summaryrefslogtreecommitdiff
path: root/gcc/ada/a-numaux-x86.adb
blob: 811485d859b866fb651dfc208ae2fbdedc5e0bb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                     A D A . N U M E R I C S . A U X                      --
--                                                                          --
--                                 B o d y                                  --
--                        (Machine Version for x86)                         --
--                                                                          --
--          Copyright (C) 1998-2009, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  File a-numaux.adb <- 86numaux.adb

--  This version of Numerics.Aux is for the IEEE Double Extended floating
--  point format on x86.

with System.Machine_Code; use System.Machine_Code;

package body Ada.Numerics.Aux is

   NL : constant String := ASCII.LF & ASCII.HT;

   -----------------------
   -- Local subprograms --
   -----------------------

   function Is_Nan (X : Double) return Boolean;
   --  Return True iff X is a IEEE NaN value

   function Logarithmic_Pow (X, Y : Double) return Double;
   --  Implementation of X**Y using Exp and Log functions (binary base)
   --  to calculate the exponentiation. This is used by Pow for values
   --  for values of Y in the open interval (-0.25, 0.25)

   procedure Reduce (X : in out Double; Q : out Natural);
   --  Implements reduction of X by Pi/2. Q is the quadrant of the final
   --  result in the range 0 .. 3. The absolute value of X is at most Pi.

   pragma Inline (Is_Nan);
   pragma Inline (Reduce);

   --------------------------------
   -- Basic Elementary Functions --
   --------------------------------

   --  This section implements a few elementary functions that are used to
   --  build the more complex ones. This ordering enables better inlining.

   ----------
   -- Atan --
   ----------

   function Atan (X : Double) return Double is
      Result  : Double;

   begin
      Asm (Template =>
           "fld1" & NL
         & "fpatan",
         Outputs  => Double'Asm_Output ("=t", Result),
         Inputs   => Double'Asm_Input  ("0", X));

      --  The result value is NaN iff input was invalid

      if not (Result = Result) then
         raise Argument_Error;
      end if;

      return Result;
   end Atan;

   ---------
   -- Exp --
   ---------

   function Exp (X : Double) return Double is
      Result : Double;
   begin
      Asm (Template =>
         "fldl2e               " & NL
       & "fmulp   %%st, %%st(1)" & NL -- X * log2 (E)
       & "fld     %%st(0)      " & NL
       & "frndint              " & NL -- Integer (X * Log2 (E))
       & "fsubr   %%st, %%st(1)" & NL -- Fraction (X * Log2 (E))
       & "fxch                 " & NL
       & "f2xm1                " & NL -- 2**(...) - 1
       & "fld1                 " & NL
       & "faddp   %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E)))
       & "fscale               " & NL -- E ** X
       & "fstp    %%st(1)      ",
         Outputs  => Double'Asm_Output ("=t", Result),
         Inputs   => Double'Asm_Input  ("0", X));
      return Result;
   end Exp;

   ------------
   -- Is_Nan --
   ------------

   function Is_Nan (X : Double) return Boolean is
   begin
      --  The IEEE NaN values are the only ones that do not equal themselves

      return not (X = X);
   end Is_Nan;

   ---------
   -- Log --
   ---------

   function Log (X : Double) return Double is
      Result : Double;

   begin
      Asm (Template =>
         "fldln2               " & NL
       & "fxch                 " & NL
       & "fyl2x                " & NL,
         Outputs  => Double'Asm_Output ("=t", Result),
         Inputs   => Double'Asm_Input  ("0", X));
      return Result;
   end Log;

   ------------
   -- Reduce --
   ------------

   procedure Reduce (X : in out Double; Q : out Natural) is
      Half_Pi     : constant := Pi / 2.0;
      Two_Over_Pi : constant := 2.0 / Pi;

      HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
      M  : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
      P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
      P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
      P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
      P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
      P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
                                                                 - P4, HM);
      P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
      K  : Double := X * Two_Over_Pi;
   begin
      --  For X < 2.0**32, all products below are computed exactly.
      --  Due to cancellation effects all subtractions are exact as well.
      --  As no double extended floating-point number has more than 75
      --  zeros after the binary point, the result will be the correctly
      --  rounded result of X - K * (Pi / 2.0).

      while abs K >= 2.0**HM loop
         K := K * M - (K * M - K);
         X := (((((X - K * P1) - K * P2) - K * P3)
                     - K * P4) - K * P5) - K * P6;
         K := X * Two_Over_Pi;
      end loop;

      if K /= K then

         --  K is not a number, because X was not finite

         raise Constraint_Error;
      end if;

      K := Double'Rounding (K);
      Q := Integer (K) mod 4;
      X := (((((X - K * P1) - K * P2) - K * P3)
                  - K * P4) - K * P5) - K * P6;
   end Reduce;

