1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
|
/* Definitions for the Blackfin port.
Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
Contributed by Analog Devices.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef _BFIN_CONFIG
#define _BFIN_CONFIG
#define OBJECT_FORMAT_ELF
#define BRT 1
#define BRF 0
/* CPU type. */
typedef enum bfin_cpu_type
{
BFIN_CPU_UNKNOWN,
BFIN_CPU_BF512,
BFIN_CPU_BF514,
BFIN_CPU_BF516,
BFIN_CPU_BF518,
BFIN_CPU_BF522,
BFIN_CPU_BF523,
BFIN_CPU_BF524,
BFIN_CPU_BF525,
BFIN_CPU_BF526,
BFIN_CPU_BF527,
BFIN_CPU_BF531,
BFIN_CPU_BF532,
BFIN_CPU_BF533,
BFIN_CPU_BF534,
BFIN_CPU_BF536,
BFIN_CPU_BF537,
BFIN_CPU_BF538,
BFIN_CPU_BF539,
BFIN_CPU_BF542,
BFIN_CPU_BF542M,
BFIN_CPU_BF544,
BFIN_CPU_BF544M,
BFIN_CPU_BF547,
BFIN_CPU_BF547M,
BFIN_CPU_BF548,
BFIN_CPU_BF548M,
BFIN_CPU_BF549,
BFIN_CPU_BF549M,
BFIN_CPU_BF561
} bfin_cpu_t;
/* Value of -mcpu= */
extern bfin_cpu_t bfin_cpu_type;
/* Value of -msi-revision= */
extern int bfin_si_revision;
extern unsigned int bfin_workarounds;
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (BlackFin bfin)")
/* Predefinition in the preprocessor for this target machine */
#ifndef TARGET_CPU_CPP_BUILTINS
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_define_std ("bfin"); \
builtin_define_std ("BFIN"); \
builtin_define ("__ADSPBLACKFIN__"); \
builtin_define ("__ADSPLPBLACKFIN__"); \
\
switch (bfin_cpu_type) \
{ \
case BFIN_CPU_BF512: \
builtin_define ("__ADSPBF512__"); \
builtin_define ("__ADSPBF51x__"); \
break; \
case BFIN_CPU_BF514: \
builtin_define ("__ADSPBF514__"); \
builtin_define ("__ADSPBF51x__"); \
break; \
case BFIN_CPU_BF516: \
builtin_define ("__ADSPBF516__"); \
builtin_define ("__ADSPBF51x__"); \
break; \
case BFIN_CPU_BF518: \
builtin_define ("__ADSPBF518__"); \
builtin_define ("__ADSPBF51x__"); \
break; \
case BFIN_CPU_BF522: \
builtin_define ("__ADSPBF522__"); \
builtin_define ("__ADSPBF52x__"); \
break; \
case BFIN_CPU_BF523: \
builtin_define ("__ADSPBF523__"); \
builtin_define ("__ADSPBF52x__"); \
break; \
case BFIN_CPU_BF524: \
builtin_define ("__ADSPBF524__"); \
builtin_define ("__ADSPBF52x__"); \
break; \
case BFIN_CPU_BF525: \
builtin_define ("__ADSPBF525__"); \
builtin_define ("__ADSPBF52x__"); \
break; \
case BFIN_CPU_BF526: \
builtin_define ("__ADSPBF526__"); \
builtin_define ("__ADSPBF52x__"); \
break; \
case BFIN_CPU_BF527: \
builtin_define ("__ADSPBF527__"); \
builtin_define ("__ADSPBF52x__"); \
break; \
case BFIN_CPU_BF531: \
builtin_define ("__ADSPBF531__"); \
break; \
case BFIN_CPU_BF532: \
builtin_define ("__ADSPBF532__"); \
break; \
case BFIN_CPU_BF533: \
builtin_define ("__ADSPBF533__"); \
break; \
case BFIN_CPU_BF534: \
builtin_define ("__ADSPBF534__"); \
break; \
case BFIN_CPU_BF536: \
builtin_define ("__ADSPBF536__"); \
break; \
case BFIN_CPU_BF537: \
builtin_define ("__ADSPBF537__"); \
break; \
case BFIN_CPU_BF538: \
