1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
|
/* ieee754-sf.S single-precision floating point support for ARM
Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by Nicolas Pitre (nico@cam.org)
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/*
* Notes:
*
* The goal of this code is to be as fast as possible. This is
* not meant to be easy to understand for the casual reader.
*
* Only the default rounding mode is intended for best performances.
* Exceptions aren't supported yet, but that can be added quite easily
* if necessary without impacting performances.
*/
#ifdef L_arm_negsf2
ARM_FUNC_START negsf2
ARM_FUNC_ALIAS aeabi_fneg negsf2
eor r0, r0, #0x80000000 @ flip sign bit
RET
FUNC_END aeabi_fneg
FUNC_END negsf2
#endif
#ifdef L_arm_addsubsf3
ARM_FUNC_START aeabi_frsub
eor r0, r0, #0x80000000 @ flip sign bit of first arg
b 1f
ARM_FUNC_START subsf3
ARM_FUNC_ALIAS aeabi_fsub subsf3
eor r1, r1, #0x80000000 @ flip sign bit of second arg
#if defined(__INTERWORKING_STUBS__)
b 1f @ Skip Thumb-code prologue
#endif
ARM_FUNC_START addsf3
ARM_FUNC_ALIAS aeabi_fadd addsf3
1: @ Look for zeroes, equal values, INF, or NAN.
movs r2, r0, lsl #1
do_it ne, ttt
COND(mov,s,ne) r3, r1, lsl #1
teqne r2, r3
COND(mvn,s,ne) ip, r2, asr #24
COND(mvn,s,ne) ip, r3, asr #24
beq LSYM(Lad_s)
@ Compute exponent difference. Make largest exponent in r2,
@ corresponding arg in r0, and positive exponent difference in r3.
mov r2, r2, lsr #24
rsbs r3, r2, r3, lsr #24
do_it gt, ttt
addgt r2, r2, r3
eorgt r1, r0, r1
eorgt r0, r1, r0
eorgt r1, r0, r1
do_it lt
rsblt r3, r3, #0
@ If exponent difference is too large, return largest argument
@ already in r0. We need up to 25 bit to handle proper rounding
@ of 0x1p25 - 1.1.
cmp r3, #25
do_it hi
RETc(hi)
@ Convert mantissa to signed integer.
tst r0, #0x80000000
orr r0, r0, #0x00800000
bic r0, r0, #0xff000000
do_it ne
rsbne r0, r0, #0
tst r1, #0x80000000
orr r1, r1, #0x00800000
bic r1, r1, #0xff000000
do_it ne
rsbne r1, r1, #0
@ If exponent == difference, one or both args were denormalized.
@ Since this is not common case, rescale them off line.
teq r2, r3
beq LSYM(Lad_d)
LSYM(Lad_x):
@ Compensate for the exponent overlapping the mantissa MSB added later
sub r2, r2, #1
@ Shift and add second arg to first arg in r0.
@ Keep leftover bits into r1.
shiftop adds r0 r0 r1 asr r3 ip
rsb r3, r3, #32
shift1 lsl, r1, r1, r3
@ Keep absolute value in r0-r1, sign in r3 (the n bit was set above)
and r3, r0, #0x80000000
bpl LSYM(Lad_p)
#if defined(__thumb2__)
negs r1, r1
sbc r0, r0, r0, lsl #1
#else
rsbs r1, r1, #0
rsc r0, r0, #0
#endif
@ Determine how to normalize the result.
LSYM(Lad_p):
cmp r0, #0x00800000
bcc LSYM(Lad_a)
cmp r0, #0x01000000
bcc LSYM(Lad_e)
@ Result needs to be shifted right.
movs r0, r0, lsr #1
mov r1, r1, rrx
add r2, r2, #1
@ Make sure we did not bust our exponent.
cmp r2, #254
bhs LSYM(Lad_o)
@ Our result is now properly aligned into r0, remaining bits in r1.
@ Pack final result together.
@ Round with MSB of r1. If halfway between two numbers, round towards
@ LSB of r0 = 0.
LSYM(Lad_e):
cmp r1, #0x80000000
adc r0, r0, r2, lsl #23
do_it eq
biceq r0, r0, #1
orr r0, r0, r3
RET
@ Result must be shifted left and exponent adjusted.