   ----------
   -- Sqrt --
   ----------

   function Sqrt (X : Double) return Double is
      Result  : Double;

   begin
      if X < 0.0 then
         raise Argument_Error;
      end if;

      Asm (Template => "fsqrt",
           Outputs  => Double'Asm_Output ("=t", Result),
           Inputs   => Double'Asm_Input  ("0", X));

      return Result;
   end Sqrt;

   --------------------------------
   -- Other Elementary Functions --
   --------------------------------

   --  These are built using the previously implemented basic functions

   ----------
   -- Acos --
   ----------

   function Acos (X : Double) return Double is
      Result  : Double;

   begin
      Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X)));

      --  The result value is NaN iff input was invalid

      if Is_Nan (Result) then
         raise Argument_Error;
      end if;

      return Result;
   end Acos;

   ----------
   -- Asin --
   ----------

   function Asin (X : Double) return Double is
      Result  : Double;

   begin
      Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X)));

      --  The result value is NaN iff input was invalid

      if Is_Nan (Result) then
         raise Argument_Error;
      end if;

      return Result;
   end Asin;

   ---------
   -- Cos --
   ---------

   function Cos (X : Double) return Double is
      Reduced_X : Double := abs X;
      Result    : Double;
      Quadrant  : Natural range 0 .. 3;

   begin
      if Reduced_X > Pi / 4.0 then
         Reduce (Reduced_X, Quadrant);

         case Quadrant is
            when 0 =>
               Asm (Template  => "fcos",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
            when 1 =>
               Asm (Template  => "fsin",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", -Reduced_X));
            when 2 =>
               Asm (Template  => "fcos ; fchs",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
            when 3 =>
               Asm (Template  => "fsin",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
         end case;

      else
         Asm (Template  => "fcos",
              Outputs  => Double'Asm_Output ("=t", Result),
              Inputs   => Double'Asm_Input  ("0", Reduced_X));
      end if;

      return Result;
   end Cos;

   ---------------------
   -- Logarithmic_Pow --
   ---------------------

   function Logarithmic_Pow (X, Y : Double) return Double is
      Result  : Double;
   begin
      Asm (Template => ""             --  X                  : Y
       & "fyl2x                " & NL --  Y * Log2 (X)
       & "fld     %%st(0)      " & NL --  Y * Log2 (X)       : Y * Log2 (X)
       & "frndint              " & NL --  Int (...)          : Y * Log2 (X)
       & "fsubr   %%st, %%st(1)" & NL --  Int (...)          : Fract (...)
       & "fxch                 " & NL --  Fract (...)        : Int (...)
       & "f2xm1                " & NL --  2**Fract (...) - 1 : Int (...)
       & "fld1                 " & NL --  1 : 2**Fract (...) - 1 : Int (...)
       & "faddp   %%st, %%st(1)" & NL --  2**Fract (...)     : Int (...)
       & "fscale               ",     --  2**(Fract (...) + Int (...))
         Outputs  => Double'Asm_Output ("=t", Result),
         Inputs   =>
           (Double'Asm_Input  ("0", X),
            Double'Asm_Input  ("u", Y)));
      return Result;
   end Logarithmic_Pow;

   ---------
   -- Pow --
   ---------

   function Pow (X, Y : Double) return Double is
      type Mantissa_Type is mod 2**Double'Machine_Mantissa;
      --  Modular type that can hold all bits of the mantissa of Double

      --  For negative exponents, do divide at the end of the processing

      Negative_Y : constant Boolean := Y < 0.0;
      Abs_Y      : constant Double := abs Y;

      --  During this function the following invariant is kept:
      --  X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor

      Base : Double := X;

      Exp_High : Double := Double'Floor (Abs_Y);
      Exp_Mid  : Double;
      Exp_Low  : Double;
      Exp_Int  : Mantissa_Type;

      Factor : Double := 1.0;

   begin
      --  Select algorithm for calculating Pow (integer cases fall through)

      if Exp_High >= 2.0**Double'Machine_Mantissa then

         --  In case of Y that is IEEE infinity, just raise constraint error

         if Exp_High > Double'Safe_Last then
            raise Constraint_Error;
         end if;

         --  Large values of Y are even integers and will stay integer
         --  after division by two.

         loop
            --  Exp_Mid and Exp_Low are zero, so
            --    X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)

            Exp_High := Exp_High / 2.0;
            Base := Base * Base;
            exit when Exp_High < 2.0**Double'Machine_Mantissa;
         end loop;

      elsif Exp_High /= Abs_Y then
         Exp_Low := Abs_Y - Exp_High;
         Factor := 1.0;

         if Exp_Low /= 0.0 then

            --  Exp_Low now is in interval (0.0, 1.0)
            --  Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;