builtin_define ("__ADSPBF538__"); \
break; \
case BFIN_CPU_BF539: \
builtin_define ("__ADSPBF539__"); \
break; \
case BFIN_CPU_BF542M: \
builtin_define ("__ADSPBF542M__"); \
case BFIN_CPU_BF542: \
builtin_define ("__ADSPBF542__"); \
builtin_define ("__ADSPBF54x__"); \
break; \
case BFIN_CPU_BF544M: \
builtin_define ("__ADSPBF544M__"); \
case BFIN_CPU_BF544: \
builtin_define ("__ADSPBF544__"); \
builtin_define ("__ADSPBF54x__"); \
break; \
case BFIN_CPU_BF547M: \
builtin_define ("__ADSPBF547M__"); \
case BFIN_CPU_BF547: \
builtin_define ("__ADSPBF547__"); \
builtin_define ("__ADSPBF54x__"); \
break; \
case BFIN_CPU_BF548M: \
builtin_define ("__ADSPBF548M__"); \
case BFIN_CPU_BF548: \
builtin_define ("__ADSPBF548__"); \
builtin_define ("__ADSPBF54x__"); \
break; \
case BFIN_CPU_BF549M: \
builtin_define ("__ADSPBF549M__"); \
case BFIN_CPU_BF549: \
builtin_define ("__ADSPBF549__"); \
builtin_define ("__ADSPBF54x__"); \
break; \
case BFIN_CPU_BF561: \
builtin_define ("__ADSPBF561__"); \
break; \
} \
\
if (bfin_si_revision != -1) \
{ \
/* space of 0xnnnn and a NUL */ \
char *buf = XALLOCAVEC (char, 7); \
\
sprintf (buf, "0x%04x", bfin_si_revision); \
builtin_define_with_value ("__SILICON_REVISION__", buf, 0); \
} \
\
if (bfin_workarounds) \
builtin_define ("__WORKAROUNDS_ENABLED"); \
if (ENABLE_WA_SPECULATIVE_LOADS) \
builtin_define ("__WORKAROUND_SPECULATIVE_LOADS"); \
if (ENABLE_WA_SPECULATIVE_SYNCS) \
builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS"); \
if (ENABLE_WA_INDIRECT_CALLS) \
builtin_define ("__WORKAROUND_INDIRECT_CALLS"); \
if (ENABLE_WA_RETS) \
builtin_define ("__WORKAROUND_RETS"); \
\
if (TARGET_FDPIC) \
{ \
builtin_define ("__BFIN_FDPIC__"); \
builtin_define ("__FDPIC__"); \
} \
if (TARGET_ID_SHARED_LIBRARY \
&& !TARGET_SEP_DATA) \
builtin_define ("__ID_SHARED_LIB__"); \
if (flag_no_builtin) \
builtin_define ("__NO_BUILTIN"); \
if (TARGET_MULTICORE) \
builtin_define ("__BFIN_MULTICORE"); \
if (TARGET_COREA) \
builtin_define ("__BFIN_COREA"); \
if (TARGET_COREB) \
builtin_define ("__BFIN_COREB"); \
if (TARGET_SDRAM) \
builtin_define ("__BFIN_SDRAM"); \
} \
while (0)
#endif
#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
%{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
%{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
%{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
"
#ifndef SUBTARGET_DRIVER_SELF_SPECS
# define SUBTARGET_DRIVER_SELF_SPECS
#endif
#define LINK_GCC_C_SEQUENCE_SPEC "\
%{mfast-fp:-lbffastfp} %G %L %{mfast-fp:-lbffastfp} %G \
"
#undef ASM_SPEC
#define ASM_SPEC "\
%{mno-fdpic:-mnopic} %{mfdpic}"
#define LINK_SPEC "\
%{h*} %{v:-V} \
%{mfdpic:-melf32bfinfd -z text} \
%{static:-dn -Bstatic} \
%{shared:-G -Bdynamic} \
%{symbolic:-Bsymbolic} \
-init __init -fini __fini "
/* Generate DSP instructions, like DSP halfword loads */
#define TARGET_DSP (1)
#define TARGET_DEFAULT 0