LSYM(Lad_a):
movs r1, r1, lsl #1
adc r0, r0, r0
tst r0, #0x00800000
sub r2, r2, #1
bne LSYM(Lad_e)
@ No rounding necessary since r1 will always be 0 at this point.
LSYM(Lad_l):
#if __ARM_ARCH__ < 5
movs ip, r0, lsr #12
moveq r0, r0, lsl #12
subeq r2, r2, #12
tst r0, #0x00ff0000
moveq r0, r0, lsl #8
subeq r2, r2, #8
tst r0, #0x00f00000
moveq r0, r0, lsl #4
subeq r2, r2, #4
tst r0, #0x00c00000
moveq r0, r0, lsl #2
subeq r2, r2, #2
cmp r0, #0x00800000
movcc r0, r0, lsl #1
sbcs r2, r2, #0
#else
clz ip, r0
sub ip, ip, #8
subs r2, r2, ip
shift1 lsl, r0, r0, ip
#endif
@ Final result with sign
@ If exponent negative, denormalize result.
do_it ge, et
addge r0, r0, r2, lsl #23
rsblt r2, r2, #0
orrge r0, r0, r3
#if defined(__thumb2__)
do_it lt, t
lsrlt r0, r0, r2
orrlt r0, r3, r0
#else
orrlt r0, r3, r0, lsr r2
#endif
RET
@ Fixup and adjust bit position for denormalized arguments.
@ Note that r2 must not remain equal to 0.
LSYM(Lad_d):
teq r2, #0
eor r1, r1, #0x00800000
do_it eq, te
eoreq r0, r0, #0x00800000
addeq r2, r2, #1
subne r3, r3, #1
b LSYM(Lad_x)
LSYM(Lad_s):
mov r3, r1, lsl #1
mvns ip, r2, asr #24
do_it ne
COND(mvn,s,ne) ip, r3, asr #24
beq LSYM(Lad_i)
teq r2, r3
beq 1f
@ Result is x + 0.0 = x or 0.0 + y = y.
teq r2, #0
do_it eq
moveq r0, r1
RET
1: teq r0, r1
@ Result is x - x = 0.
do_it ne, t
movne r0, #0
RETc(ne)
@ Result is x + x = 2x.
tst r2, #0xff000000
bne 2f
movs r0, r0, lsl #1
do_it cs
orrcs r0, r0, #0x80000000
RET
2: adds r2, r2, #(2 << 24)
do_it cc, t
addcc r0, r0, #(1 << 23)
RETc(cc)
and r3, r0, #0x80000000
@ Overflow: return INF.
LSYM(Lad_o):
orr r0, r3, #0x7f000000
orr r0, r0, #0x00800000
RET
@ At least one of r0/r1 is INF/NAN.
@ if r0 != INF/NAN: return r1 (which is INF/NAN)
@ if r1 != INF/NAN: return r0 (which is INF/NAN)
@ if r0 or r1 is NAN: return NAN
@ if opposite sign: return NAN
@ otherwise return r0 (which is INF or -INF)
LSYM(Lad_i):
mvns r2, r2, asr #24
do_it ne, et
movne r0, r1
COND(mvn,s,eq) r3, r3, asr #24
movne r1, r0
movs r2, r0, lsl #9
do_it eq, te
COND(mov,s,eq) r3, r1, lsl #9
teqeq r0, r1
orrne r0, r0, #0x00400000 @ quiet NAN
RET
FUNC_END aeabi_frsub
FUNC_END aeabi_fadd
FUNC_END addsf3
FUNC_END aeabi_fsub
FUNC_END subsf3
ARM_FUNC_START floatunsisf
ARM_FUNC_ALIAS aeabi_ui2f floatunsisf
mov r3, #0
b 1f
ARM_FUNC_START floatsisf
ARM_FUNC_ALIAS aeabi_i2f floatsisf
ands r3, r0, #0x80000000
do_it mi
rsbmi r0, r0, #0
1: movs ip, r0
do_it eq
RETc(eq)
@ Add initial exponent to sign
orr r3, r3, #((127 + 23) << 23)
.ifnc ah, r0
mov ah, r0
.endif
mov al, #0
b 2f
FUNC_END aeabi_i2f
FUNC_END floatsisf
FUNC_END aeabi_ui2f
FUNC_END floatunsisf
ARM_FUNC_START floatundisf
ARM_FUNC_ALIAS aeabi_ul2f floatundisf
orrs r2, r0, r1
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
do_it eq, t
mvfeqs f0, #0.0
#else
do_it eq
#endif
RETc(eq)
mov r3, #0
b 1f
ARM_FUNC_START floatdisf
ARM_FUNC_ALIAS aeabi_l2f floatdisf
orrs r2, r0, r1
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
do_it eq, t
mvfeqs f0, #0.0
#else
do_it eq
#endif
RETc(eq)
ands r3, ah, #0x80000000 @ sign bit in r3
bpl 1f
#if defined(__thumb2__)
negs al, al
sbc ah, ah, ah, lsl #1
#else
rsbs al, al, #0
rsc ah, ah, #0
#endif
1:
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
@ For hard FPA code we want to return via the tail below so that
@ we can return the result in f0 as well as in r0 for backwards
@ compatibility.
