summaryrefslogtreecommitdiff
path: root/gcc/ada/a-calend.adb
blob: dd500f43691b99f30d0f6146918c7903502b23dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                         A D A . C A L E N D A R                          --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Ada.Unchecked_Conversion;

with System.OS_Primitives;

package body Ada.Calendar is

   --------------------------
   -- Implementation Notes --
   --------------------------

   --  In complex algorithms, some variables of type Ada.Calendar.Time carry
   --  suffix _S or _N to denote units of seconds or nanoseconds.
   --
   --  Because time is measured in different units and from different origins
   --  on various targets, a system independent model is incorporated into
   --  Ada.Calendar. The idea behind the design is to encapsulate all target
   --  dependent machinery in a single package, thus providing a uniform
   --  interface to all existing and any potential children.

   --     package Ada.Calendar
   --        procedure Split (5 parameters) -------+
   --                                              | Call from local routine
   --     private                                  |
   --        package Formatting_Operations         |
   --           procedure Split (11 parameters) <--+
   --        end Formatting_Operations             |
   --     end Ada.Calendar                         |
   --                                              |
   --     package Ada.Calendar.Formatting          | Call from child routine
   --        procedure Split (9 or 10 parameters) -+
   --     end Ada.Calendar.Formatting

   --  The behaviour of the interfacing routines is controlled via various
   --  flags. All new Ada 2005 types from children of Ada.Calendar are
   --  emulated by a similar type. For instance, type Day_Number is replaced
   --  by Integer in various routines. One ramification of this model is that
   --  the caller site must perform validity checks on returned results.
   --  The end result of this model is the lack of target specific files per
   --  child of Ada.Calendar (a-calfor, a-calfor-vms, a-calfor-vxwors, etc).

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Check_Within_Time_Bounds (T : Time_Rep);
   --  Ensure that a time representation value falls withing the bounds of Ada
   --  time. Leap seconds support is taken into account.

   procedure Cumulative_Leap_Seconds
     (Start_Date    : Time_Rep;
      End_Date      : Time_Rep;
      Elapsed_Leaps : out Natural;
      Next_Leap     : out Time_Rep);
   --  Elapsed_Leaps is the sum of the leap seconds that have occurred on or
   --  after Start_Date and before (strictly before) End_Date. Next_Leap_Sec
   --  represents the next leap second occurrence on or after End_Date. If
   --  there are no leaps seconds after End_Date, End_Of_Time is returned.
   --  End_Of_Time can be used as End_Date to count all the leap seconds that
   --  have occurred on or after Start_Date.
   --
   --  Note: Any sub seconds of Start_Date and End_Date are discarded before
   --  the calculations are done. For instance: if 113 seconds is a leap
   --  second (it isn't) and 113.5 is input as an End_Date, the leap second
   --  at 113 will not be counted in Leaps_Between, but it will be returned
   --  as Next_Leap_Sec. Thus, if the caller wants to know if the End_Date is
   --  a leap second, the comparison should be:
   --
   --     End_Date >= Next_Leap_Sec;
   --
   --  After_Last_Leap is designed so that this comparison works without
   --  having to first check if Next_Leap_Sec is a valid leap second.

   function Duration_To_Time_Rep is
     new Ada.Unchecked_Conversion (Duration, Time_Rep);
   --  Convert a duration value into a time representation value

   function Time_Rep_To_Duration is
     new Ada.Unchecked_Conversion (Time_Rep, Duration);
   --  Convert a time representation value into a duration value

   -----------------
   -- Local Types --
   -----------------

   --  An integer time duration. The type is used whenever a positive elapsed
   --  duration is needed, for instance when splitting a time value. Here is
   --  how Time_Rep and Time_Dur are related:

   --            'First  Ada_Low                  Ada_High  'Last
   --  Time_Rep: +-------+------------------------+---------+
   --  Time_Dur:         +------------------------+---------+
   --                    0                                  'Last

   type Time_Dur is range 0 .. 2 ** 63 - 1;

   --------------------------
   -- Leap seconds control --
   --------------------------

   Flag : Integer;
   pragma Import (C, Flag, "__gl_leap_seconds_support");
   --  This imported value is used to determine whether the compilation had
   --  binder flag "-y" present which enables leap seconds. A value of zero
   --  signifies no leap seconds support while a value of one enables the
   --  support.

   Leap_Support : constant Boolean := Flag = 1;
   --  The above flag controls the usage of leap seconds in all Ada.Calendar
   --  routines.

   Leap_Seconds_Count : constant Natural := 24;

   ---------------------
   -- Local Constants --
   ---------------------

   Ada_Min_Year          : constant Year_Number := Year_Number'First;
   Secs_In_Four_Years    : constant := (3 * 365 + 366) * Secs_In_Day;
   Secs_In_Non_Leap_Year : constant := 365 * Secs_In_Day;
   Nanos_In_Four_Years   : constant := Secs_In_Four_Years * Nano;

   --  Lower and upper bound of Ada time. The zero (0) value of type Time is
   --  positioned at year 2150. Note that the lower and upper bound account
   --  for the non-leap centennial years.

   Ada_Low  : constant Time_Rep := -(61 * 366 + 188 * 365) * Nanos_In_Day;
   Ada_High : constant Time_Rep :=  (60 * 366 + 190 * 365) * Nanos_In_Day;

   --  Even though the upper bound of time is 2399-12-31 23:59:59.999999999
   --  UTC, it must be increased to include all leap seconds.

   Ada_High_And_Leaps : constant Time_Rep :=
                          Ada_High + Time_Rep (Leap_Seconds_Count) * Nano;

   --  Two constants used in the calculations of elapsed leap seconds.
   --  End_Of_Time is later than Ada_High in time zone -28. Start_Of_Time
   --  is earlier than Ada_Low in time zone +28.

