1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
|
/* Target macros for the FRV port of GCC.
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
2010, 2011
Free Software Foundation, Inc.
Contributed by Red Hat Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef __FRV_H__
#define __FRV_H__
/* Frv general purpose macros. */
/* Align an address. */
#define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
/* Driver configuration. */
/* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
FDPIC which multilib to use depends on whether FDPIC is in use or
not. The trick we use is to introduce -multilib-library-pic as a
pseudo-flag that selects the library-pic multilib, and map fpic
and fPIC to it only if fdpic is not selected. Also, if fdpic is
selected and no PIC/PIE options are present, we imply -fPIE.
Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
speed, or if we have -On with n>=3, enable inlining of PLTs. As
for -mgprel-ro, we want to enable it by default, but not for -fpic or
-fpie. */
#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
"%{mno-pack:\
%{!mhard-float:-msoft-float}\
%{!mmedia:-mno-media}}\
%{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
%{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
%{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
%{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
%{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
%{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
"
#ifndef SUBTARGET_DRIVER_SELF_SPECS
# define SUBTARGET_DRIVER_SELF_SPECS
#endif
#undef ASM_SPEC
#define ASM_SPEC "\
%{G*} \
%{mtomcat-stats} \
%{!mno-eflags: \
%{mcpu=*} \
%{mgpr-*} %{mfpr-*} \
%{msoft-float} %{mhard-float} \
%{mdword} %{mno-dword} \
%{mdouble} %{mno-double} \
%{mmedia} %{mno-media} \
%{mmuladd} %{mno-muladd} \
%{mpack} %{mno-pack} \
%{mno-fdpic:-mnopic} %{mfdpic} \
%{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
#undef STARTFILE_SPEC
#define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
#undef ENDFILE_SPEC
#define ENDFILE_SPEC "frvend%O%s"
#define MASK_DEFAULT_FRV \
(MASK_MEDIA \
| MASK_DOUBLE \
| MASK_MULADD \
| MASK_DWORD \
| MASK_PACK)
#define MASK_DEFAULT_FR500 \
(MASK_MEDIA | MASK_DWORD | MASK_PACK)
#define MASK_DEFAULT_FR550 \
(MASK_MEDIA | MASK_DWORD | MASK_PACK)
#define MASK_DEFAULT_FR450 \
(MASK_GPR_32 \
| MASK_FPR_32 \
| MASK_MEDIA \
| MASK_SOFT_FLOAT \
| MASK_DWORD \
| MASK_PACK)
#define MASK_DEFAULT_FR400 \
(MASK_GPR_32 \
| MASK_FPR_32 \
| MASK_MEDIA \
| MASK_ACC_4 \
| MASK_SOFT_FLOAT \
| MASK_DWORD \
| MASK_PACK)
#define MASK_DEFAULT_SIMPLE \
(MASK_GPR_32 | MASK_SOFT_FLOAT)
/* A C string constant that tells the GCC driver program options to pass to
`cc1'. It can also specify how to translate options you give to GCC into
options for GCC to pass to the `cc1'.
Do not define this macro if it does not need to do anything. */
/* For ABI compliance, we need to put bss data into the normal data section. */
#define CC1_SPEC "%{G*}"
#undef LINK_SPEC
#define LINK_SPEC "\
%{h*} %{v:-V} \
%{mfdpic:-melf32frvfd -z text} \
%{static:-dn -Bstatic} \
%{shared:-Bdynamic} \
%{symbolic:-Bsymbolic} \
%{G*}"
#undef LIB_SPEC
#define LIB_SPEC "--start-group -lc -lsim --end-group"
#ifndef CPU_TYPE
#define CPU_TYPE FRV_CPU_FR500
#endif
/* Run-time target specifications */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
int issue_rate; \
\
builtin_define ("__frv__"); \
builtin_assert ("machine=frv"); \
\
issue_rate = frv_issue_rate (); \
if (issue_rate > 1) \
builtin_define_with_int_value ("__FRV_VLIW__", issue_rate); \
builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS); \
builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS); \
builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS); \
\
switch (frv_cpu_type) \
{ \
case FRV_CPU_GENERIC: \
builtin_define ("__CPU_GENERIC__"); \
break; \
case FRV_CPU_FR550: \
builtin_define ("__CPU_FR550__"); \
