diff options
Diffstat (limited to 'libstdc++-v3/doc/doxygen/tables.html')
-rw-r--r-- | libstdc++-v3/doc/doxygen/tables.html | 644 |
1 files changed, 644 insertions, 0 deletions
diff --git a/libstdc++-v3/doc/doxygen/tables.html b/libstdc++-v3/doc/doxygen/tables.html new file mode 100644 index 000000000..def011e74 --- /dev/null +++ b/libstdc++-v3/doc/doxygen/tables.html @@ -0,0 +1,644 @@ +<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> +<html> +<head><meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> +<title>Tables</title> +</head> + +<body bgcolor="#ffffff"> + +<h1>Tables</h1> + +<p>Most of the requirements on containers are presented in the ISO standard + in the form of tables. In order to avoid massive duplication of effort + while documenting all the classes, we follow the standard's lead and + present the base information here. Individual classes will only document + their departures from these tables (removed functions, additional functions, + changes, etc). +</p> + +<p>We will not try to duplicate all of the surrounding text (footnotes, + explanations, etc.) from the standard, because that would also entail a + duplication of effort. Some of the surrounding text has been paraphrased + here for clarity. If you are uncertain about the meaning or interpretation + of these notes, consult a good textbook, and/or purchase your own copy of + the standard (it's cheap, see our FAQ). +</p> + +<p>The table numbers are the same as those used in the standard. Tables can + be jumped to using their number, e.g., "tables.html#67". Only + Tables 65 through 69 are presented. Some of the active Defect Reports + are also noted or incorporated. +</p> + +<hr /> + +<a name="65"><p> +<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3" + cols="5" title="Table 65"> +<caption><h2>Table 65 --- Container Requirements</h2></caption> +<tr><th colspan="5"> +Anything calling itself a container must meet these minimum requirements. +</th></tr> +<tr> +<td><strong>expression</strong></td> +<td><strong>result type</strong></td> +<td><strong>operational semantics</strong></td> +<td><strong>notes, pre-/post-conditions, assertions</strong></td> +<td><strong>complexity</strong></td> +</tr> + +<tr> +<td>X::value_type</td> +<td>T</td> +<td> </td> +<td>T is Assignable</td> +<td>compile time</td> +</tr> + +<tr> +<td>X::reference</td> +<td>lvalue of T</td> +<td> </td> +<td> </td> +<td>compile time</td> +</tr> + +<tr> +<td>X::const_reference</td> +<td>const lvalue of T</td> +<td> </td> +<td> </td> +<td>compile time</td> +</tr> + +<tr> +<td>X::iterator</td> +<td>iterator type pointing to T</td> +<td> </td> +<td>Any iterator category except output iterator. + Convertible to X::const_iterator.</td> +<td>compile time</td> +</tr> + +<tr> +<td>X::const_iterator</td> +<td>iterator type pointing to const T</td> +<td> </td> +<td>Any iterator category except output iterator.</td> +<td>compile time</td> +</tr> + +<tr> +<td>X::difference_type</td> +<td>signed integral type</td> +<td> </td> +<td>identical to the difference type of X::iterator and X::const_iterator</td> +<td>compile time</td> +</tr> + +<tr> +<td>X::size_type</td> +<td>unsigned integral type</td> +<td> </td> +<td>size_type can represent any non-negative value of difference_type</td> +<td>compile time</td> +</tr> + +<tr> +<td>X u;</td> +<td> </td> +<td> </td> +<td>post: u.size() == 0</td> +<td>constant</td> +</tr> + +<tr> +<td>X();</td> +<td> </td> +<td> </td> +<td>X().size == 0</td> +<td>constant</td> +</tr> + +<tr> +<td>X(a);</td> +<td> </td> +<td> </td> +<td>a == X(a)</td> +<td>linear</td> +</tr> + +<tr> +<td>X u(a);<br />X u = a;</td> +<td> </td> +<td> </td> +<td>post: u == a. Equivalent to: X u; u = a;</td> +<td>linear</td> +</tr> + +<tr> +<td>(&a)->~X();</td> +<td>void</td> +<td> </td> +<td>dtor is applied to every element of a; all the memory is deallocated</td> +<td>linear</td> +</tr> + +<tr> +<td>a.begin()</td> +<td>iterator; const_iterator for constant a</td> +<td> </td> +<td> </td> +<td>constant</td> +</tr> + +<tr> +<td>a.end()</td> +<td>iterator; const_iterator for constant a</td> +<td> </td> +<td> </td> +<td>constant</td> +</tr> + +<tr> +<td>a == b</td> +<td>convertible to bool</td> +<td> </td> +<td>== is an equivalence relation. a.size()==b.size() && + equal(a.begin(),a.end(),b.begin())</td> +<td>linear</td> +</tr> + +<tr> +<td>a != b</td> +<td>convertible to bool</td> +<td> </td> +<td>equivalent to !