/* Maximum number of library ids we permit */
#define MAX_LIBRARY_ID 255
extern const char *bfin_library_id_string;
#define FUNCTION_MODE SImode
#define Pmode SImode
/* store-condition-codes instructions store 0 for false
This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
#define STACK_PUSH_CODE PRE_DEC
/* Define this to nonzero if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD 1
/* We define a dummy ARGP register; the parameters start at offset 0 from
it. */
#define FIRST_PARM_OFFSET(DECL) 0
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM REG_P6
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM REG_P7
/* A dummy register that will be eliminated to either FP or SP. */
#define ARG_POINTER_REGNUM REG_ARGP
/* `PIC_OFFSET_TABLE_REGNUM'
The register number of the register used to address a table of
static data addresses in memory. In some cases this register is
defined by a processor's "application binary interface" (ABI).
When this macro is defined, RTL is generated for this register
once, as with the stack pointer and frame pointer registers. If
this macro is not defined, it is up to the machine-dependent files
to allocate such a register (if necessary). */
#define PIC_OFFSET_TABLE_REGNUM (REG_P5)
#define FDPIC_FPTR_REGNO REG_P1
#define FDPIC_REGNO REG_P3
#define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
/* A static chain register for nested functions. We need to use a
call-clobbered register for this. */
#define STATIC_CHAIN_REGNUM REG_P2
/* Define this if functions should assume that stack space has been
allocated for arguments even when their values are passed in
registers.
The value of this macro is the size, in bytes, of the area reserved for
arguments passed in registers.
This space can either be allocated by the caller or be a part of the
machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
says which. */
#define FIXED_STACK_AREA 12
#define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
/* Define this if the above stack space is to be considered part of the
* space allocated by the caller. */
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
/* Define this if the maximum size of all the outgoing args is to be
accumulated and pushed during the prologue. The amount can be
found in the variable crtl->outgoing_args_size. */
#define ACCUMULATE_OUTGOING_ARGS 1
/*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
/* If defined, a C expression to compute the alignment for a local
variable. TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. */
#define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
(TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
#define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
/* Definitions for register eliminations.
This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference.
There are two registers that can always be eliminated on the i386.