str lr, [sp, #-8]!
adr lr, LSYM(f0_ret)
#endif
movs ip, ah
do_it eq, tt
moveq ip, al
moveq ah, al
moveq al, #0
@ Add initial exponent to sign
orr r3, r3, #((127 + 23 + 32) << 23)
do_it eq
subeq r3, r3, #(32 << 23)
2: sub r3, r3, #(1 << 23)
#if __ARM_ARCH__ < 5
mov r2, #23
cmp ip, #(1 << 16)
do_it hs, t
movhs ip, ip, lsr #16
subhs r2, r2, #16
cmp ip, #(1 << 8)
do_it hs, t
movhs ip, ip, lsr #8
subhs r2, r2, #8
cmp ip, #(1 << 4)
do_it hs, t
movhs ip, ip, lsr #4
subhs r2, r2, #4
cmp ip, #(1 << 2)
do_it hs, e
subhs r2, r2, #2
sublo r2, r2, ip, lsr #1
subs r2, r2, ip, lsr #3
#else
clz r2, ip
subs r2, r2, #8
#endif
sub r3, r3, r2, lsl #23
blt 3f
shiftop add r3 r3 ah lsl r2 ip
shift1 lsl, ip, al, r2
rsb r2, r2, #32
cmp ip, #0x80000000
shiftop adc r0 r3 al lsr r2 r2
do_it eq
biceq r0, r0, #1
RET
3: add r2, r2, #32
shift1 lsl, ip, ah, r2
rsb r2, r2, #32
orrs al, al, ip, lsl #1
shiftop adc r0 r3 ah lsr r2 r2
do_it eq
biceq r0, r0, ip, lsr #31
RET
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
LSYM(f0_ret):
str r0, [sp, #-4]!
ldfs f0, [sp], #4
RETLDM
#endif
FUNC_END floatdisf
FUNC_END aeabi_l2f
FUNC_END floatundisf
FUNC_END aeabi_ul2f
#endif /* L_addsubsf3 */
#ifdef L_arm_muldivsf3
ARM_FUNC_START mulsf3
ARM_FUNC_ALIAS aeabi_fmul mulsf3
@ Mask out exponents, trap any zero/denormal/INF/NAN.
mov ip, #0xff
ands r2, ip, r0, lsr #23
do_it ne, tt
COND(and,s,ne) r3, ip, r1, lsr #23
teqne r2, ip
teqne r3, ip
beq LSYM(Lml_s)
LSYM(Lml_x):
@ Add exponents together
add r2, r2, r3
@ Determine final sign.
eor ip, r0, r1
@ Convert mantissa to unsigned integer.
@ If power of two, branch to a separate path.