(a==b)</td> +<td>linear</td> +</tr> + +<tr> +<td>a.swap(b)</td> +<td>void</td> +<td> </td> +<td>swap(a,b)</td> +<td>may or may not have constant complexity</td> +</tr> + +<tr> +<td>r = a</td> +<td>X&</td> +<td> </td> +<td>r == a</td> +<td>linear</td> +</tr> + +<!-- a fifth column, "operation semantics," magically appears in the table + at this point... wtf? --> +<tr> +<td>a.size()</td> +<td>size_type</td> +<td>a.end() - a.begin()</td> +<td> </td> +<td>may or may not have constant complexity</td> +</tr> + +<tr> +<td>a.max_size()</td> +<td>size_type</td> +<td>size() of the largest possible container</td> +<td> </td> +<td>may or may not have constant complexity</td> +</tr> + +<tr> +<td>a.empty()</td> +<td>convertible to bool</td> +<td>a.size() == 0</td> +<td> </td> +<td>constant</td> +</tr> + +<tr> +<td>a < b</td> +<td>convertible to bool</td> +<td>lexographical_compare( a.begin, a.end(), b.begin(), b.end())</td> +<td>pre: < is defined for T and is a total ordering relation</td> +<td>linear</td> +</tr> + +<tr> +<td>a > b</td> +<td>convertible to bool</td> +<td>b < a</td> +<td> </td> +<td>linear</td> +</tr> + +<tr> +<td>a <= b</td> +<td>convertible to bool</td> +<td>!(a > b)</td> +<td> </td> +<td>linear</td> +</tr> + +<tr> +<td>a >= b</td> +<td>convertible to bool</td> +<td>!(a < b)</td> +<td> </td> +<td>linear</td> +</tr> +</table title="Table 65"></p></a> + + +<a name="66"><p> +<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3" + cols="4" title="Table 66"> +<caption><h2>Table 66 --- Reversible Container Requirements</h2></caption> +<tr><th colspan="4"> +If a container's iterator is bidirectional or random-access, then the +container also meets these requirements. +Deque, list, vector, map, multimap, set, and multiset are such containers. +</th></tr> +<tr> +<td><strong>expression</strong></td> +<td><strong>result type</strong></td> +<td><strong>notes, pre-/post-conditions, assertions</strong></td> +<td><strong>complexity</strong></td> +</tr> + +<tr> +<td>X::reverse_iterator</td> +<td>iterator type pointing to T</td> +<td>reverse_iterator<iterator></td> +<td>compile time</td> +</tr> + +<tr> +<td>X::const_reverse_iterator</td> +<td>iterator type pointing to const T</td> +<td>reverse_iterator<const_iterator></td> +<td>compile time</td> +</tr> + +<tr> +<td>a.rbegin()</td> +<td>reverse_iterator; const_reverse_iterator for constant a</td> +<td>reverse_iterator(end())</td> +<td>constant</td> +</tr> + +<tr> +<td>a.rend()</td> +<td>reverse_iterator; const_reverse_iterator for constant a</td> +<td>reverse_iterator(begin())</td> +<td>constant</td> +</tr> +</table title="Table 66"></p></a> + + +<a name="67"><p> +<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3" + cols="3" title="Table 67"> +<caption><h2>Table 67 --- Sequence Requirements</h2></caption> +<tr><th colspan="3"> +These are in addition to the requirements of <a href="#65">containers</a>. +Deque, list, and vector are such containers. +</th></tr> +<tr> +<td><strong>expression</strong></td> +<td><strong>result type</strong></td> +<td><strong>notes, pre-/post-conditions, assertions</strong></td> +</tr> + +<tr> +<td>X(n,t)<br />X a(n,t)</td> +<td> </td> +<td>constructs a sequence with n copies of t<br />post: size() == n</td> +</tr> + +<tr> +<td>X(i,j)<br />X a(i,j)</td> +<td> </td> +<td>constructs a sequence equal to the range [i,j)<br /> + post: size() == distance(i,j)</td> +</tr> + +<tr> +<td>a.insert(p,t)</td> +<td>iterator (points to the inserted copy of t)</td> +<td>inserts