break; \
case FRV_CPU_FR500: \
case FRV_CPU_TOMCAT: \
builtin_define ("__CPU_FR500__"); \
break; \
case FRV_CPU_FR450: \
builtin_define ("__CPU_FR450__"); \
break; \
case FRV_CPU_FR405: \
builtin_define ("__CPU_FR405__"); \
break; \
case FRV_CPU_FR400: \
builtin_define ("__CPU_FR400__"); \
break; \
case FRV_CPU_FR300: \
case FRV_CPU_SIMPLE: \
builtin_define ("__CPU_FR300__"); \
break; \
} \
\
if (TARGET_HARD_FLOAT) \
builtin_define ("__FRV_HARD_FLOAT__"); \
if (TARGET_DWORD) \
builtin_define ("__FRV_DWORD__"); \
if (TARGET_FDPIC) \
builtin_define ("__FRV_FDPIC__"); \
if (flag_leading_underscore > 0) \
builtin_define ("__FRV_UNDERSCORE__"); \
} \
while (0)
#define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
#define NUM_GPRS (TARGET_GPR_32? 32 : 64)
#define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
#define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
/* X is a valid accumulator number if (X & ACC_MASK) == X. */
#define ACC_MASK \
(!TARGET_MEDIA ? 0 \
: TARGET_ACC_4 ? 3 \
: frv_cpu_type == FRV_CPU_FR450 ? 11 \
: 7)
/* Macros to identify the blend of media instructions available. Revision 1
is the one found on the FR500. Revision 2 includes the changes made for
the FR400.
Treat the generic processor as a revision 1 machine for now, for
compatibility with earlier releases. */
#define TARGET_MEDIA_REV1 \
(TARGET_MEDIA \
&& (frv_cpu_type == FRV_CPU_GENERIC \
|| frv_cpu_type == FRV_CPU_FR500))
#define TARGET_MEDIA_REV2 \
(TARGET_MEDIA \
&& (frv_cpu_type == FRV_CPU_FR400 \
|| frv_cpu_type == FRV_CPU_FR405 \
|| frv_cpu_type == FRV_CPU_FR450 \
|| frv_cpu_type == FRV_CPU_FR550))
#define TARGET_MEDIA_FR450 \
(frv_cpu_type == FRV_CPU_FR450)
#define TARGET_FR500_FR550_BUILTINS \
(frv_cpu_type == FRV_CPU_FR500 \
|| frv_cpu_type == FRV_CPU_FR550)
#define TARGET_FR405_BUILTINS \
(frv_cpu_type == FRV_CPU_FR405 \
|| frv_cpu_type == FRV_CPU_FR450)
#ifndef HAVE_AS_TLS
#define HAVE_AS_TLS 0
#endif
/* This macro is a C statement to print on `stderr' a string describing the
particular machine description choice. Every machine description should
define `TARGET_VERSION'. For example:
#ifdef MOTOROLA
#define TARGET_VERSION \
fprintf (stderr, " (68k, Motorola syntax)");
#else
#define TARGET_VERSION \
fprintf (stderr, " (68k, MIT syntax)");
#endif */
#define TARGET_VERSION fprintf (stderr, _(" (frv)"))
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
/* Small Data Area Support. */
/* Maximum size of variables that go in .sdata/.sbss.
The -msdata=foo switch also controls how small variables are handled. */
#ifndef SDATA_DEFAULT_SIZE
#define SDATA_DEFAULT_SIZE 8
#endif
/* Storage Layout */
/* Define this macro to have the value 1 if the most significant bit in a byte
has the lowest number; otherwise define it to have the value zero. This
means that bit-field instructions count from the most significant bit. If
the machine has no bit-field instructions, then this must still be defined,
but it doesn't matter which value it is defined to. This macro need not be
a constant.
This macro does not affect the way structure fields are packed into bytes or
words; that is controlled by `BYTES_BIG_ENDIAN'. */
#define BITS_BIG_ENDIAN 1
/* Define this macro to have the value 1 if the most significant byte in a word
has the lowest number. This macro need not be a constant. */
#define BYTES_BIG_ENDIAN 1
/* Define this macro to have the value 1 if, in a multiword object, the most
significant word has the lowest number. This applies to both memory
locations and registers; GCC fundamentally assumes that the order of
words in memory is the same as the order in registers. This macro need not
be a constant. */
#define WORDS_BIG_ENDIAN 1
/* Number of storage units in a word; normally 4. */
#define UNITS_PER_WORD 4
/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
which has the specified mode and signedness is to be stored in a register.