   End_Of_Time   : constant Time_Rep :=
                     Ada_High + Time_Rep (3) * Nanos_In_Day;
   Start_Of_Time : constant Time_Rep :=
                     Ada_Low - Time_Rep (3) * Nanos_In_Day;

   --  The Unix lower time bound expressed as nanoseconds since the
   --  start of Ada time in UTC.

   Unix_Min : constant Time_Rep :=
                Ada_Low + Time_Rep (17 * 366 + 52 * 365) * Nanos_In_Day;

   Epoch_Offset : constant Time_Rep := (136 * 365 + 44 * 366) * Nanos_In_Day;
   --  The difference between 2150-1-1 UTC and 1970-1-1 UTC expressed in
   --  nanoseconds. Note that year 2100 is non-leap.

   Cumulative_Days_Before_Month :
     constant array (Month_Number) of Natural :=
       (0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334);

   --  The following table contains the hard time values of all existing leap
   --  seconds. The values are produced by the utility program xleaps.adb.

   Leap_Second_Times : constant array (1 .. Leap_Seconds_Count) of Time_Rep :=
     (-5601484800000000000,
      -5585587199000000000,
      -5554051198000000000,
      -5522515197000000000,
      -5490979196000000000,
      -5459356795000000000,
      -5427820794000000000,
      -5396284793000000000,
      -5364748792000000000,
      -5317487991000000000,
      -5285951990000000000,
      -5254415989000000000,
      -5191257588000000000,
      -5112287987000000000,
      -5049129586000000000,
      -5017593585000000000,
      -4970332784000000000,
      -4938796783000000000,
      -4907260782000000000,
      -4859827181000000000,
      -4812566380000000000,
      -4765132779000000000,
      -4544207978000000000,
      -4449513577000000000);

   ---------
   -- "+" --
   ---------

   function "+" (Left : Time; Right : Duration) return Time is
      pragma Unsuppress (Overflow_Check);
      Left_N : constant Time_Rep := Time_Rep (Left);
   begin
      return Time (Left_N + Duration_To_Time_Rep (Right));
   exception
      when Constraint_Error =>
         raise Time_Error;
   end "+";

   function "+" (Left : Duration; Right : Time) return Time is
   begin
      return Right + Left;
   end "+";

   ---------
   -- "-" --
   ---------

   function "-" (Left : Time; Right : Duration) return Time is
      pragma Unsuppress (Overflow_Check);
      Left_N : constant Time_Rep := Time_Rep (Left);
   begin
      return Time (Left_N - Duration_To_Time_Rep (Right));
   exception
      when Constraint_Error =>
         raise Time_Error;
   end "-";

   function "-" (Left : Time; Right : Time) return Duration is
      pragma Unsuppress (Overflow_Check);

      --  The bounds of type Duration expressed as time representations

      Dur_Low  : constant Time_Rep := Duration_To_Time_Rep (Duration'First);
      Dur_High : constant Time_Rep := Duration_To_Time_Rep (Duration'Last);

      Res_N : Time_Rep;

   begin
      Res_N := Time_Rep (Left) - Time_Rep (Right);

      --  Due to the extended range of Ada time, "-" is capable of producing
      --  results which may exceed the range of Duration. In order to prevent
      --  the generation of bogus values by the Unchecked_Conversion, we apply
      --  the following check.

      if Res_N < Dur_Low
        or else Res_N > Dur_High
      then
         raise Time_Error;
      end if;

      return Time_Rep_To_Duration (Res_N);
   exception
      when Constraint_Error =>
         raise Time_Error;
   end "-";

   ---------
   -- "<" --
   ---------

   function "<" (Left, Right : Time) return Boolean is
   begin
      return Time_Rep (Left) < Time_Rep (Right);
   end "<";

   ----------
   -- "<=" --
   ----------

   function "<=" (Left, Right : Time) return Boolean is
   begin
      return Time_Rep (Left) <= Time_Rep (Right);
   end "<=";

   ---------
   -- ">" --
   ---------

   function ">" (Left, Right : Time) return Boolean is
   begin
      return Time_Rep (Left) > Time_Rep (Right);
   end ">";

   ----------
   -- ">=" --
   ----------

   function ">=" (Left, Right : Time) return Boolean is
   begin
      return Time_Rep (Left) >= Time_Rep (Right);
   end ">=";

   ------------------------------
   -- Check_Within_Time_Bounds --
   ------------------------------

   procedure Check_Within_Time_Bounds (T : Time_Rep) is
   begin
      if Leap_Support then
         if T < Ada_Low or else T > Ada_High_And_Leaps then
            raise Time_Error;
         end if;
      else
         if T < Ada_Low or else T > Ada_High then
            raise Time_Error;
         end if;
      end if;
   end Check_Within_Time_Bounds;

   -----------
   -- Clock --
   -----------

   function Clock return Time is
      Elapsed_Leaps : Natural;
      Next_Leap_N   : Time_Rep;

      --  The system clock returns the time in UTC since the Unix Epoch of
      --  1970-01-01 00:00:00.0. We perform an origin shift to the Ada Epoch
      --  by adding the number of nanoseconds between the two origins.