@ Make up for final alignment.
movs r0, r0, lsl #9
do_it ne
COND(mov,s,ne) r1, r1, lsl #9
beq LSYM(Lml_1)
mov r3, #0x08000000
orr r0, r3, r0, lsr #5
orr r1, r3, r1, lsr #5
#if __ARM_ARCH__ < 4
@ Put sign bit in r3, which will be restored into r0 later.
and r3, ip, #0x80000000
@ Well, no way to make it shorter without the umull instruction.
do_push {r3, r4, r5}
mov r4, r0, lsr #16
mov r5, r1, lsr #16
bic r0, r0, r4, lsl #16
bic r1, r1, r5, lsl #16
mul ip, r4, r5
mul r3, r0, r1
mul r0, r5, r0
mla r0, r4, r1, r0
adds r3, r3, r0, lsl #16
adc r1, ip, r0, lsr #16
do_pop {r0, r4, r5}
#else
@ The actual multiplication.
umull r3, r1, r0, r1
@ Put final sign in r0.
and r0, ip, #0x80000000
#endif
@ Adjust result upon the MSB position.
cmp r1, #(1 << 23)
do_it cc, tt
movcc r1, r1, lsl #1
orrcc r1, r1, r3, lsr #31
movcc r3, r3, lsl #1
@ Add sign to result.
orr r0, r0, r1
@ Apply exponent bias, check for under/overflow.
sbc r2, r2, #127
cmp r2, #(254 - 1)
bhi LSYM(Lml_u)
@ Round the result, merge final exponent.
cmp r3, #0x80000000
adc r0, r0, r2, lsl #23
do_it eq
biceq r0, r0, #1
RET
@ Multiplication by 0x1p*: let''s shortcut a lot of code.
LSYM(Lml_1):
teq r0, #0
and ip, ip, #0x80000000
do_it eq
moveq r1, r1, lsl #9
orr r0, ip, r0, lsr #9
orr r0, r0, r1, lsr #9
subs r2, r2, #127
do_it gt, tt
COND(rsb,s,gt) r3, r2, #255
orrgt r0, r0, r2, lsl #23
RETc(gt)
@ Under/overflow: fix things up for the code below.
orr r0, r0, #0x00800000
mov r3, #0
subs r2, r2, #1
LSYM(Lml_u):
@ Overflow?
bgt LSYM(Lml_o)
@ Check if denormalized result is possible, otherwise return signed 0.
cmn r2, #(24 + 1)
do_it le, t
bicle r0, r0, #0x7fffffff
RETc(le)
@ Shift value right, round, etc.
rsb r2, r2, #0
movs r1, r0, lsl #1
shift1 lsr, r1, r1, r2
rsb r2, r2, #32
shift1 lsl, ip, r0, r2
movs r0, r1, rrx
adc r0, r0, #0
orrs r3, r3, ip, lsl #1
do_it eq
biceq r0, r0, ip, lsr #31
RET
@ One or both arguments are denormalized.
@ Scale them leftwards and preserve sign bit.
LSYM(Lml_d):
teq r2, #0
and ip, r0, #0x80000000
1: do_it eq, tt
moveq r0, r0, lsl #1
tsteq r0, #0x00800000
subeq r2, r2, #1
beq 1b
orr r0, r0, ip
teq r3, #0
and ip, r1, #0x80000000
2: do_it eq, tt
moveq r1, r1, lsl #1
tsteq r1, #0x00800000
subeq r3, r3, #1
beq 2b
orr r1, r1, ip
b LSYM(Lml_x)
LSYM(Lml_s):
@ Isolate the INF and NAN cases away
and r3, ip, r1, lsr #23
teq r2, ip
do_it ne
teqne r3, ip
beq 1f
@ Here, one or more arguments are either denormalized or zero.
bics ip, r0, #0x80000000
do_it ne
COND(bic,s,ne) ip, r1, #0x80000000
bne LSYM(Lml_d)
@ Result is 0, but determine sign anyway.
LSYM(Lml_z):
eor r0, r0, r1
bic r0, r0, #0x7fffffff
RET
1: @ One or both args are INF or NAN.
teq r0, #0x0
do_it ne, ett
teqne r0, #0x80000000
moveq r0, r1
teqne r1, #0x0
teqne r1, #0x80000000
beq LSYM(Lml_n) @ 0 * INF or INF * 0 -> NAN
teq r2, ip
bne 1f
movs r2, r0, lsl #9
bne LSYM(Lml_n) @ NAN * <anything> -> NAN
1: teq r3, ip
bne LSYM(Lml_i)
movs r3, r1, lsl #9
do_it ne
movne r0, r1
bne LSYM(Lml_n) @ <anything> * NAN -> NAN
@ Result is INF, but we need to determine its sign.
LSYM(Lml_i):
eor r0, r0, r1
@ Overflow: return INF (sign already in r0).