The frame pointer and the arg pointer can be replaced by either the
hard frame pointer or to the stack pointer, depending upon the
circumstances. The hard frame pointer is not used before reload and
so it is not eligible for elimination. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
/* This processor has
8 data register for doing arithmetic
8 pointer register for doing addressing, including
1 stack pointer P6
1 frame pointer P7
4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
1 condition code flag register CC
5 return address registers RETS/I/X/N/E
1 arithmetic status register (ASTAT). */
#define FIRST_PSEUDO_REGISTER 50
#define D_REGNO_P(X) ((X) <= REG_R7)
#define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
#define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
#define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
#define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
#define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
#define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
#define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
#define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
#define REGISTER_NAMES { \
"R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
"P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
"I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
"L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
"A0", "A1", \
"CC", \
"RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
"ARGP", \
"LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
}
#define SHORT_REGISTER_NAMES { \
"R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
"P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
"I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
"L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
#define HIGH_REGISTER_NAMES { \
"R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
"P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
"I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
"L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
#define DREGS_PAIR_NAMES { \
"R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
#define BYTE_REGISTER_NAMES { \
"R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/*lb0/1 */ \
1, 1 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
/*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
{ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
/*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/*lb0/1 */ \
1, 1 \
}
/* Order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS. List frame pointer
late and fixed registers last. Note that, in general, we prefer
registers listed in CALL_USED_REGISTERS, keeping the others
available for storage of persistent values. */
#define REG_ALLOC_ORDER \
{ REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
REG_A0, REG_A1, \
REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
REG_ASTAT, REG_SEQSTAT, REG_USP, \
REG_CC, REG_ARGP, \
REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
}
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{
NO_REGS,
IREGS,
BREGS,
LREGS,
MREGS,
CIRCREGS, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
DAGREGS,
EVEN_AREGS,
ODD_AREGS,
AREGS,
CCREGS,
EVEN_DREGS,
ODD_DREGS,
D0REGS,
D1REGS,
D2REGS,
D3REGS,
D4REGS,
D5REGS,
D6REGS,
D7REGS,
DREGS,
P0REGS,
FDPIC_REGS,
FDPIC_FPTR_REGS,
PREGS_CLOBBERED,
PREGS,
IPREGS,
DPREGS,
MOST_REGS,
LT_REGS,
LC_REGS,
LB_REGS,
PROLOGUE_REGS,
NON_A_CC_REGS,
ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES ((int)LIM_REG_CLASSES)
#define GENERAL_REGS DPREGS
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", \
"IREGS", \
"BREGS", \
"LREGS", \
"MREGS", \
"CIRCREGS", \
"DAGREGS", \
"EVEN_AREGS", \
"ODD_AREGS", \
"AREGS", \
"CCREGS", \
"EVEN_DREGS", \
"ODD_DREGS", \
"D0REGS", \
"D1REGS", \
"D2REGS", \
"D3REGS", \
"D4REGS", \
"D5REGS", \
"D6REGS", \
"D7REGS", \
"DREGS", \
"P0REGS", \
"FDPIC_REGS", \
"FDPIC_FPTR_REGS", \
"PREGS_CLOBBERED", \
"PREGS", \
"IPREGS", \
"DPREGS", \
"MOST_REGS", \
"LT_REGS", \
"LC_REGS", \
"LB_REGS", \
"PROLOGUE_REGS", \
"NON_A_CC_REGS", \
"ALL_REGS" }
/* An initializer containing the contents of the register classes, as integers
which are bit masks. The Nth integer specifies the contents of class N.
The way the integer MASK is interpreted is that register R is in the class
if `MASK & (1 << R)' is 1.
When the machine has more than 32 registers, an integer does not suffice.
Then the integers are replaced by sub-initializers, braced groupings
containing several integers. Each sub-initializer must be suitable as an
initializer for the type `HARD_REG_SET' which is defined in
`hard-reg-set.h'. */
/* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
MOST_REGS as the union of DPREGS and DAGREGS. */