This macro is only called when TYPE is a scalar type.
On most RISC machines, which only have operations that operate on a full
register, define this macro to set M to `word_mode' if M is an integer mode
narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
widened because wider-precision floating-point operations are usually more
expensive than their narrower counterparts.
For most machines, the macro definition does not change UNSIGNEDP. However,
some machines, have instructions that preferentially handle either signed or
unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
loads from memory and 32-bit add instructions sign-extend the result to 64
bits. On such machines, set UNSIGNEDP according to which kind of extension
is more efficient.
Do not define this macro if it would never modify MODE. */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
do \
{ \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4) \
(MODE) = SImode; \
} \
while (0)
/* Normal alignment required for function parameters on the stack, in bits.
All stack parameters receive at least this much alignment regardless of data
type. On most machines, this is the same as the size of an integer. */
#define PARM_BOUNDARY 32
/* Define this macro if you wish to preserve a certain alignment for the stack
pointer. The definition is a C expression for the desired alignment
(measured in bits).
If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
strict alignment than `STACK_BOUNDARY', the stack may be momentarily
unaligned while pushing arguments. */
#define STACK_BOUNDARY 64
/* Alignment required for a function entry point, in bits. */
#define FUNCTION_BOUNDARY 128
/* Biggest alignment that any data type can require on this machine,
in bits. */
#define BIGGEST_ALIGNMENT 64
/* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
some reason. */
#ifdef IN_TARGET_LIBS
#define BIGGEST_FIELD_ALIGNMENT 64
#else
/* An expression for the alignment of a structure field FIELD if the
alignment computed in the usual way is COMPUTED. GCC uses this
value instead of the value in `BIGGEST_ALIGNMENT' or
`BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
frv_adjust_field_align (FIELD, COMPUTED)
#endif
/* If defined, a C expression to compute the alignment for a static variable.
TYPE is the data type, and ALIGN is the alignment that the object
would ordinarily have. The value of this macro is used instead of that
alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size data to make
it all fit in fewer cache lines. Another is to cause character arrays to be
word-aligned so that `strcpy' calls that copy constants to character arrays
can be done inline. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* If defined, a C expression to compute the alignment given to a constant that
is being placed in memory. CONSTANT is the constant and ALIGN is the
alignment that the object would ordinarily have. The value of this macro is
used instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
The typical use of this macro is to increase alignment for string constants
to be word aligned so that `strcpy' calls that copy constants can be done
inline. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
(TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* Define this macro to be the value 1 if instructions will fail to work if
given data not on the nominal alignment. If instructions will merely go
slower in that case, define this macro as 0. */
#define STRICT_ALIGNMENT 1
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Layout of Source Language Data Types. */
#define CHAR_TYPE_SIZE 8
#define SHORT_TYPE_SIZE 16
#define INT_TYPE_SIZE 32
#define LONG_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 64
#define LONG_DOUBLE_TYPE_SIZE 64
/* An expression whose value is 1 or 0, according to whether the type `char'
should be signed or unsigned by default. The user can always override this
default with the options `-fsigned-char' and `-funsigned-char'. */
#define DEFAULT_SIGNED_CHAR 1
#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"
#undef WCHAR_TYPE
#define WCHAR_TYPE "long int"
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE BITS_PER_WORD
/* General purpose registers. */
#define GPR_FIRST 0 /* First gpr */
#define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
#define GPR_R0 GPR_FIRST /* R0, constant 0 */
#define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
#define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
/* small data register */
#define SDA_BASE_REG ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
#define PIC_REGNO (GPR_FIRST + (TARGET_FDPIC?15:17)) /* PIC register. */
#define FDPIC_FPTR_REGNO (GPR_FIRST + 14) /* uClinux PIC function pointer register. */
#define FDPIC_REGNO (GPR_FIRST + 15) /* uClinux PIC register. */
#define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
#define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
#define FPR_FIRST 64 /* First FP reg */
#define FPR_LAST 127 /* Last FP reg */
#define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
/* We reserve the last CR and CCR in each category to be used as a reload
register to reload the CR/CCR registers. This is a kludge. */