      Res_N : Time_Rep :=
                Duration_To_Time_Rep (System.OS_Primitives.Clock) +
                  Unix_Min;

   begin
      --  If the target supports leap seconds, determine the number of leap
      --  seconds elapsed until this moment.

      if Leap_Support then
         Cumulative_Leap_Seconds
           (Start_Of_Time, Res_N, Elapsed_Leaps, Next_Leap_N);

         --  The system clock may fall exactly on a leap second

         if Res_N >= Next_Leap_N then
            Elapsed_Leaps := Elapsed_Leaps + 1;
         end if;

      --  The target does not support leap seconds

      else
         Elapsed_Leaps := 0;
      end if;

      Res_N := Res_N + Time_Rep (Elapsed_Leaps) * Nano;

      return Time (Res_N);
   end Clock;

   -----------------------------
   -- Cumulative_Leap_Seconds --
   -----------------------------

   procedure Cumulative_Leap_Seconds
     (Start_Date    : Time_Rep;
      End_Date      : Time_Rep;
      Elapsed_Leaps : out Natural;
      Next_Leap     : out Time_Rep)
   is
      End_Index   : Positive;
      End_T       : Time_Rep := End_Date;
      Start_Index : Positive;
      Start_T     : Time_Rep := Start_Date;

   begin
      --  Both input dates must be normalized to UTC

      pragma Assert (Leap_Support and then End_Date >= Start_Date);

      Next_Leap := End_Of_Time;

      --  Make sure that the end date does not exceed the upper bound
      --  of Ada time.

      if End_Date > Ada_High then
         End_T := Ada_High;
      end if;

      --  Remove the sub seconds from both dates

      Start_T := Start_T - (Start_T mod Nano);
      End_T   := End_T   - (End_T   mod Nano);

      --  Some trivial cases:
      --                     Leap 1 . . . Leap N
      --  ---+========+------+############+-------+========+-----
      --     Start_T  End_T                       Start_T  End_T

      if End_T < Leap_Second_Times (1) then
         Elapsed_Leaps := 0;
         Next_Leap     := Leap_Second_Times (1);
         return;

      elsif Start_T > Leap_Second_Times (Leap_Seconds_Count) then
         Elapsed_Leaps := 0;
         Next_Leap     := End_Of_Time;
         return;
      end if;

      --  Perform the calculations only if the start date is within the leap
      --  second occurrences table.

      if Start_T <= Leap_Second_Times (Leap_Seconds_Count) then

         --    1    2                  N - 1   N
         --  +----+----+--  . . .  --+-------+---+
         --  | T1 | T2 |             | N - 1 | N |
         --  +----+----+--  . . .  --+-------+---+
         --         ^                   ^
         --         | Start_Index       | End_Index
         --         +-------------------+
         --             Leaps_Between

         --  The idea behind the algorithm is to iterate and find two
         --  closest dates which are after Start_T and End_T. Their
         --  corresponding index difference denotes the number of leap
         --  seconds elapsed.

         Start_Index := 1;
         loop
            exit when Leap_Second_Times (Start_Index) >= Start_T;
            Start_Index := Start_Index + 1;
         end loop;

         End_Index := Start_Index;
         loop
            exit when End_Index > Leap_Seconds_Count
              or else Leap_Second_Times (End_Index) >= End_T;
            End_Index := End_Index + 1;
         end loop;

         if End_Index <= Leap_Seconds_Count then
            Next_Leap := Leap_Second_Times (End_Index);
         end if;

         Elapsed_Leaps := End_Index - Start_Index;

      else
         Elapsed_Leaps := 0;
      end if;
   end Cumulative_Leap_Seconds;

   ---------
   -- Day --
   ---------

   function Day (Date : Time) return Day_Number is
      D : Day_Number;
      Y : Year_Number;
      M : Month_Number;
      S : Day_Duration;
      pragma Unreferenced (Y, M, S);
   begin
      Split (Date, Y, M, D, S);
      return D;
   end Day;

   -------------
   -- Is_Leap --
   -------------

   function Is_Leap (Year : Year_Number) return Boolean is
   begin
      --  Leap centennial years

      if Year mod 400 = 0 then
         return True;

      --  Non-leap centennial years

      elsif Year mod 100 = 0 then
         return False;

      --  Regular years

      else
         return Year mod 4 = 0;
      end if;
   end Is_Leap;

   -----------
   -- Month --
   -----------

   function Month (Date : Time) return Month_Number is
      Y : Year_Number;
      M : Month_Number;
      D : Day_Number;
      S : Day_Duration;
      pragma Unreferenced (Y, D, S);
   begin
      Split (Date, Y, M, D, S);
      return M;
   end Month;

   -------------
   -- Seconds --
   -------------

   function Seconds (Date : Time) return Day_Duration is
      Y : Year_Number;
      M : Month_Number;
      D : Day_Number;
      S : Day_Duration;
      pragma Unreferenced (Y, M, D);
   begin
      Split (Date, Y, M, D, S);
      return S;
   end Seconds;

   -----------
   -- Split --
   -----------

   procedure Split
     (Date    : Time;
      Year    : out Year_Number;
      Month   : out Month_Number;
      Day     : out Day_Number;
      Seconds : out Day_Duration)
   is
      H  : Integer;
      M  : Integer;
      Se : Integer;
      Ss : Duration;
      Le : Boolean;

      pragma Unreferenced (H, M, Se, Ss, Le);

   begin
      --  Even though the input time zone is UTC (0), the flag Is_Ada_05 will
      --  ensure that Split picks up the local time zone.

      Formatting_Operations.Split
        (Date      => Date,
         Year      => Year,
         Month     => Month,
         Day       => Day,
         Day_Secs  => Seconds,
         Hour      => H,
         Minute    => M,
         Second    => Se,
         Sub_Sec   => Ss,
         Leap_Sec  => Le,
         Is_Ada_05 => False,
         Time_Zone => 0);

      --  Validity checks

      if not Year'Valid
        or else not Month'Valid
        or else not Day'Valid
        or else not Seconds'Valid
      then
         raise Time_Error;
      end if;
   end Split;

   -------------
   -- Time_Of --
   -------------

   function Time_Of
     (Year    : Year_Number;
      Month   : Month_Number;
      Day     : Day_Number;
      Seconds : Day_Duration := 0.0) return Time
   is
      --  The values in the following constants are irrelevant, they are just
      --  placeholders; the choice of constructing a Day_Duration value is
      --  controlled by the Use_Day_Secs flag.