LSYM(Lml_o):
and r0, r0, #0x80000000
orr r0, r0, #0x7f000000
orr r0, r0, #0x00800000
RET
@ Return a quiet NAN.
LSYM(Lml_n):
orr r0, r0, #0x7f000000
orr r0, r0, #0x00c00000
RET
FUNC_END aeabi_fmul
FUNC_END mulsf3
ARM_FUNC_START divsf3
ARM_FUNC_ALIAS aeabi_fdiv divsf3
@ Mask out exponents, trap any zero/denormal/INF/NAN.
mov ip, #0xff
ands r2, ip, r0, lsr #23
do_it ne, tt
COND(and,s,ne) r3, ip, r1, lsr #23
teqne r2, ip
teqne r3, ip
beq LSYM(Ldv_s)
LSYM(Ldv_x):
@ Substract divisor exponent from dividend''s
sub r2, r2, r3
@ Preserve final sign into ip.
eor ip, r0, r1
@ Convert mantissa to unsigned integer.
@ Dividend -> r3, divisor -> r1.
movs r1, r1, lsl #9
mov r0, r0, lsl #9
beq LSYM(Ldv_1)
mov r3, #0x10000000
orr r1, r3, r1, lsr #4
orr r3, r3, r0, lsr #4
@ Initialize r0 (result) with final sign bit.
and r0, ip, #0x80000000
@ Ensure result will land to known bit position.
@ Apply exponent bias accordingly.
cmp r3, r1
do_it cc
movcc r3, r3, lsl #1
adc r2, r2, #(127 - 2)
@ The actual division loop.
mov ip, #0x00800000
1: cmp r3, r1
do_it cs, t
subcs r3, r3, r1
orrcs r0, r0, ip
cmp r3, r1, lsr #1
do_it cs, t
subcs r3, r3, r1, lsr #1
orrcs r0, r0, ip, lsr #1
cmp r3, r1, lsr #2
do_it cs, t
subcs r3, r3, r1, lsr #2
orrcs r0, r0, ip, lsr #2
cmp r3, r1, lsr #3
do_it cs, t
subcs r3, r3, r1, lsr #3
orrcs r0, r0, ip, lsr #3
movs r3, r3, lsl #4
do_it ne
COND(mov,s,ne) ip, ip, lsr #4
bne 1b
@ Check exponent for under/overflow.
cmp r2, #(254 - 1)
bhi LSYM(Lml_u)
@ Round the result, merge final exponent.
cmp r3, r1
adc r0, r0, r2, lsl #23
do_it eq
biceq r0, r0, #1
RET
@ Division by 0x1p*: let''s shortcut a lot of code.
LSYM(Ldv_1):
and ip, ip, #0x80000000
orr r0, ip, r0, lsr #9
adds r2, r2, #127
do_it gt, tt
COND(rsb,s,gt) r3, r2, #255
orrgt r0, r0, r2, lsl #23
RETc(gt)
orr r0, r0, #0x00800000
mov r3, #0
subs r2, r2, #1
b LSYM(Lml_u)
@ One or both arguments are denormalized.
@ Scale them leftwards and preserve sign bit.
LSYM(Ldv_d):
teq r2, #0
and ip, r0, #0x80000000
1: do_it eq, tt
moveq r0, r0, lsl #1
tsteq r0, #0x00800000
subeq r2, r2, #1
beq 1b
orr r0, r0, ip
teq r3, #0
and ip, r1, #0x80000000
2: do_it eq, tt
moveq r1, r1, lsl #1
tsteq r1, #0x00800000
subeq r3, r3, #1
beq 2b
orr r1, r1, ip
b LSYM(Ldv_x)
@ One or both arguments are either INF, NAN, zero or denormalized.