#define CC_FIRST 128 /* First ICC/FCC reg */
#define CC_LAST 135 /* Last ICC/FCC reg */
#define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
#define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
#define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
#define FCC_FIRST (CC_FIRST) /* First FCC reg */
#define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
/* Amount to shift a value to locate a ICC or FCC register in the CCR
register and shift it to the bottom 4 bits. */
#define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
/* Mask to isolate a single ICC/FCC value. */
#define CC_MASK 0xf
/* Masks to isolate the various bits in an ICC field. */
#define ICC_MASK_N 0x8 /* negative */
#define ICC_MASK_Z 0x4 /* zero */
#define ICC_MASK_V 0x2 /* overflow */
#define ICC_MASK_C 0x1 /* carry */
/* Mask to isolate the N/Z flags in an ICC. */
#define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
/* Mask to isolate the Z/C flags in an ICC. */
#define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
/* Masks to isolate the various bits in a FCC field. */
#define FCC_MASK_E 0x8 /* equal */
#define FCC_MASK_L 0x4 /* less than */
#define FCC_MASK_G 0x2 /* greater than */
#define FCC_MASK_U 0x1 /* unordered */
/* For CCR registers, the machine wants CR4..CR7 to be used for integer
code and CR0..CR3 to be used for floating point. */
#define CR_FIRST 136 /* First CCR */
#define CR_LAST 143 /* Last CCR */
#define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
#define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
#define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
#define ICR_TEMP ICR_LAST /* Temp integer CCR */
#define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
#define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
/* Amount to shift a value to locate a CR register in the CCCR special purpose
register and shift it to the bottom 2 bits. */
#define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
/* Mask to isolate a single CR value. */
#define CR_MASK 0x3
#define ACC_FIRST 144 /* First acc register */
#define ACC_LAST 155 /* Last acc register */
#define ACCG_FIRST 156 /* First accg register */
#define ACCG_LAST 167 /* Last accg register */
#define AP_FIRST 168 /* fake argument pointer */
#define SPR_FIRST 169
#define SPR_LAST 172
#define LR_REGNO (SPR_FIRST)
#define LCR_REGNO (SPR_FIRST + 1)
#define IACC_FIRST (SPR_FIRST + 2)
#define IACC_LAST (SPR_FIRST + 3)
#define GPR_P(R) IN_RANGE (R, GPR_FIRST, GPR_LAST)
#define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
#define FPR_P(R) IN_RANGE (R, FPR_FIRST, FPR_LAST)
#define CC_P(R) IN_RANGE (R, CC_FIRST, CC_LAST)
#define ICC_P(R) IN_RANGE (R, ICC_FIRST, ICC_LAST)
#define FCC_P(R) IN_RANGE (R, FCC_FIRST, FCC_LAST)
#define CR_P(R) IN_RANGE (R, CR_FIRST, CR_LAST)
#define ICR_P(R) IN_RANGE (R, ICR_FIRST, ICR_LAST)
#define FCR_P(R) IN_RANGE (R, FCR_FIRST, FCR_LAST)
#define ACC_P(R) IN_RANGE (R, ACC_FIRST, ACC_LAST)
#define ACCG_P(R) IN_RANGE (R, ACCG_FIRST, ACCG_LAST)
#define SPR_P(R) IN_RANGE (R, SPR_FIRST, SPR_LAST)
#define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
#define MAX_STACK_IMMEDIATE_OFFSET 2047
/* Register Basics. */
/* Number of hardware registers known to the compiler. They receive numbers 0
through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
really is assigned the number `FIRST_PSEUDO_REGISTER'. */
#define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
/* The first/last register that can contain the arguments to a function. */
#define FIRST_ARG_REGNUM (GPR_FIRST + 8)
#define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
/* Registers used by the exception handling functions. These should be
registers that are not otherwise used by the calling sequence. */
#define FIRST_EH_REGNUM 14
#define LAST_EH_REGNUM 15
/* Scratch registers used in the prologue, epilogue and thunks.
OFFSET_REGNO is for loading constant addends that are too big for a
single instruction. TEMP_REGNO is used for transferring SPRs to and from
the stack, and various other activities. */
#define OFFSET_REGNO 4
#define TEMP_REGNO 5
/* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
which is sometimes used to set up the frame pointer. */
#define OLD_SP_REGNO 6
/* Registers used in the epilogue. STACKADJ_REGNO stores the exception
handler's stack adjustment. */
#define STACKADJ_REGNO 6
/* Registers used in thunks. JMP_REGNO is used for loading the target
address. */
#define JUMP_REGNO 6
#define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
(N) + FIRST_EH_REGNUM : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
#define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
#define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
/* An initializer that says which registers are used for fixed purposes all
throughout the compiled code and are therefore not available for general
allocation. These would include the stack pointer, the frame pointer
(except on machines where that can be used as a general register when no
frame pointer is needed), the program counter on machines where that is
considered one of the addressable registers, and any other numbered register
with a standard use.