      H  : constant Integer := 1;
      M  : constant Integer := 1;
      Se : constant Integer := 1;
      Ss : constant Duration := 0.1;

   begin
      --  Validity checks

      if not Year'Valid
        or else not Month'Valid
        or else not Day'Valid
        or else not Seconds'Valid
      then
         raise Time_Error;
      end if;

      --  Even though the input time zone is UTC (0), the flag Is_Ada_05 will
      --  ensure that Split picks up the local time zone.

      return
        Formatting_Operations.Time_Of
          (Year         => Year,
           Month        => Month,
           Day          => Day,
           Day_Secs     => Seconds,
           Hour         => H,
           Minute       => M,
           Second       => Se,
           Sub_Sec      => Ss,
           Leap_Sec     => False,
           Use_Day_Secs => True,
           Is_Ada_05    => False,
           Time_Zone    => 0);
   end Time_Of;

   ----------
   -- Year --
   ----------

   function Year (Date : Time) return Year_Number is
      Y : Year_Number;
      M : Month_Number;
      D : Day_Number;
      S : Day_Duration;
      pragma Unreferenced (M, D, S);
   begin
      Split (Date, Y, M, D, S);
      return Y;
   end Year;

   --  The following packages assume that Time is a signed 64 bit integer
   --  type, the units are nanoseconds and the origin is the start of Ada
   --  time (1901-01-01 00:00:00.0 UTC).

   ---------------------------
   -- Arithmetic_Operations --
   ---------------------------

   package body Arithmetic_Operations is

      ---------
      -- Add --
      ---------

      function Add (Date : Time; Days : Long_Integer) return Time is
         pragma Unsuppress (Overflow_Check);
         Date_N : constant Time_Rep := Time_Rep (Date);
      begin
         return Time (Date_N + Time_Rep (Days) * Nanos_In_Day);
      exception
         when Constraint_Error =>
            raise Time_Error;
      end Add;

      ----------------
      -- Difference --
      ----------------

      procedure Difference
        (Left         : Time;
         Right        : Time;
         Days         : out Long_Integer;
         Seconds      : out Duration;
         Leap_Seconds : out Integer)
      is
         Res_Dur       : Time_Dur;
         Earlier       : Time_Rep;
         Elapsed_Leaps : Natural;
         Later         : Time_Rep;
         Negate        : Boolean := False;
         Next_Leap_N   : Time_Rep;
         Sub_Secs      : Duration;
         Sub_Secs_Diff : Time_Rep;

      begin
         --  Both input time values are assumed to be in UTC

         if Left >= Right then
            Later   := Time_Rep (Left);
            Earlier := Time_Rep (Right);
         else
            Later   := Time_Rep (Right);
            Earlier := Time_Rep (Left);
            Negate  := True;
         end if;

         --  If the target supports leap seconds, process them

         if Leap_Support then
            Cumulative_Leap_Seconds
              (Earlier, Later, Elapsed_Leaps, Next_Leap_N);

            if Later >= Next_Leap_N then
               Elapsed_Leaps := Elapsed_Leaps + 1;
            end if;

         --  The target does not support leap seconds

         else
            Elapsed_Leaps := 0;
         end if;

         --  Sub seconds processing. We add the resulting difference to one
         --  of the input dates in order to account for any potential rounding
         --  of the difference in the next step.

         Sub_Secs_Diff := Later mod Nano - Earlier mod Nano;
         Earlier       := Earlier + Sub_Secs_Diff;
         Sub_Secs      := Duration (Sub_Secs_Diff) / Nano_F;

         --  Difference processing. This operation should be able to calculate
         --  the difference between opposite values which are close to the end
         --  and start of Ada time. To accommodate the large range, we convert
         --  to seconds. This action may potentially round the two values and
         --  either add or drop a second. We compensate for this issue in the
         --  previous step.

         Res_Dur :=
           Time_Dur (Later / Nano - Earlier / Nano) - Time_Dur (Elapsed_Leaps);

         Days         := Long_Integer (Res_Dur / Secs_In_Day);
         Seconds      := Duration (Res_Dur mod Secs_In_Day) + Sub_Secs;
         Leap_Seconds := Integer (Elapsed_Leaps);

         if Negate then
            Days    := -Days;
            Seconds := -Seconds;

            if Leap_Seconds /= 0 then
               Leap_Seconds := -Leap_Seconds;
            end if;
         end if;
      end Difference;

      --------------
      -- Subtract --
      --------------

      function Subtract (Date : Time; Days : Long_Integer) return Time is
         pragma Unsuppress (Overflow_Check);
         Date_N : constant Time_Rep := Time_Rep (Date);
      begin
         return Time (Date_N - Time_Rep (Days) * Nanos_In_Day);
      exception
         when Constraint_Error =>
            raise Time_Error;
      end Subtract;

   end Arithmetic_Operations;

   ---------------------------
   -- Conversion_Operations --
   ---------------------------

   package body Conversion_Operations is

      -----------------
      -- To_Ada_Time --
      -----------------

      function To_Ada_Time (Unix_Time : Long_Integer) return Time is
         pragma Unsuppress (Overflow_Check);
         Unix_Rep : constant Time_Rep := Time_Rep (Unix_Time) * Nano;
      begin
         return Time (Unix_Rep - Epoch_Offset);
      exception
         when Constraint_Error =>
            raise Time_Error;
      end To_Ada_Time;