a copy of t before p</td> +</tr> + +<tr> +<td>a.insert(p,n,t)</td> +<td>void</td> +<td>inserts n copies of t before p</td> +</tr> + +<tr> +<td>a.insert(p,i,j)</td> +<td>void</td> +<td>inserts copies of elements in [i,j) before p<br /> + pre: i, j are not iterators into a</td> +</tr> + +<tr> +<td>a.erase(q)</td> +<td>iterator (points to the element following q (prior to erasure))</td> +<td>erases the element pointed to by q</td> +</tr> + +<tr> +<td>a.erase(q1,q1)</td> +<td>iterator (points to the element pointed to by q2 (prior to erasure))</td> +<td>erases the elements in the range [q1,q2)</td> +</tr> + +<tr> +<td>a.clear()</td> +<td>void</td> +<td>erase(begin(),end())<br />post: size() == 0</td> +</tr> +</table title="Table 67"></p></a> + + +<a name="68"><p> +<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3" + cols="4" title="Table 68"> +<caption><h2>Table 68 --- Optional Sequence Operations</h2></caption> +<tr><th colspan="4"> +These operations are only included in containers when the operation can be +done in constant time. +</th></tr> +<tr> +<td><strong>expression</strong></td> +<td><strong>result type</strong></td> +<td><strong>operational semantics</strong></td> +<td><strong>container</strong></td> +</tr> + +<tr> +<td>a.front()</td> +<td>reference; const_reference for constant a</td> +<td>*a.begin()</td> +<td>vector, list, deque</td> +</tr> + +<tr> +<td>a.back()</td> +<td>reference; const_reference for constant a</td> +<td>*--a.end()</td> +<td>vector, list, deque</td> +</tr> + +<tr> +<td>a.push_front(x)</td> +<td>void</td> +<td>a.insert(a.begin(),x)</td> +<td>list, deque</td> +</tr> + +<tr> +<td>a.push_back(x)</td> +<td>void</td> +<td>a.insert(a.end(),x)</td> +<td>vector, list, deque</td> +</tr> + +<tr> +<td>a.pop_front()</td> +<td>void</td> +<td>a.erase(a.begin())</td> +<td>list, deque</td> +</tr> + +<tr> +<td>a.pop_back()</td> +<td>void</td> +<td>a.erase(--a.end())</td> +<td>vector, list, deque</td> +</tr> + +<tr> +<td>a[n]</td> +<td>reference; const_reference for constant a</td> +<td>*(a.begin() + n)</td> +<td>vector, deque</td> +</tr> + +<tr> +<td>a.at(n)</td> +<td>reference; const_reference for constant a</td> +<td>*(a.begin() + n)<br />throws out_of_range if n>=a.size()</td> +<td>vector, deque</td> +</tr> +</table title="Table 68"></p></a> + + +<a name="69"><p> +<table cellpadding="3" cellspacing="5" align="center" rules="rows" border="3" + cols="4" title="Table 69"> +<caption><h2>Table 69 --- Associative Container Requirements</h2></caption> +<tr><th colspan="4"> +These are in addition to the requirements of <a href="#65">containers</a>. +Map, multimap, set, and multiset are such containers. An associative +container supports <em>unique keys</em> (and is written as +<code>a_uniq</code> instead of <code>a</code>) if it may contain at most +one element for each key. Otherwise it supports <em>equivalent keys</em> +(and is written <code>a_eq</code>). Examples of the former are set and map, +examples of the latter are multiset and multimap. +</th></tr> +<tr> +<td><strong>expression</strong></td> +<td><strong>result type</strong></td> +<td><strong>notes, pre-/post-conditions, assertions</strong></td> +<td><strong>complexity</strong></td> +</tr> + +<tr> +<td>X::key_type</td> +<td>Key</td> +<td>Key is Assignable</td> +<td>compile time</td> +</tr> + +<tr> +<td>X::key_compare</td> +<td>Compare</td> +<td>defaults to less<key_type></td> +<td>compile time</td> +</tr> + +<tr> +<td>X::value_compare</td> +<td>a binary predicate type</td> +<td>same as key_compare for set and multiset; an ordering relation on + pairs induced by the first component (Key) for map and multimap</td> +<td>compile time</td> +</tr> + +<tr> +<td>X(c)<br />X a(c)</td> +<td> </td> +<td>constructs an empty container which uses c as a comparison object</td> +<td>constant</td> +</tr> + +<tr> +<td>X()<br />X a</td> +<td> </td> +<td>constructs an empty container using Compare() as a comparison