This information is expressed as a sequence of numbers, separated by commas
and surrounded by braces. The Nth number is 1 if register N is fixed, 0
otherwise.
The table initialized from this macro, and the table initialized by the
following one, may be overridden at run time either automatically, by the
actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
/* gr0 -- Hard Zero
gr1 -- Stack Pointer
gr2 -- Frame Pointer
gr3 -- Hidden Parameter
gr16 -- Small Data reserved
gr17 -- Pic reserved
gr28 -- OS reserved
gr29 -- OS reserved
gr30 -- OS reserved
gr31 -- OS reserved
cr3 -- reserved to reload FCC registers.
cr7 -- reserved to reload ICC registers. */
#define FIXED_REGISTERS \
{ /* Integer Registers */ \
1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
/* Float Registers */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
/* Condition Code Registers */ \
0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
/* Conditional execution Registers (CCR) */ \
0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
/* Accumulators */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
/* Other registers */ \
1, /* 168, AP - fake arg ptr */ \
1, /* 169, LR - Link register*/ \
0, /* 170, LCR - Loop count reg*/ \
1, 1 /* 171-172, iacc0 */ \
}
/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
general) by function calls as well as for fixed registers. This macro
therefore identifies the registers that are not available for general
allocation of values that must live across function calls.
If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
saves it on function entry and restores it on function exit, if the register
is used within the function. */
#define CALL_USED_REGISTERS \
{ /* Integer Registers */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
/* Float Registers */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
/* Condition Code Registers */ \
1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
/* Conditional execution Registers (CCR) */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
/* Accumulators */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
/* Other registers */ \
1, /* 168, AP - fake arg ptr */ \
1, /* 169, LR - Link register*/ \
1, /* 170, LCR - Loop count reg */ \
1, 1 /* 171-172, iacc0 */ \
}
/* Order of allocation of registers. */
/* If defined, an initializer for a vector of integers, containing the numbers
of hard registers in the order in which GCC should prefer to use them
(from most preferred to least).
If this macro is not defined, registers are used lowest numbered first (all
else being equal).
One use of this macro is on machines where the highest numbered registers
must always be saved and the save-multiple-registers instruction supports
only sequences of consecutive registers. On such machines, define
`REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
allocatable register first. */
/* On the FRV, allocate GR16 and GR17 after other saved registers so that we
have a better chance of allocating 2 registers at a time and can use the
double word load/store instructions in the prologue. */
#define REG_ALLOC_ORDER \
{ \
/* volatile registers */ \
GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
\
FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
\
ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
\
/* saved registers */ \
GPR_FIRST + 18, GPR_FIRST + 19, \
GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
GPR_FIRST + 16, GPR_FIRST + 17, \
\
FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
\
/* special or fixed registers */ \
GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
ACC_FIRST + 8, ACC_FIRST + 9, ACC_FIRST + 10, ACC_FIRST + 11, \
ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
ACCG_FIRST + 8, ACCG_FIRST + 9, ACCG_FIRST + 10, ACCG_FIRST + 11, \
AP_FIRST, LR_REGNO, LCR_REGNO, \
IACC_FIRST + 0, IACC_FIRST + 1 \
}
/* How Values Fit in Registers. */
/* A C expression for the number of consecutive hard registers, starting at
register number REGNO, required to hold a value of mode MODE.
On a machine where all registers are exactly one word, a suitable definition
of this macro is
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD)) */
/* On the FRV, make the CC modes take 3 words in the integer registers, so that
we can build the appropriate instructions to properly reload the values. */
#define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
/* A C expression that is nonzero if it is permissible to store a value of mode
MODE in hard register number REGNO (or in several registers starting with
that one). For a machine where all registers are equivalent, a suitable
definition is
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
It is not necessary for this macro to check for the numbers of fixed
registers, because the allocation mechanism considers them to be always
occupied.
On some machines, double-precision values must be kept in even/odd register
pairs. The way to implement that is to define this macro to reject odd
register numbers for such modes.
The minimum requirement for a mode to be OK in a register is that the
`movMODE' instruction pattern support moves between the register and any
other hard register for which the mode is OK; and that moving a value into
the register and back out not alter it.