      -----------------
      -- To_Ada_Time --
      -----------------

      function To_Ada_Time
        (tm_year  : Integer;
         tm_mon   : Integer;
         tm_day   : Integer;
         tm_hour  : Integer;
         tm_min   : Integer;
         tm_sec   : Integer;
         tm_isdst : Integer) return Time
      is
         pragma Unsuppress (Overflow_Check);
         Year   : Year_Number;
         Month  : Month_Number;
         Day    : Day_Number;
         Second : Integer;
         Leap   : Boolean;
         Result : Time_Rep;

      begin
         --  Input processing

         Year  := Year_Number (1900 + tm_year);
         Month := Month_Number (1 + tm_mon);
         Day   := Day_Number (tm_day);

         --  Step 1: Validity checks of input values

         if not Year'Valid
           or else not Month'Valid
           or else not Day'Valid
           or else tm_hour not in 0 .. 24
           or else tm_min not in 0 .. 59
           or else tm_sec not in 0 .. 60
           or else tm_isdst not in -1 .. 1
         then
            raise Time_Error;
         end if;

         --  Step 2: Potential leap second

         if tm_sec = 60 then
            Leap   := True;
            Second := 59;
         else
            Leap   := False;
            Second := tm_sec;
         end if;

         --  Step 3: Calculate the time value

         Result :=
           Time_Rep
             (Formatting_Operations.Time_Of
               (Year         => Year,
                Month        => Month,
                Day          => Day,
                Day_Secs     => 0.0,      --  Time is given in h:m:s
                Hour         => tm_hour,
                Minute       => tm_min,
                Second       => Second,
                Sub_Sec      => 0.0,      --  No precise sub second given
                Leap_Sec     => Leap,
                Use_Day_Secs => False,    --  Time is given in h:m:s
                Is_Ada_05    => True,     --  Force usage of explicit time zone
                Time_Zone    => 0));      --  Place the value in UTC

         --  Step 4: Daylight Savings Time

         if tm_isdst = 1 then
            Result := Result + Time_Rep (3_600) * Nano;
         end if;

         return Time (Result);

      exception
         when Constraint_Error =>
            raise Time_Error;
      end To_Ada_Time;

      -----------------
      -- To_Duration --
      -----------------

      function To_Duration
        (tv_sec  : Long_Integer;
         tv_nsec : Long_Integer) return Duration
      is
         pragma Unsuppress (Overflow_Check);
      begin
         return Duration (tv_sec) + Duration (tv_nsec) / Nano_F;
      end To_Duration;

      ------------------------
      -- To_Struct_Timespec --
      ------------------------

      procedure To_Struct_Timespec
        (D       : Duration;
         tv_sec  : out Long_Integer;
         tv_nsec : out Long_Integer)
      is
         pragma Unsuppress (Overflow_Check);
         Secs      : Duration;
         Nano_Secs : Duration;

      begin
         --  Seconds extraction, avoid potential rounding errors

         Secs   := D - 0.5;
         tv_sec := Long_Integer (Secs);

         --  Nanoseconds extraction

         Nano_Secs := D - Duration (tv_sec);
         tv_nsec := Long_Integer (Nano_Secs * Nano);
      end To_Struct_Timespec;

      ------------------
      -- To_Struct_Tm --
      ------------------

      procedure To_Struct_Tm
        (T       : Time;
         tm_year : out Integer;
         tm_mon  : out Integer;
         tm_day  : out Integer;
         tm_hour : out Integer;
         tm_min  : out Integer;
         tm_sec  : out Integer)
      is
         pragma Unsuppress (Overflow_Check);
         Year      : Year_Number;
         Month     : Month_Number;
         Second    : Integer;
         Day_Secs  : Day_Duration;
         Sub_Sec   : Duration;
         Leap_Sec  : Boolean;

      begin
         --  Step 1: Split the input time

         Formatting_Operations.Split
           (T, Year, Month, tm_day, Day_Secs,
            tm_hour, tm_min, Second, Sub_Sec, Leap_Sec, True, 0);

         --  Step 2: Correct the year and month

         tm_year := Year - 1900;
         tm_mon  := Month - 1;

         --  Step 3: Handle leap second occurrences

         tm_sec := (if Leap_Sec then 60 else Second);
      end To_Struct_Tm;

      ------------------
      -- To_Unix_Time --
      ------------------

      function To_Unix_Time (Ada_Time : Time) return Long_Integer is
         pragma Unsuppress (Overflow_Check);
         Ada_Rep : constant Time_Rep := Time_Rep (Ada_Time);
      begin
         return Long_Integer ((Ada_Rep + Epoch_Offset) / Nano);
      exception
         when Constraint_Error =>
            raise Time_Error;
      end To_Unix_Time;
   end Conversion_Operations;

   ----------------------
   -- Delay_Operations --
   ----------------------

   package body Delay_Operations is

      -----------------
      -- To_Duration --
      -----------------

      function To_Duration (Date : Time) return Duration is
         pragma Unsuppress (Overflow_Check);

         Safe_Ada_High : constant Time_Rep := Ada_High - Epoch_Offset;
         --  This value represents a "safe" end of time. In order to perform a
         --  proper conversion to Unix duration, we will have to shift origins
         --  at one point. For very distant dates, this means an overflow check
         --  failure. To prevent this, the function returns the "safe" end of
         --  time (roughly 2219) which is still distant enough.