object</td> +<td>constant</td> +</tr> + +<tr> +<td>X(i,j,c)<br />X a(i,j,c)</td> +<td> </td> +<td>constructs an empty container and inserts elements from the range [i,j) + into it; uses c as a comparison object</td> +<td>NlogN in general where N is distance(i,j); linear if [i,j) is + sorted with value_comp()</td> +</tr> + +<tr> +<td>X(i,j)<br />X a(i,j)</td> +<td> </td> +<td>same as previous, but uses Compare() as a comparison object</td> +<td>same as previous</td> +</tr> + +<tr> +<td>a.key_comp()</td> +<td>X::key_compare</td> +<td>returns the comparison object out of which a was constructed</td> +<td>constant</td> +</tr> + +<tr> +<td>a.value_comp()</td> +<td>X::value_compare</td> +<td>returns an object constructed out of the comparison object</td> +<td>constant</td> +</tr> + +<tr> +<td>a_uniq.insert(t)</td> +<td>pair<iterator,bool></td> +<td>"Inserts t if and only if there is no element in the container with + key equivalent to the key of t. The bool component of the returned pair + is true -iff- the insertion took place, and the iterator component of + the pair points to the element with key equivalent to the key of + t."</td> <!-- DR 316 --> +<td>logarithmic</td> +</tr> + +<tr> +<td>a_eq.insert(t)</td> +<td>iterator</td> +<td>inserts t, returns the iterator pointing to the inserted element</td> +<td>logarithmic</td> +</tr> + +<tr> +<td>a.insert(p,t)</td> +<td>iterator</td> +<td>possibly inserts t (depending on whether a_uniq or a_eq); returns iterator + pointing to the element with key equivalent to the key of t; iterator p + is a hint pointing to where the insert should start to search</td> +<td>logarithmic in general, amortized constant if t is inserted right + after p<br /> + <strong>[but see DR 233 and <a href=" + http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4">our + specific notes</a>]</strong></td> +</tr> + +<tr> +<td>a.insert(i,j)</td> +<td>void</td> +<td>pre: i, j are not iterators into a. possibly inserts each element from + the range [i,j) (depending on whether a_uniq or a_eq)</td> +<td>Nlog(size()+N) where N is distance(i,j) in general</td> <!-- DR 264 --> +</tr> + +<tr> +<td>a.erase(k)</td> +<td>size_type</td> +<td>erases all elements with key equivalent to k; returns number of erased + elements</td> +<td>log(size()) + count(k)</td> +</tr> + +<tr> +<td>a.erase(q)</td> +<td>void</td> +<td>erases the element pointed to by q</td> +<td>amortized constant</td> +</tr> + +<tr> +<td>a.erase(q1,q2)</td> +<td>void</td> +<td>erases all the elements in the range [q1,q2)</td> +<td>log(size()) + distance(q1,q2)</td> +</tr> + +<tr> +<td>a.clear()</td> +<td>void</td> +<td>erases everything; post: size() == 0</td> +<td>linear</td> <!-- DR 224 --> +</tr> + +<tr> +<td>a.find(k)</td> +<td>iterator; const_iterator for constant a</td> +<td>returns iterator pointing to element with key equivalent to k, or + a.end() if no such element found</td> +<td>logarithmic</td> +</tr> + +<tr> +<td>a.count(k)</td> +<td>size_type</td> +<td>returns number of elements with key equivalent to k</td> +<td>log(size()) + count(k)</td> +</tr> + +<tr> +<td>a.lower_bound(k)</td> +<td>iterator; const_iterator for constant a</td> +<td>returns iterator pointing to the first element with key not less than k</td> +<td>logarithmic</td> +</tr> + +<tr> +<td>a.upper_bound(k)</td> +<td>iterator; const_iterator for constant a</td> +<td>returns iterator pointing to the first element with key greater than k</td> +<td>logarithmic</td> +</tr> + +<tr> +<td>a.equal_range(k)</td> +<td>pair<iterator,iterator>; + pair<const_iterator, const_iterator> for constant a</td> +<td>equivalent to make_pair(a.lower_bound(k), a.upper_bound(k))</td> +<td>logarithmic</td> +</tr> +</table title="Table 69"></p></a> + + +<hr /> +<p class="smallertext"><em> +See <a href="mainpage.html">mainpage.html</a> for copying conditions. +See <a href="http://gcc.gnu.org/libstdc++/">the libstdc++ homepage</a> +for more information. +</em></p> + + +</body> +</html> + |