Since the same instruction used to move `SImode' will work for all narrower
integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
to distinguish between these modes, provided you define patterns `movhi',
etc., to take advantage of this. This is useful because of the interaction
between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
all integer modes to be tieable.
Many machines have special registers for floating point arithmetic. Often
people assume that floating point machine modes are allowed only in floating
point registers. This is not true. Any registers that can hold integers
can safely *hold* a floating point machine mode, whether or not floating
arithmetic can be done on it in those registers. Integer move instructions
can be used to move the values.
On some machines, though, the converse is true: fixed-point machine modes
may not go in floating registers. This is true if the floating registers
normalize any value stored in them, because storing a non-floating value
there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
fixed-point machine modes in floating registers. But if the floating
registers do not automatically normalize, if you can store any bit pattern
in one and retrieve it unchanged without a trap, then any machine mode may
go in a floating register, so you can define this macro to say so.
The primary significance of special floating registers is rather that they
are the registers acceptable in floating point arithmetic instructions.
However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
writing the proper constraints for those instructions.
On some machines, the floating registers are especially slow to access, so
that it is better to store a value in a stack frame than in such a register
if floating point arithmetic is not being done. As long as the floating
registers are not in class `GENERAL_REGS', they will not be used unless some
pattern's constraint asks for one. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
/* A C expression that is nonzero if it is desirable to choose register
allocation so as to avoid move instructions between a value of mode MODE1
and a value of mode MODE2.
If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
zero. */
#define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
/* Define this macro if the compiler should avoid copies to/from CCmode
registers. You should only define this macro if support fo copying to/from
CCmode is incomplete. */
#define AVOID_CCMODE_COPIES
/* Register Classes. */
/* An enumeral type that must be defined with all the register class names as
enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
register class, followed by one more enumeral value, `LIM_REG_CLASSES',
which is not a register class but rather tells how many classes there are.
Each register class has a number, which is the value of casting the class
name to type `int'. The number serves as an index in many of the tables
described below. */
enum reg_class
{
NO_REGS,
ICC_REGS,
FCC_REGS,
CC_REGS,
ICR_REGS,
FCR_REGS,
CR_REGS,
LCR_REG,
LR_REG,
GR8_REGS,
GR9_REGS,
GR89_REGS,
FDPIC_REGS,
FDPIC_FPTR_REGS,
FDPIC_CALL_REGS,
SPR_REGS,
QUAD_ACC_REGS,
EVEN_ACC_REGS,
ACC_REGS,
ACCG_REGS,
QUAD_FPR_REGS,
FEVEN_REGS,
FPR_REGS,
QUAD_REGS,
EVEN_REGS,
GPR_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define GENERAL_REGS GPR_REGS
/* The number of distinct register classes, defined as follows:
#define N_REG_CLASSES (int) LIM_REG_CLASSES */
#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
/* An initializer containing the names of the register classes as C string
constants. These names are used in writing some of the debugging dumps. */
#define REG_CLASS_NAMES { \
"NO_REGS", \
"ICC_REGS", \
"FCC_REGS", \
"CC_REGS", \
"ICR_REGS", \
"FCR_REGS", \
"CR_REGS", \
"LCR_REG", \
"LR_REG", \
"GR8_REGS", \
"GR9_REGS", \
"GR89_REGS", \
"FDPIC_REGS", \
"FDPIC_FPTR_REGS", \
"FDPIC_CALL_REGS", \
"SPR_REGS", \
"QUAD_ACC_REGS", \
"EVEN_ACC_REGS", \
"ACC_REGS", \
"ACCG_REGS", \
"QUAD_FPR_REGS", \
"FEVEN_REGS", \
"FPR_REGS", \
"QUAD_REGS", \
"EVEN_REGS", \
"GPR_REGS", \
"ALL_REGS" \
}
/* An initializer containing the contents of the register classes, as integers
which are bit masks. The Nth integer specifies the contents of class N.
The way the integer MASK is interpreted is that register R is in the class
if `MASK & (1 << R)' is 1.
When the machine has more than 32 registers, an integer does not suffice.