         Elapsed_Leaps : Natural;
         Next_Leap_N   : Time_Rep;
         Res_N         : Time_Rep;

      begin
         Res_N := Time_Rep (Date);

         --  Step 1: If the target supports leap seconds, remove any leap
         --  seconds elapsed up to the input date.

         if Leap_Support then
            Cumulative_Leap_Seconds
              (Start_Of_Time, Res_N, Elapsed_Leaps, Next_Leap_N);

            --  The input time value may fall on a leap second occurrence

            if Res_N >= Next_Leap_N then
               Elapsed_Leaps := Elapsed_Leaps + 1;
            end if;

         --  The target does not support leap seconds

         else
            Elapsed_Leaps := 0;
         end if;

         Res_N := Res_N - Time_Rep (Elapsed_Leaps) * Nano;

         --  Step 2: Perform a shift in origins to obtain a Unix equivalent of
         --  the input. Guard against very large delay values such as the end
         --  of time since the computation will overflow.

         Res_N := (if Res_N > Safe_Ada_High then Safe_Ada_High
                                            else Res_N + Epoch_Offset);

         return Time_Rep_To_Duration (Res_N);
      end To_Duration;

   end Delay_Operations;

   ---------------------------
   -- Formatting_Operations --
   ---------------------------

   package body Formatting_Operations is

      -----------------
      -- Day_Of_Week --
      -----------------

      function Day_Of_Week (Date : Time) return Integer is
         Date_N    : constant Time_Rep := Time_Rep (Date);
         Time_Zone : constant Long_Integer :=
                       Time_Zones_Operations.UTC_Time_Offset (Date);

         Ada_Low_N : Time_Rep;
         Day_Count : Long_Integer;
         Day_Dur   : Time_Dur;
         High_N    : Time_Rep;
         Low_N     : Time_Rep;

      begin
         --  As declared, the Ada Epoch is set in UTC. For this calculation to
         --  work properly, both the Epoch and the input date must be in the
         --  same time zone. The following places the Epoch in the input date's
         --  time zone.

         Ada_Low_N := Ada_Low - Time_Rep (Time_Zone) * Nano;

         if Date_N > Ada_Low_N then
            High_N := Date_N;
            Low_N  := Ada_Low_N;
         else
            High_N := Ada_Low_N;
            Low_N  := Date_N;
         end if;

         --  Determine the elapsed seconds since the start of Ada time

         Day_Dur := Time_Dur (High_N / Nano - Low_N / Nano);

         --  Count the number of days since the start of Ada time. 1901-01-01
         --  GMT was a Tuesday.

         Day_Count := Long_Integer (Day_Dur / Secs_In_Day) + 1;

         return Integer (Day_Count mod 7);
      end Day_Of_Week;

      -----------
      -- Split --
      -----------

      procedure Split
        (Date      : Time;
         Year      : out Year_Number;
         Month     : out Month_Number;
         Day       : out Day_Number;
         Day_Secs  : out Day_Duration;
         Hour      : out Integer;
         Minute    : out Integer;
         Second    : out Integer;
         Sub_Sec   : out Duration;
         Leap_Sec  : out Boolean;
         Is_Ada_05 : Boolean;
         Time_Zone : Long_Integer)
      is
         --  The following constants represent the number of nanoseconds
         --  elapsed since the start of Ada time to and including the non
         --  leap centennial years.

         Year_2101 : constant Time_Rep := Ada_Low +
                       Time_Rep (49 * 366 + 151 * 365) * Nanos_In_Day;
         Year_2201 : constant Time_Rep := Ada_Low +
                       Time_Rep (73 * 366 + 227 * 365) * Nanos_In_Day;
         Year_2301 : constant Time_Rep := Ada_Low +
                       Time_Rep (97 * 366 + 303 * 365) * Nanos_In_Day;

         Date_Dur       : Time_Dur;
         Date_N         : Time_Rep;
         Day_Seconds    : Natural;
         Elapsed_Leaps  : Natural;
         Four_Year_Segs : Natural;
         Hour_Seconds   : Natural;
         Is_Leap_Year   : Boolean;
         Next_Leap_N    : Time_Rep;
         Rem_Years      : Natural;
         Sub_Sec_N      : Time_Rep;
         Year_Day       : Natural;

      begin
         Date_N := Time_Rep (Date);

         --  Step 1: Leap seconds processing in UTC

         if Leap_Support then
            Cumulative_Leap_Seconds
              (Start_Of_Time, Date_N, Elapsed_Leaps, Next_Leap_N);

            Leap_Sec := Date_N >= Next_Leap_N;

            if Leap_Sec then
               Elapsed_Leaps := Elapsed_Leaps + 1;
            end if;

         --  The target does not support leap seconds

         else
            Elapsed_Leaps := 0;
            Leap_Sec      := False;
         end if;

         Date_N := Date_N - Time_Rep (Elapsed_Leaps) * Nano;

         --  Step 2: Time zone processing. This action converts the input date
         --  from GMT to the requested time zone.

         if Is_Ada_05 then
            if Time_Zone /= 0 then
               Date_N := Date_N + Time_Rep (Time_Zone) * 60 * Nano;
            end if;

         --  Ada 83 and 95

         else
            declare
               Off : constant Long_Integer :=
                       Time_Zones_Operations.UTC_Time_Offset (Time (Date_N));
            begin
               Date_N := Date_N + Time_Rep (Off) * Nano;
            end;
         end if;

         --  Step 3: Non-leap centennial year adjustment in local time zone

         --  In order for all divisions to work properly and to avoid more
         --  complicated arithmetic, we add fake February 29s to dates which
         --  occur after a non-leap centennial year.

         if Date_N >= Year_2301 then
            Date_N := Date_N + Time_Rep (3) * Nanos_In_Day;

         elsif Date_N >= Year_2201 then
            Date_N := Date_N + Time_Rep (2) * Nanos_In_Day;

         elsif Date_N >= Year_2101 then
            Date_N := Date_N + Time_Rep (1) * Nanos_In_Day;
         end if;

         --  Step 4: Sub second processing in local time zone

         Sub_Sec_N := Date_N mod Nano;
         Sub_Sec   := Duration (Sub_Sec_N) / Nano_F;
         Date_N    := Date_N - Sub_Sec_N;

         --  Convert Date_N into a time duration value, changing the units
         --  to seconds.