LSYM(Ldv_s):
and r3, ip, r1, lsr #23
teq r2, ip
bne 1f
movs r2, r0, lsl #9
bne LSYM(Lml_n) @ NAN / <anything> -> NAN
teq r3, ip
bne LSYM(Lml_i) @ INF / <anything> -> INF
mov r0, r1
b LSYM(Lml_n) @ INF / (INF or NAN) -> NAN
1: teq r3, ip
bne 2f
movs r3, r1, lsl #9
beq LSYM(Lml_z) @ <anything> / INF -> 0
mov r0, r1
b LSYM(Lml_n) @ <anything> / NAN -> NAN
2: @ If both are nonzero, we need to normalize and resume above.
bics ip, r0, #0x80000000
do_it ne
COND(bic,s,ne) ip, r1, #0x80000000
bne LSYM(Ldv_d)
@ One or both arguments are zero.
bics r2, r0, #0x80000000
bne LSYM(Lml_i) @ <non_zero> / 0 -> INF
bics r3, r1, #0x80000000
bne LSYM(Lml_z) @ 0 / <non_zero> -> 0
b LSYM(Lml_n) @ 0 / 0 -> NAN
FUNC_END aeabi_fdiv
FUNC_END divsf3
#endif /* L_muldivsf3 */
#ifdef L_arm_cmpsf2
@ The return value in r0 is
@
@ 0 if the operands are equal
@ 1 if the first operand is greater than the second, or
@ the operands are unordered and the operation is
@ CMP, LT, LE, NE, or EQ.
@ -1 if the first operand is less than the second, or
@ the operands are unordered and the operation is GT
@ or GE.
@
@ The Z flag will be set iff the operands are equal.
@
@ The following registers are clobbered by this function:
@ ip, r0, r1, r2, r3
ARM_FUNC_START gtsf2
ARM_FUNC_ALIAS gesf2 gtsf2
mov ip, #-1
b 1f
ARM_FUNC_START ltsf2
ARM_FUNC_ALIAS lesf2 ltsf2
mov ip, #1
b 1f
ARM_FUNC_START cmpsf2
ARM_FUNC_ALIAS nesf2 cmpsf2
ARM_FUNC_ALIAS eqsf2 cmpsf2
mov ip, #1 @ how should we specify unordered here?
1: str ip, [sp, #-4]!
@ Trap any INF/NAN first.
mov r2, r0, lsl #1
mov r3, r1, lsl #1
mvns ip, r2, asr #24
do_it ne
COND(mvn,s,ne) ip, r3, asr #24
beq 3f
@ Compare values.
@ Note that 0.0 is equal to -0.0.
2: add sp, sp, #4
orrs ip, r2, r3, lsr #1 @ test if both are 0, clear C flag
do_it ne
teqne r0, r1 @ if not 0 compare sign
do_it pl
COND(sub,s,pl) r0, r2, r3 @ if same sign compare values, set r0
@ Result:
do_it hi
movhi r0, r1, asr #31
do_it lo
mvnlo r0, r1, asr #31
do_it ne
orrne r0, r0, #1
RET
@ Look for a NAN.
3: mvns ip, r2, asr #24
bne 4f
movs ip, r0, lsl #9
bne 5f @ r0 is NAN
4: mvns ip, r3, asr #24
bne 2b
movs ip, r1, lsl #9
beq 2b @ r1 is not NAN
5: ldr r0, [sp], #4 @ return unordered code.
RET
FUNC_END gesf2
FUNC_END gtsf2
FUNC_END lesf2
FUNC_END ltsf2
FUNC_END nesf2
FUNC_END eqsf2
FUNC_END cmpsf2
ARM_FUNC_START aeabi_cfrcmple
mov ip, r0
mov r0, r1
mov r1, ip
b 6f
ARM_FUNC_START aeabi_cfcmpeq
ARM_FUNC_ALIAS aeabi_cfcmple aeabi_cfcmpeq
@ The status-returning routines are required to preserve all
@ registers except ip, lr, and cpsr.
6: do_push {r0, r1, r2, r3, lr}
ARM_CALL cmpsf2
@ Set the Z flag correctly, and the C flag unconditionally.
cmp r0, #0
@ Clear the C flag if the return value was -1, indicating
@ that the first operand was smaller than the second.
do_it mi
cmnmi r0, #0
RETLDM "r0, r1, r2, r3"
FUNC_END aeabi_cfcmple
FUNC_END aeabi_cfcmpeq
FUNC_END aeabi_cfrcmple
ARM_FUNC_START aeabi_fcmpeq
str lr, [sp, #-8]!
ARM_CALL aeabi_cfcmple
do_it eq, e
moveq r0, #1 @ Equal to.
movne r0, #0 @ Less than, greater than, or unordered.
RETLDM
FUNC_END aeabi_fcmpeq
ARM_FUNC_START aeabi_fcmplt
str lr, [sp, #-8]!