#define REG_CLASS_CONTENTS \
/* 31 - 0 63-32 */ \
{ { 0x00000000, 0 }, /* NO_REGS */ \
{ 0x000f0000, 0 }, /* IREGS */ \
{ 0x00f00000, 0 }, /* BREGS */ \
{ 0x0f000000, 0 }, /* LREGS */ \
{ 0xf0000000, 0 }, /* MREGS */ \
{ 0x0fff0000, 0 }, /* CIRCREGS */ \
{ 0xffff0000, 0 }, /* DAGREGS */ \
{ 0x00000000, 0x1 }, /* EVEN_AREGS */ \
{ 0x00000000, 0x2 }, /* ODD_AREGS */ \
{ 0x00000000, 0x3 }, /* AREGS */ \
{ 0x00000000, 0x4 }, /* CCREGS */ \
{ 0x00000055, 0 }, /* EVEN_DREGS */ \
{ 0x000000aa, 0 }, /* ODD_DREGS */ \
{ 0x00000001, 0 }, /* D0REGS */ \
{ 0x00000002, 0 }, /* D1REGS */ \
{ 0x00000004, 0 }, /* D2REGS */ \
{ 0x00000008, 0 }, /* D3REGS */ \
{ 0x00000010, 0 }, /* D4REGS */ \
{ 0x00000020, 0 }, /* D5REGS */ \
{ 0x00000040, 0 }, /* D6REGS */ \
{ 0x00000080, 0 }, /* D7REGS */ \
{ 0x000000ff, 0 }, /* DREGS */ \
{ 0x00000100, 0x000 }, /* P0REGS */ \
{ 0x00000800, 0x000 }, /* FDPIC_REGS */ \
{ 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
{ 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
{ 0x0000ff00, 0x800 }, /* PREGS */ \
{ 0x000fff00, 0x800 }, /* IPREGS */ \
{ 0x0000ffff, 0x800 }, /* DPREGS */ \
{ 0xffffffff, 0x800 }, /* MOST_REGS */\
{ 0x00000000, 0x3000 }, /* LT_REGS */\
{ 0x00000000, 0xc000 }, /* LC_REGS */\
{ 0x00000000, 0x30000 }, /* LB_REGS */\
{ 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
{ 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
{ 0xffffffff, 0x3ffff }} /* ALL_REGS */
#define IREG_POSSIBLE_P(OUTER) \
((OUTER) == POST_INC || (OUTER) == PRE_INC \
|| (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
|| (OUTER) == MEM || (OUTER) == ADDRESS)
#define MODE_CODE_BASE_REG_CLASS(MODE, OUTER, INDEX) \
((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
#define INDEX_REG_CLASS PREGS
#define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
(P_REGNO_P (X) || (X) == REG_ARGP \
|| (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
&& I_REGNO_P (X)))
#define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
((X) >= FIRST_PSEUDO_REGISTER \
|| REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
#ifdef REG_OK_STRICT
#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
#else
#define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, OUTER, INDEX) \
REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
#endif
#define REGNO_OK_FOR_INDEX_P(X) 0
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) == REG_R0 ? D0REGS \
: (REGNO) == REG_R1 ? D1REGS \
: (REGNO) == REG_R2 ? D2REGS \
: (REGNO) == REG_R3 ? D3REGS \
: (REGNO) == REG_R4 ? D4REGS \
: (REGNO) == REG_R5 ? D5REGS \
: (REGNO) == REG_R6 ? D6REGS \
: (REGNO) == REG_R7 ? D7REGS \
: (REGNO) == REG_P0 ? P0REGS \
: (REGNO) < REG_I0 ? PREGS \
: (REGNO) == REG_ARGP ? PREGS \
: (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
: (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
: (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
: (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
: (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
: (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
: (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
: (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
: (REGNO) == REG_CC ? CCREGS \
: (REGNO) >= REG_RETS ? PROLOGUE_REGS \
: NO_REGS)
/* The following macro defines cover classes for Integrated Register
Allocator. Cover classes is a set of non-intersected register
classes covering all hard registers used for register allocation
purpose. Any move between two registers of a cover class should be
cheaper than load or store of the registers. The macro value is
array of register classes with LIM_REG_CLASSES used as the end
marker. */
#define IRA_COVER_CLASSES \
{ \
MOST_REGS, AREGS, CCREGS, LIM_REG_CLASSES \
}
/* When this hook returns true for MODE, the compiler allows
registers explicitly used in the rtl to be used as spill registers
but prevents the compiler from extending the lifetime of these
registers. */
#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
/* Do not allow to store a value in REG_CC for any mode */
/* Do not allow to store value in pregs if mode is not SI*/
#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
#define HARD_REGNO_NREGS(REGNO, MODE) \
((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
: (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
: CLASS_MAX_NREGS (GENERAL_REGS, MODE))
/* A C expression that is nonzero if hard register TO can be
considered for use as a rename register for FROM register */
#define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
/* A C expression that is nonzero if it is desirable to choose
register allocation so as to avoid move instructions between a
value of mode MODE1 and a value of mode MODE2.