         Date_Dur := Time_Dur (Date_N / Nano - Ada_Low / Nano);

         --  Step 5: Year processing in local time zone. Determine the number
         --  of four year segments since the start of Ada time and the input
         --  date.

         Four_Year_Segs := Natural (Date_Dur / Secs_In_Four_Years);

         if Four_Year_Segs > 0 then
            Date_Dur := Date_Dur - Time_Dur (Four_Year_Segs) *
                                   Secs_In_Four_Years;
         end if;

         --  Calculate the remaining non-leap years

         Rem_Years := Natural (Date_Dur / Secs_In_Non_Leap_Year);

         if Rem_Years > 3 then
            Rem_Years := 3;
         end if;

         Date_Dur := Date_Dur - Time_Dur (Rem_Years) * Secs_In_Non_Leap_Year;

         Year := Ada_Min_Year + Natural (4 * Four_Year_Segs + Rem_Years);
         Is_Leap_Year := Is_Leap (Year);

         --  Step 6: Month and day processing in local time zone

         Year_Day := Natural (Date_Dur / Secs_In_Day) + 1;

         Month := 1;

         --  Processing for months after January

         if Year_Day > 31 then
            Month    := 2;
            Year_Day := Year_Day - 31;

            --  Processing for a new month or a leap February

            if Year_Day > 28
              and then (not Is_Leap_Year or else Year_Day > 29)
            then
               Month    := 3;
               Year_Day := Year_Day - 28;

               if Is_Leap_Year then
                  Year_Day := Year_Day - 1;
               end if;

               --  Remaining months

               while Year_Day > Days_In_Month (Month) loop
                  Year_Day := Year_Day - Days_In_Month (Month);
                  Month    := Month + 1;
               end loop;
            end if;
         end if;

         --  Step 7: Hour, minute, second and sub second processing in local
         --  time zone.

         Day          := Day_Number (Year_Day);
         Day_Seconds  := Integer (Date_Dur mod Secs_In_Day);
         Day_Secs     := Duration (Day_Seconds) + Sub_Sec;
         Hour         := Day_Seconds / 3_600;
         Hour_Seconds := Day_Seconds mod 3_600;
         Minute       := Hour_Seconds / 60;
         Second       := Hour_Seconds mod 60;
      end Split;

      -------------
      -- Time_Of --
      -------------

      function Time_Of
        (Year         : Year_Number;
         Month        : Month_Number;
         Day          : Day_Number;
         Day_Secs     : Day_Duration;
         Hour         : Integer;
         Minute       : Integer;
         Second       : Integer;
         Sub_Sec      : Duration;
         Leap_Sec     : Boolean := False;
         Use_Day_Secs : Boolean := False;
         Is_Ada_05    : Boolean := False;
         Time_Zone    : Long_Integer := 0) return Time
      is
         Count         : Integer;
         Elapsed_Leaps : Natural;
         Next_Leap_N   : Time_Rep;
         Res_N         : Time_Rep;
         Rounded_Res_N : Time_Rep;

      begin
         --  Step 1: Check whether the day, month and year form a valid date

         if Day > Days_In_Month (Month)
           and then (Day /= 29 or else Month /= 2 or else not Is_Leap (Year))
         then
            raise Time_Error;
         end if;

         --  Start accumulating nanoseconds from the low bound of Ada time

         Res_N := Ada_Low;

         --  Step 2: Year processing and centennial year adjustment. Determine
         --  the number of four year segments since the start of Ada time and
         --  the input date.

         Count := (Year - Year_Number'First) / 4;
         for Four_Year_Segments in 1 .. Count loop
            Res_N := Res_N + Nanos_In_Four_Years;
         end loop;

         --  Note that non-leap centennial years are automatically considered
         --  leap in the operation above. An adjustment of several days is
         --  required to compensate for this.

         if Year > 2300 then
            Res_N := Res_N - Time_Rep (3) * Nanos_In_Day;

         elsif Year > 2200 then
            Res_N := Res_N - Time_Rep (2) * Nanos_In_Day;

         elsif Year > 2100 then
            Res_N := Res_N - Time_Rep (1) * Nanos_In_Day;
         end if;

         --  Add the remaining non-leap years

         Count := (Year - Year_Number'First) mod 4;
         Res_N := Res_N + Time_Rep (Count) * Secs_In_Non_Leap_Year * Nano;

         --  Step 3: Day of month processing. Determine the number of days
         --  since the start of the current year. Do not add the current
         --  day since it has not elapsed yet.

         Count := Cumulative_Days_Before_Month (Month) + Day - 1;

         --  The input year is leap and we have passed February

         if Is_Leap (Year)
           and then Month > 2
         then
            Count := Count + 1;
         end if;

         Res_N := Res_N + Time_Rep (Count) * Nanos_In_Day;

         --  Step 4: Hour, minute, second and sub second processing

         if Use_Day_Secs then
            Res_N := Res_N + Duration_To_Time_Rep (Day_Secs);

         else
            Res_N :=
              Res_N + Time_Rep (Hour * 3_600 + Minute * 60 + Second) * Nano;

            if Sub_Sec = 1.0 then
               Res_N := Res_N + Time_Rep (1) * Nano;
            else
               Res_N := Res_N + Duration_To_Time_Rep (Sub_Sec);
            end if;
         end if;

         --  At this point, the generated time value should be withing the
         --  bounds of Ada time.

