1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . V A X _ F L O A T _ O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1997-2009, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This is a dummy body for use on non-Alpha systems so that the library
-- can compile. This dummy version uses ordinary conversions and other
-- arithmetic operations. It is used only for testing purposes in the
-- case where the -gnatdm switch is used to force testing of VMS features
-- on non-VMS systems.
with System.IO;
package body System.Vax_Float_Operations is
pragma Warnings (Off);
-- Warnings about infinite recursion when the -gnatdm switch is used
-----------
-- Abs_F --
-----------
function Abs_F (X : F) return F is
begin
return abs X;
end Abs_F;
-----------
-- Abs_G --
-----------
function Abs_G (X : G) return G is
begin
return abs X;
end Abs_G;
-----------
-- Add_F --
-----------
function Add_F (X, Y : F) return F is
begin
return X + Y;
end Add_F;
-----------
-- Add_G --
-----------
function Add_G (X, Y : G) return G is
begin
return X + Y;
end Add_G;
------------
-- D_To_G --
------------
function D_To_G (X : D) return G is
begin
return G (X);
end D_To_G;
--------------------
-- Debug_Output_D --
--------------------
procedure Debug_Output_D (Arg : D) is
begin
System.IO.Put (D'Image (Arg));
end Debug_Output_D;
--------------------
-- Debug_Output_F --
--------------------
procedure Debug_Output_F (Arg : F) is
begin
System.IO.Put (F'Image (Arg));
end Debug_Output_F;
--------------------
-- Debug_Output_G --
--------------------
procedure Debug_Output_G (Arg : G) is
begin
System.IO.Put (G'Image (Arg));
end Debug_Output_G;
--------------------
-- Debug_String_D --
--------------------
Debug_String_Buffer : String (1 .. 32);
-- Buffer used by all Debug_String_x routines for returning result
function Debug_String_D (Arg : D) return System.Address is
Image_String : constant String := D'Image (Arg) & ASCII.NUL;
Image_Size : constant Integer := Image_String'Length;
begin
Debug_String_Buffer (1 .. Image_Size) := Image_String;
return Debug_String_Buffer (1)'Address;
end Debug_String_D;
--------------------
-- Debug_String_F --
--------------------
function Debug_String_F (Arg : F) return System.Address is
Image_String : constant String := F'Image (Arg) & ASCII.NUL;
Image_Size : constant Integer := Image_String'Length;
begin
Debug_String_Buffer (1 .. Image_Size) := Image_String;
return Debug_String_Buffer (1)'Address;
end Debug_String_F;
--------------------
-- Debug_String_G --
--------------------
function Debug_String_G (Arg : G) return System.Address is
Image_String : constant String := G'Image (Arg) & ASCII.NUL;
Image_Size : constant Integer := Image_String'Length;
begin
Debug_String_Buffer (1 .. Image_Size) := Image_String;
return Debug_String_Buffer (1)'Address;
end Debug_String_G;
-----------
-- Div_F --
-----------
function Div_F (X, Y : F) return F is
begin
return X / Y;
end Div_F;
-----------
-- Div_G --
-----------
function Div_G (X, Y : G) return G is
begin
return X / Y;
end Div_G;
----------
-- Eq_F --
----------
function Eq_F (X, Y : F) return Boolean is
begin
return X = Y;
end Eq_F;
----------
-- Eq_G --
----------
function Eq_G (X, Y : G) return Boolean is
begin
return X = Y;
end Eq_G;
------------
-- F_To_G --
------------
function F_To_G (X : F) return G is
begin
return G (X);
end F_To_G;
------------
-- F_To_Q --
------------
function F_To_Q (X : F) return Q is
begin
return Q (X);
end F_To_Q;
------------
-- F_To_S --
------------
function F_To_S (X : F) return S is
begin
return S (X);
end F_To_S;
------------
-- G_To_D --
------------
function G_To_D (X : G) return D is
begin
return D (X);