If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
MODE2)' must be zero. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((MODE1) == (MODE2) \
|| ((GET_MODE_CLASS (MODE1) == MODE_INT \
|| GET_MODE_CLASS (MODE1) == MODE_FLOAT) \
&& (GET_MODE_CLASS (MODE2) == MODE_INT \
|| GET_MODE_CLASS (MODE2) == MODE_FLOAT) \
&& (MODE1) != BImode && (MODE2) != BImode \
&& GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
&& GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD))
/* `PREFERRED_RELOAD_CLASS (X, CLASS)'
A C expression that places additional restrictions on the register
class to use when it is necessary to copy value X into a register
in class CLASS. The value is a register class; perhaps CLASS, or
perhaps another, smaller class. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
(GET_CODE (X) == POST_INC \
|| GET_CODE (X) == POST_DEC \
|| GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
/* Function Calling Conventions. */
/* The type of the current function; normal functions are of type
SUBROUTINE. */
typedef enum {
SUBROUTINE, INTERRUPT_HANDLER, EXCPT_HANDLER, NMI_HANDLER
} e_funkind;
#define FUNCTION_RETURN_REGISTERS { REG_RETS, REG_RETI, REG_RETX, REG_RETN }
#define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
/* Flags for the call/call_value rtl operations set up by function_arg */
#define CALL_NORMAL 0x00000000 /* no special processing */
#define CALL_LONG 0x00000001 /* always call indirect */
#define CALL_SHORT 0x00000002 /* always call by symbol */
typedef struct {
int words; /* # words passed so far */
int nregs; /* # registers available for passing */
int *arg_regs; /* array of register -1 terminated */
int call_cookie; /* Do special things for this call */
} CUMULATIVE_ARGS;
#define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
(init_cumulative_args (&CUM, FNTYPE, LIBNAME))
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0.
*/
#define VALUE_REGNO(MODE) (REG_R0)
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG (TYPE_MODE (VALTYPE), \
VALUE_REGNO(TYPE_MODE(VALTYPE)))
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
#define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Before the prologue, the return address is in the RETS register. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
#define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
/* Call instructions don't modify the stack pointer on the Blackfin. */
#define INCOMING_FRAME_SP_OFFSET 0
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
#define EH_RETURN_HANDLER_RTX \
gen_frame_mem (Pmode, plus_constant (frame_pointer_rtx, UNITS_PER_WORD))
/* Addressing Modes */
/* Nonzero if the constant value X is a legitimate general operand.
symbol_ref are not legitimate and will be put into constant pool.
See force_const_mem().
If -mno-pool, all constants are legitimate.
*/
#define LEGITIMATE_CONSTANT_P(X) bfin_legitimate_constant_p (X)
/* A number, the maximum number of registers that can appear in a
valid memory address. Note that it is up to you to specify a
value equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P'
would ever accept. */
#define MAX_REGS_PER_ADDRESS 1
#define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
(GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
#define HAVE_POST_INCREMENT 1
#define HAVE_POST_DECREMENT 1
#define HAVE_PRE_DECREMENT 1
/* `LEGITIMATE_PIC_OPERAND_P (X)'
A C expression that is nonzero if X is a legitimate immediate
operand on the target machine when generating position independent
code. You can assume that X satisfies `CONSTANT_P', so you need
not check this. You can also assume FLAG_PIC is true, so you need
not check it either. You need not define this macro if all
constants (including `SYMBOL_REF') can be immediate operands when
generating position independent code. */
#define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
#define SYMBOLIC_CONST(X) \
(GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
#define NOTICE_UPDATE_CC(EXPR, INSN) 0
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX UNITS_PER_WORD
/* If a memory-to-memory move would take MOVE_RATIO or more simple
move-instruction pairs, we will do a movmem or libcall instead. */
#define MOVE_RATIO(speed) 5
/* STORAGE LAYOUT: target machine storage layout
Define this macro as a C expression which is nonzero if accessing
less than a word of memory (i.e. a `char' or a `short') is no
faster than accessing a word of memory, i.e., if such access
require more than one instruction or if there is no difference in
cost between byte and (aligned) word loads.