            Exp_Mid := 0.0;
            Exp_Low := Exp_Low - Exp_Mid;

            if Exp_Low >= 0.5 then
               Factor := Sqrt (X);
               Exp_Low := Exp_Low - 0.5;  -- exact

               if Exp_Low >= 0.25 then
                  Factor := Factor * Sqrt (Factor);
                  Exp_Low := Exp_Low - 0.25; --  exact
               end if;

            elsif Exp_Low >= 0.25 then
               Factor := Sqrt (Sqrt (X));
               Exp_Low := Exp_Low - 0.25; --  exact
            end if;

            --  Exp_Low now is in interval (0.0, 0.25)

            --  This means it is safe to call Logarithmic_Pow
            --  for the remaining part.

            Factor := Factor * Logarithmic_Pow (X, Exp_Low);
         end if;

      elsif X = 0.0 then
         return 0.0;
      end if;

      --  Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa

      Exp_Int := Mantissa_Type (Exp_High);

      --  Standard way for processing integer powers > 0

      while Exp_Int > 1 loop
         if (Exp_Int and 1) = 1 then

            --  Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0

            Factor := Factor * Base;
         end if;

         --  Exp_Int is even and Exp_Int > 0, so
         --    Base**Y = (Base**2)**(Exp_Int / 2)

         Base := Base * Base;
         Exp_Int := Exp_Int / 2;
      end loop;

      --  Exp_Int = 1 or Exp_Int = 0

      if Exp_Int = 1 then
         Factor := Base * Factor;
      end if;

      if Negative_Y then
         Factor := 1.0 / Factor;
      end if;

      return Factor;
   end Pow;

   ---------
   -- Sin --
   ---------

   function Sin (X : Double) return Double is
      Reduced_X : Double := X;
      Result    : Double;
      Quadrant  : Natural range 0 .. 3;

   begin
      if abs X > Pi / 4.0 then
         Reduce (Reduced_X, Quadrant);

         case Quadrant is
            when 0 =>
               Asm (Template  => "fsin",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
            when 1 =>
               Asm (Template  => "fcos",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
            when 2 =>
               Asm (Template  => "fsin",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", -Reduced_X));
            when 3 =>
               Asm (Template  => "fcos ; fchs",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
         end case;

      else
         Asm (Template  => "fsin",
            Outputs  => Double'Asm_Output ("=t", Result),
            Inputs   => Double'Asm_Input  ("0", Reduced_X));
      end if;

      return Result;
   end Sin;

   ---------
   -- Tan --
   ---------

   function Tan (X : Double) return Double is
      Reduced_X : Double := X;
      Result    : Double;
      Quadrant  : Natural range 0 .. 3;

   begin
      if abs X > Pi / 4.0 then
         Reduce (Reduced_X, Quadrant);

         if Quadrant mod 2 = 0 then
            Asm (Template  => "fptan" & NL
                            & "ffree   %%st(0)"  & NL
                            & "fincstp",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
         else
            Asm (Template  => "fsincos" & NL
                            & "fdivp   %%st, %%st(1)" & NL
                            & "fchs",
                  Outputs  => Double'Asm_Output ("=t", Result),
                  Inputs   => Double'Asm_Input  ("0", Reduced_X));
         end if;

      else
         Asm (Template  =>
               "fptan                 " & NL
             & "ffree   %%st(0)      " & NL
             & "fincstp              ",
               Outputs  => Double'Asm_Output ("=t", Result),
               Inputs   => Double'Asm_Input  ("0", Reduced_X));
      end if;

      return Result;
   end Tan;

   ----------
   -- Sinh --
   ----------

   function Sinh (X : Double) return Double is
   begin
      --  Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0

      if abs X < 25.0 then
         return (Exp (X) - Exp (-X)) / 2.0;
      else
         return Exp (X) / 2.0;
      end if;
   end Sinh;

   ----------
   -- Cosh --
   ----------

   function Cosh (X : Double) return Double is
   begin
      --  Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0

      if abs X < 22.0 then
         return (Exp (X) + Exp (-X)) / 2.0;
      else
         return Exp (X) / 2.0;
      end if;
   end Cosh;

   ----------
   -- Tanh --
   ----------

   function Tanh (X : Double) return Double is
   begin
      --  Return the Hyperbolic Tangent of x

      --                                    x    -x
      --                                   e  - e        Sinh (X)
      --       Tanh (X) is defined to be -----------   = --------
      --                                    x    -x      Cosh (X)
      --                                   e  + e

      if abs X > 23.0 then
         return Double'Copy_Sign (1.0, X);
      end if;

      return 1.0 / (1.0 + Exp (-(2.0 * X))) - 1.0 / (1.0 + Exp (2.0 * X));
   end Tanh;

end Ada.Numerics.Aux;