end G_To_D;
------------
-- G_To_F --
------------
function G_To_F (X : G) return F is
begin
return F (X);
end G_To_F;
------------
-- G_To_Q --
------------
function G_To_Q (X : G) return Q is
begin
return Q (X);
end G_To_Q;
------------
-- G_To_T --
------------
function G_To_T (X : G) return T is
begin
return T (X);
end G_To_T;
----------
-- Le_F --
----------
function Le_F (X, Y : F) return Boolean is
begin
return X <= Y;
end Le_F;
----------
-- Le_G --
----------
function Le_G (X, Y : G) return Boolean is
begin
return X <= Y;
end Le_G;
----------
-- Lt_F --
----------
function Lt_F (X, Y : F) return Boolean is
begin
return X < Y;
end Lt_F;
----------
-- Lt_G --
----------
function Lt_G (X, Y : G) return Boolean is
begin
return X < Y;
end Lt_G;
-----------
-- Mul_F --
-----------
function Mul_F (X, Y : F) return F is
begin
return X * Y;
end Mul_F;
-----------
-- Mul_G --
-----------
function Mul_G (X, Y : G) return G is
begin
return X * Y;
end Mul_G;
----------
-- Ne_F --
----------
function Ne_F (X, Y : F) return Boolean is
begin
return X /= Y;
end Ne_F;
----------
-- Ne_G --
----------
function Ne_G (X, Y : G) return Boolean is
begin
return X /= Y;
end Ne_G;
-----------
-- Neg_F --
-----------
function Neg_F (X : F) return F is
begin
return -X;
end Neg_F;
-----------
-- Neg_G --
-----------
function Neg_G (X : G) return G is
begin
return -X;
end Neg_G;
--------
-- pd --
--------
procedure pd (Arg : D) is
begin
System.IO.Put_Line (D'Image (Arg));
end pd;
--------
-- pf --
--------
procedure pf (Arg : F) is
begin
System.IO.Put_Line (F'Image (Arg));
end pf;
--------
-- pg --
--------
procedure pg (Arg : G) is
begin
System.IO.Put_Line (G'Image (Arg));
end pg;
------------
-- Q_To_F --
------------
function Q_To_F (X : Q) return F is
begin
return F (X);
end Q_To_F;
------------
-- Q_To_G --
------------
function Q_To_G (X : Q) return G is
begin
return G (X);
end Q_To_G;
------------
-- S_To_F --
------------
function S_To_F (X : S) return F is
begin
return F (X);
end S_To_F;
--------------
-- Return_D --
--------------
function Return_D (X : D) return D is
begin
return X;
end Return_D;
--------------
-- Return_F --
--------------
function Return_F (X : F) return F is
begin
return X;
end Return_F;
--------------
-- Return_G --
--------------
function Return_G (X : G) return G is
begin
return X;
end Return_G;
-----------
-- Sub_F --
-----------
function Sub_F (X, Y : F) return F is
begin
return X - Y;
end Sub_F;
-----------
-- Sub_G --
-----------
function Sub_G (X, Y : G) return G is
begin
return X - Y;
end Sub_G;
------------
-- T_To_D --
------------
function T_To_D (X : T) return D is
begin
return G_To_D (T_To_G (X));
end T_To_D;
------------
-- T_To_G --
------------
function T_To_G (X : T) return G is
begin
return G (X);
end T_To_G;
-------------
-- Valid_D --
-------------
-- For now, convert to IEEE and do Valid test on result. This is not quite
-- accurate, but is good enough in practice.
function Valid_D (Arg : D) return Boolean is
Val : constant T := G_To_T (D_To_G (Arg));
begin
return Val'Valid;
end Valid_D;
-------------
-- Valid_F --
-------------
-- For now, convert to IEEE and do Valid test on result. This is not quite
-- accurate, but is good enough in practice.
function Valid_F (Arg : F) return Boolean is
Val : constant S := F_To_S (Arg);
begin
return Val'Valid;
end Valid_F;
-------------
-- Valid_G --
-------------
-- For now, convert to IEEE and do Valid test on result. This is not quite
-- accurate, but is good enough in practice.
function Valid_G (Arg : G) return Boolean is
Val : constant T := G_To_T (Arg);
begin
return Val'Valid;
end Valid_G;
end System.Vax_Float_Operations;
|