Then the integers are replaced by sub-initializers, braced groupings
containing several integers. Each sub-initializer must be suitable as an
initializer for the type `HARD_REG_SET' which is defined in
`hard-reg-set.h'. */
#define REG_CLASS_CONTENTS \
{ /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS */\
{ 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
{ 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
{ 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
{ 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
{ 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
{ 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* EVEN_ACC */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* ACC_REGS */\
{ 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
{ 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
{ 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
{ 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
{ 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
{ 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
{ 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
{ 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
}
/* The following macro defines cover classes for Integrated Register
Allocator. Cover classes is a set of non-intersected register
classes covering all hard registers used for register allocation
purpose. Any move between two registers of a cover class should be
cheaper than load or store of the registers. The macro value is
array of register classes with LIM_REG_CLASSES used as the end
marker. */
#define IRA_COVER_CLASSES \
{ \
GPR_REGS, FPR_REGS, ACC_REGS, ICR_REGS, FCR_REGS, ICC_REGS, FCC_REGS, \
ACCG_REGS, SPR_REGS, \
LIM_REG_CLASSES \
}
/* A C expression whose value is a register class containing hard register
REGNO. In general there is more than one such class; choose a class which
is "minimal", meaning that no smaller class also contains the register. */
extern enum reg_class regno_reg_class[];
#define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
/* A macro whose definition is the name of the class to which a valid base
register must belong. A base register is one used in an address which is
the register value plus a displacement. */
#define BASE_REG_CLASS GPR_REGS
/* A macro whose definition is the name of the class to which a valid index
register must belong. An index register is one used in an address where its
value is either multiplied by a scale factor or added to another register
(as well as added to a displacement). */
#define INDEX_REG_CLASS GPR_REGS
/* A C expression which is nonzero if register number NUM is suitable for use
as a base register in operand addresses. It may be either a suitable hard
register or a pseudo register that has been allocated such a hard register. */
#define REGNO_OK_FOR_BASE_P(NUM) \
((NUM) < FIRST_PSEUDO_REGISTER \
? GPR_P (NUM) \
: (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
/* A C expression which is nonzero if register number NUM is suitable for use
as an index register in operand addresses. It may be either a suitable hard
register or a pseudo register that has been allocated such a hard register.
The difference between an index register and a base register is that the
index register may be scaled. If an address involves the sum of two
registers, neither one of them scaled, then either one may be labeled the
"base" and the other the "index"; but whichever labeling is used must fit
the machine's constraints of which registers may serve in each capacity.
The compiler will try both labelings, looking for one that is valid, and
will reload one or both registers only if neither labeling works. */
#define REGNO_OK_FOR_INDEX_P(NUM) \
((NUM) < FIRST_PSEUDO_REGISTER \
? GPR_P (NUM) \
: (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
frv_secondary_reload_class (CLASS, MODE, X)
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
frv_secondary_reload_class (CLASS, MODE, X)
/* A C expression for the maximum number of consecutive registers of
class CLASS needed to hold a value of mode MODE.
This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
`HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
This macro helps control the handling of multiple-word values in
the reload pass.
This declaration is required. */
#define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
#define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
/* Basic Stack Layout. */
/* Structure to describe information about a saved range of registers */
typedef struct frv_stack_regs {
const char * name; /* name of the register ranges */
int first; /* first register in the range */
int last; /* last register in the range */
int size_1word; /* # of bytes to be stored via 1 word stores */
int size_2words; /* # of bytes to be stored via 2 word stores */
unsigned char field_p; /* true if the registers are a single SPR */
unsigned char dword_p; /* true if we can do dword stores */
unsigned char special_p; /* true if the regs have a fixed save loc. */
} frv_stack_regs_t;
/* Register ranges to look into saving. */
#define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
#define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
#define STACK_REGS_LR 2 /* LR register */
#define STACK_REGS_CC 3 /* CCrs (normally not saved) */
#define STACK_REGS_LCR 5 /* lcr register */
#define STACK_REGS_STDARG 6 /* stdarg registers */
#define STACK_REGS_STRUCT 7 /* structure return (gr3) */
#define STACK_REGS_FP 8 /* FP register */
#define STACK_REGS_MAX 9 /* # of register ranges */
/* Values for save_p field. */
#define REG_SAVE_NO_SAVE 0 /* register not saved */
#define REG_SAVE_1WORD 1 /* save the register */
#define REG_SAVE_2WORDS 2 /* save register and register+1 */
/* Structure used to define the frv stack. */
typedef struct frv_stack {
int total_size; /* total bytes allocated for stack */
int vars_size; /* variable save area size */
int parameter_size; /* outgoing parameter size */
int stdarg_size; /* size of regs needed to be saved for stdarg */
int regs_size; /* size of the saved registers */
int regs_size_1word; /* # of bytes to be stored via 1 word stores */
int regs_size_2words; /* # of bytes to be stored via 2 word stores */
int header_size; /* size of the old FP, struct ret., LR save */
int pretend_size; /* size of pretend args */
int vars_offset; /* offset to save local variables from new SP*/
int regs_offset; /* offset to save registers from new SP */
/* register range information */
frv_stack_regs_t regs[STACK_REGS_MAX];
/* offset to store each register */
int reg_offset[FIRST_PSEUDO_REGISTER];
/* whether to save register (& reg+1) */
unsigned char save_p[FIRST_PSEUDO_REGISTER];
} frv_stack_t;
/* Define this macro if pushing a word onto the stack moves the stack pointer
to a smaller address. */
#define STACK_GROWS_DOWNWARD 1
/* Define this macro to nonzero if the addresses of local variable slots
are at negative offsets from the frame pointer. */
#define FRAME_GROWS_DOWNWARD 1
/* Offset from the frame pointer to the first local variable slot to be
allocated.