When this macro is not defined, the compiler will access a field by
finding the smallest containing object; when it is defined, a
fullword load will be used if alignment permits. Unless bytes
accesses are faster than word accesses, using word accesses is
preferable since it may eliminate subsequent memory access if
subsequent accesses occur to other fields in the same word of the
structure, but to different bytes. */
#define SLOW_BYTE_ACCESS 0
#define SLOW_SHORT_ACCESS 0
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered.
We can't access bytes but if we could we would in the Big Endian order. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is numbered. */
#define WORDS_BIG_ENDIAN 0
/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD 32
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Width in bits of a pointer.
See also the macro `Pmode1' defined below. */
#define POINTER_SIZE 32
/* Allocation boundary (in *bits*) for storing pointers in memory. */
#define POINTER_BOUNDARY 32
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 32
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 32
/* Define this if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* (shell-command "rm c-decl.o stor-layout.o")
* never define PCC_BITFIELD_TYPE_MATTERS
* really cause some alignment problem
*/
#define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
BITS_PER_UNIT)
#define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
BITS_PER_UNIT)
/* what is the 'type' of size_t */
#define SIZE_TYPE "long unsigned int"
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
#define FLOAT_TYPE_SIZE BITS_PER_WORD
#define SHORT_TYPE_SIZE 16
#define CHAR_TYPE_SIZE 8
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
/* Note: Fix this to depend on target switch. -- lev */
/* Note: Try to implement double and force long double. -- tonyko
* #define __DOUBLES_ARE_FLOATS__
* #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
* #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
* #define DOUBLES_ARE_FLOATS 1
*/
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
/* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
A macro to update M and UNSIGNEDP when an object whose type is
TYPE and which has the specified mode and signedness is to be
stored in a register. This macro is only called when TYPE is a
scalar type.
On most RISC machines, which only have operations that operate on
a full register, define this macro to set M to `word_mode' if M is
an integer mode narrower than `BITS_PER_WORD'. In most cases,
only integer modes should be widened because wider-precision
floating-point operations are usually more expensive than their
narrower counterparts.
For most machines, the macro definition does not change UNSIGNEDP.
However, some machines, have instructions that preferentially
handle either signed or unsigned quantities of certain modes. For
example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
instructions sign-extend the result to 64 bits. On such machines,
set UNSIGNEDP according to which kind of extension is more
efficient.
Do not define this macro if it would never modify M.*/
#define BFIN_PROMOTE_MODE_P(MODE) \
(!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (BFIN_PROMOTE_MODE_P(MODE)) \
{ \
if (MODE == QImode) \
UNSIGNEDP = 1; \
else if (MODE == HImode) \
UNSIGNEDP = 0; \
(MODE) = SImode; \
}
/* Describing Relative Costs of Operations */
/* Do not put function addr into constant pool */
#define NO_FUNCTION_CSE 1
/* A C expression for the cost of moving data from a register in class FROM to
one in class TO. The classes are expressed using the enumeration values
such as `GENERAL_REGS'. A value of 2 is the default; other values are
interpreted relative to that.
It is not required that the cost always equal 2 when FROM is the same as TO;
on some machines it is expensive to move between registers if they are not
general registers. */
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
bfin_register_move_cost ((MODE), (CLASS1), (CLASS2))
/* A C expression for the cost of moving data of mode M between a
register and memory. A value of 2 is the default; this cost is
relative to those in `REGISTER_MOVE_COST'.