ARM_CALL aeabi_cfcmple
do_it cc, e
movcc r0, #1 @ Less than.
movcs r0, #0 @ Equal to, greater than, or unordered.
RETLDM
FUNC_END aeabi_fcmplt
ARM_FUNC_START aeabi_fcmple
str lr, [sp, #-8]!
ARM_CALL aeabi_cfcmple
do_it ls, e
movls r0, #1 @ Less than or equal to.
movhi r0, #0 @ Greater than or unordered.
RETLDM
FUNC_END aeabi_fcmple
ARM_FUNC_START aeabi_fcmpge
str lr, [sp, #-8]!
ARM_CALL aeabi_cfrcmple
do_it ls, e
movls r0, #1 @ Operand 2 is less than or equal to operand 1.
movhi r0, #0 @ Operand 2 greater than operand 1, or unordered.
RETLDM
FUNC_END aeabi_fcmpge
ARM_FUNC_START aeabi_fcmpgt
str lr, [sp, #-8]!
ARM_CALL aeabi_cfrcmple
do_it cc, e
movcc r0, #1 @ Operand 2 is less than operand 1.
movcs r0, #0 @ Operand 2 is greater than or equal to operand 1,
@ or they are unordered.
RETLDM
FUNC_END aeabi_fcmpgt
#endif /* L_cmpsf2 */
#ifdef L_arm_unordsf2
ARM_FUNC_START unordsf2
ARM_FUNC_ALIAS aeabi_fcmpun unordsf2
mov r2, r0, lsl #1
mov r3, r1, lsl #1
mvns ip, r2, asr #24
bne 1f
movs ip, r0, lsl #9
bne 3f @ r0 is NAN
1: mvns ip, r3, asr #24
bne 2f
movs ip, r1, lsl #9
bne 3f @ r1 is NAN
2: mov r0, #0 @ arguments are ordered.
RET
3: mov r0, #1 @ arguments are unordered.
RET
FUNC_END aeabi_fcmpun
FUNC_END unordsf2
#endif /* L_unordsf2 */
#ifdef L_arm_fixsfsi
ARM_FUNC_START fixsfsi
ARM_FUNC_ALIAS aeabi_f2iz fixsfsi
@ check exponent range.
mov r2, r0, lsl #1
cmp r2, #(127 << 24)
bcc 1f @ value is too small
mov r3, #(127 + 31)
subs r2, r3, r2, lsr #24
bls 2f @ value is too large
@ scale value
mov r3, r0, lsl #8
orr r3, r3, #0x80000000
tst r0, #0x80000000 @ the sign bit
shift1 lsr, r0, r3, r2
do_it ne
rsbne r0, r0, #0
RET
1: mov r0, #0
RET
2: cmp r2, #(127 + 31 - 0xff)
bne 3f
movs r2, r0, lsl #9
bne 4f @ r0 is NAN.
3: ands r0, r0, #0x80000000 @ the sign bit
do_it eq
moveq r0, #0x7fffffff @ the maximum signed positive si
RET
4: mov r0, #0 @ What should we convert NAN to?
RET
FUNC_END aeabi_f2iz
FUNC_END fixsfsi
#endif /* L_fixsfsi */
#ifdef L_arm_fixunssfsi
ARM_FUNC_START fixunssfsi
ARM_FUNC_ALIAS aeabi_f2uiz fixunssfsi
@ check exponent range.
movs r2, r0, lsl #1
bcs 1f @ value is negative
cmp r2, #(127 << 24)
bcc 1f @ value is too small
mov r3, #(127 + 31)
subs r2, r3, r2, lsr #24
bmi 2f @ value is too large
@ scale the value
mov r3, r0, lsl #8
orr r3, r3, #0x80000000
shift1 lsr, r0, r3, r2
RET
1: mov r0, #0
RET
2: cmp r2, #(127 + 31 - 0xff)
bne 3f
movs r2, r0, lsl #9
bne 4f @ r0 is NAN.
3: mov r0, #0xffffffff @ maximum unsigned si
RET
4: mov r0, #0 @ What should we convert NAN to?
RET
FUNC_END aeabi_f2uiz
FUNC_END fixunssfsi
#endif /* L_fixunssfsi */
|