         Check_Within_Time_Bounds (Res_N);

         --  Step 4: Time zone processing. At this point we have built an
         --  arbitrary time value which is not related to any time zone.
         --  For simplicity, the time value is normalized to GMT, producing
         --  a uniform representation which can be treated by arithmetic
         --  operations for instance without any additional corrections.

         if Is_Ada_05 then
            if Time_Zone /= 0 then
               Res_N := Res_N - Time_Rep (Time_Zone) * 60 * Nano;
            end if;

         --  Ada 83 and 95

         else
            declare
               Current_Off   : constant Long_Integer :=
                                 Time_Zones_Operations.UTC_Time_Offset
                                   (Time (Res_N));
               Current_Res_N : constant Time_Rep :=
                                 Res_N - Time_Rep (Current_Off) * Nano;
               Off           : constant Long_Integer :=
                                 Time_Zones_Operations.UTC_Time_Offset
                                   (Time (Current_Res_N));
            begin
               Res_N := Res_N - Time_Rep (Off) * Nano;
            end;
         end if;

         --  Step 5: Leap seconds processing in GMT

         if Leap_Support then
            Cumulative_Leap_Seconds
              (Start_Of_Time, Res_N, Elapsed_Leaps, Next_Leap_N);

            Res_N := Res_N + Time_Rep (Elapsed_Leaps) * Nano;

            --  An Ada 2005 caller requesting an explicit leap second or an
            --  Ada 95 caller accounting for an invisible leap second.

            if Leap_Sec
              or else Res_N >= Next_Leap_N
            then
               Res_N := Res_N + Time_Rep (1) * Nano;
            end if;

            --  Leap second validity check

            Rounded_Res_N := Res_N - (Res_N mod Nano);

            if Is_Ada_05
              and then Leap_Sec
              and then Rounded_Res_N /= Next_Leap_N
            then
               raise Time_Error;
            end if;
         end if;

         return Time (Res_N);
      end Time_Of;

   end Formatting_Operations;

   ---------------------------
   -- Time_Zones_Operations --
   ---------------------------

   package body Time_Zones_Operations is

      --  The Unix time bounds in nanoseconds: 1970/1/1 .. 2037/1/1

      Unix_Min : constant Time_Rep := Ada_Low +
                   Time_Rep (17 * 366 +  52 * 365) * Nanos_In_Day;

      Unix_Max : constant Time_Rep := Ada_Low +
                   Time_Rep (34 * 366 + 102 * 365) * Nanos_In_Day +
                   Time_Rep (Leap_Seconds_Count) * Nano;

      --  The following constants denote February 28 during non-leap
      --  centennial years, the units are nanoseconds.

      T_2100_2_28 : constant Time_Rep := Ada_Low +
                      (Time_Rep (49 * 366 + 150 * 365 + 59) * Secs_In_Day +
                       Time_Rep (Leap_Seconds_Count)) * Nano;

      T_2200_2_28 : constant Time_Rep := Ada_Low +
                      (Time_Rep (73 * 366 + 226 * 365 + 59) * Secs_In_Day +
                       Time_Rep (Leap_Seconds_Count)) * Nano;

      T_2300_2_28 : constant Time_Rep := Ada_Low +
                      (Time_Rep (97 * 366 + 302 * 365 + 59) * Secs_In_Day +
                       Time_Rep (Leap_Seconds_Count)) * Nano;

      --  56 years (14 leap years + 42 non leap years) in nanoseconds:

      Nanos_In_56_Years : constant := (14 * 366 + 42 * 365) * Nanos_In_Day;

      subtype long is Long_Integer;
      type long_Pointer is access all long;

      type time_t is
        range -(2 ** (Standard'Address_Size - Integer'(1))) ..
              +(2 ** (Standard'Address_Size - Integer'(1)) - 1);
      type time_t_Pointer is access all time_t;

      procedure localtime_tzoff
       (timer : time_t_Pointer;
        off   : long_Pointer);
      pragma Import (C, localtime_tzoff, "__gnat_localtime_tzoff");
      --  This is a lightweight wrapper around the system library function
      --  localtime_r. Parameter 'off' captures the UTC offset which is either
      --  retrieved from the tm struct or calculated from the 'timezone' extern
      --  and the tm_isdst flag in the tm struct.

      ---------------------
      -- UTC_Time_Offset --
      ---------------------

      function UTC_Time_Offset (Date : Time) return Long_Integer is
         Adj_Cent : Integer;
         Date_N   : Time_Rep;
         Offset   : aliased long;
         Secs_T   : aliased time_t;

      begin
         Date_N := Time_Rep (Date);

         --  Dates which are 56 years apart fall on the same day, day light
         --  saving and so on. Non-leap centennial years violate this rule by
         --  one day and as a consequence, special adjustment is needed.

         Adj_Cent :=
           (if    Date_N <= T_2100_2_28 then 0
            elsif Date_N <= T_2200_2_28 then 1
            elsif Date_N <= T_2300_2_28 then 2
            else                             3);

         if Adj_Cent > 0 then
            Date_N := Date_N - Time_Rep (Adj_Cent) * Nanos_In_Day;
         end if;

         --  Shift the date within bounds of Unix time

         while Date_N < Unix_Min loop
            Date_N := Date_N + Nanos_In_56_Years;
         end loop;

         while Date_N >= Unix_Max loop
            Date_N := Date_N - Nanos_In_56_Years;
         end loop;

         --  Perform a shift in origins from Ada to Unix

         Date_N := Date_N - Unix_Min;

         --  Convert the date into seconds

         Secs_T := time_t (Date_N / Nano);

         localtime_tzoff
           (Secs_T'Unchecked_Access,
            Offset'Unchecked_Access);

         return Offset;
      end UTC_Time_Offset;

   end Time_Zones_Operations;

--  Start of elaboration code for Ada.Calendar

begin
   System.OS_Primitives.Initialize;
end Ada.Calendar;