If moving between registers and memory is more expensive than
between two registers, you should define this macro to express the
relative cost. */
#define MEMORY_MOVE_COST(MODE, CLASS, IN) \
bfin_memory_move_cost ((MODE), (CLASS), (IN))
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE SImode
#define JUMP_TABLES_IN_TEXT_SECTION flag_pic
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified.
#define WORD_REGISTER_OPERATIONS
*/
/* Evaluates to true if A and B are mac flags that can be used
together in a single multiply insn. That is the case if they are
both the same flag not involving M, or if one is a combination of
the other with M. */
#define MACFLAGS_MATCH_P(A, B) \
((A) == (B) \
|| ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
|| ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
|| ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
|| ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
/* Switch into a generic section. */
#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
#define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
#define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
typedef enum sections {
CODE_DIR,
DATA_DIR,
LAST_SECT_NM
} SECT_ENUM_T;
typedef enum directives {
LONG_CONST_DIR,
SHORT_CONST_DIR,
BYTE_CONST_DIR,
SPACE_DIR,
INIT_DIR,
LAST_DIR_NM
} DIR_ENUM_T;
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) \
((C) == ';' \
|| ((C) == '|' && (STR)[1] == '|'))
#define TEXT_SECTION_ASM_OP ".text;"
#define DATA_SECTION_ASM_OP ".data;"
#define ASM_APP_ON ""
#define ASM_APP_OFF ""
#define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
do { fputs (".global ", FILE); \
assemble_name (FILE, NAME); \
fputc (';',FILE); \
fputc ('\n',FILE); \
} while (0)
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
do { \
fputs (".type ", FILE); \
assemble_name (FILE, NAME); \
fputs (", STT_FUNC", FILE); \
fputc (';',FILE); \
fputc ('\n',FILE); \
ASM_OUTPUT_LABEL(FILE, NAME); \
} while (0)
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do { assemble_name (FILE, NAME); \
fputs (":\n",FILE); \
} while (0)
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
do { fprintf (FILE, "_%s", NAME); \
} while (0)
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
do { char __buf[256]; \
fprintf (FILE, "\t.dd\t"); \
ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
assemble_name (FILE, __buf); \
fputc (';', FILE); \
fputc ('\n', FILE); \
} while (0)
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
#define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
do { \
char __buf[256]; \
fprintf (FILE, "\t.dd\t"); \
ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
assemble_name (FILE, __buf); \
fputs (" - ", FILE); \
ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
assemble_name (FILE, __buf); \
fputc (';', FILE); \
fputc ('\n', FILE); \
} while (0)
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
do { \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
} while (0)
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
do { \
asm_output_skip (FILE, SIZE); \
} while (0)
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
do { \
switch_to_section (data_section); \
if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
ASM_OUTPUT_LABEL (FILE, NAME); \
fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
(ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
} while (0)
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
do { \
ASM_GLOBALIZE_LABEL1(FILE,NAME); \
ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
#define ASM_COMMENT_START "//"
#define FUNCTION_PROFILER(FILE, LABELNO) \
do { \
fprintf (FILE, "\tCALL __mcount;\n"); \
} while(0)
#undef NO_PROFILE_COUNTERS
#define NO_PROFILE_COUNTERS 1
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "[SP--] = %s;\n", reg_names[REGNO])
#define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "%s = [SP++];\n", reg_names[REGNO])
extern struct rtx_def *bfin_cc_rtx, *bfin_rets_rtx;
/* This works for GAS and some other assemblers. */
#define SET_ASM_OP ".set "
/* DBX register number for a given compiler register number */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
#define SIZE_ASM_OP "\t.size\t"
extern int splitting_for_sched, splitting_loops;
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
#ifndef TARGET_SUPPORTS_SYNC_CALLS
#define TARGET_SUPPORTS_SYNC_CALLS 0
#endif
#endif /* _BFIN_CONFIG */
|