next;
+ delete iter->val;
+ _Jv_Free (iter);
+ iter = next;
+ }
+ }
+ _Jv_Free (states);
+ }
+ }
+};
+
+void
+_Jv_VerifyMethod (_Jv_InterpMethod *meth)
+{
+ _Jv_BytecodeVerifier v (meth);
+ v.verify_instructions ();
+}
+
+#endif /* INTERPRETER */