If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
#define STARTING_FRAME_OFFSET 0
/* Offset from the stack pointer register to the first location at which
outgoing arguments are placed. If not specified, the default value of zero
is used. This is the proper value for most machines.
If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
location at which outgoing arguments are placed. */
#define STACK_POINTER_OFFSET 0
/* Offset from the argument pointer register to the first argument's address.
On some machines it may depend on the data type of the function.
If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
argument's address. */
#define FIRST_PARM_OFFSET(FUNDECL) 0
/* A C expression whose value is RTL representing the address in a stack frame
where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
an RTL expression for the address of the stack frame itself.
If you don't define this macro, the default is to return the value of
FRAMEADDR--that is, the stack frame address is also the address of the stack
word that points to the previous frame. */
#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
/* A C expression whose value is RTL representing the value of the return
address for the frame COUNT steps up from the current frame, after the
prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
defined.
The value of the expression must always be the correct address when COUNT is
zero, but may be `NULL_RTX' if there is not way to determine the return
address of other frames. */
#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
#define RETURN_POINTER_REGNUM LR_REGNO
/* A C expression whose value is RTL representing the location of the incoming
return address at the beginning of any function, before the prologue. This
RTL is either a `REG', indicating that the return value is saved in `REG',
or a `MEM' representing a location in the stack.
You only need to define this macro if you want to support call frame
debugging information like that provided by DWARF 2. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
/* Register That Address the Stack Frame. */
/* The register number of the stack pointer register, which must also be a
fixed register according to `FIXED_REGISTERS'. On most machines, the
hardware determines which register this is. */
#define STACK_POINTER_REGNUM (GPR_FIRST + 1)
/* The register number of the frame pointer register, which is used to access
automatic variables in the stack frame. On some machines, the hardware
determines which register this is. On other machines, you can choose any
register you wish for this purpose. */
#define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
/* The register number of the arg pointer register, which is used to access the
function's argument list. On some machines, this is the same as the frame
pointer register. On some machines, the hardware determines which register
this is. On other machines, you can choose any register you wish for this
purpose. If this is not the same register as the frame pointer register,
then you must mark it as a fixed register according to `FIXED_REGISTERS', or
arrange to be able to eliminate it. */
/* On frv this is a fake register that is eliminated in
terms of either the frame pointer or stack pointer. */
#define ARG_POINTER_REGNUM AP_FIRST
/* Register numbers used for passing a function's static chain pointer. If
register windows are used, the register number as seen by the called
function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
The static chain register need not be a fixed register.
If the static chain is passed in memory, these macros should not be defined;
instead, the next two macros should be defined. */
#define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
#define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
/* Eliminating the Frame Pointer and the Arg Pointer. */
/* If defined, this macro specifies a table of register pairs used to eliminate
unneeded registers that point into the stack frame. If it is not defined,
the only elimination attempted by the compiler is to replace references to
the frame pointer with references to the stack pointer.
The definition of this macro is a list of structure initializations, each of
which specifies an original and replacement register.
On some machines, the position of the argument pointer is not known until
the compilation is completed. In such a case, a separate hard register must
be used for the argument pointer. This register can be eliminated by
replacing it with either the frame pointer or the argument pointer,
depending on whether or not the frame pointer has been eliminated.
In this case, you might specify:
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
Note that the elimination of the argument pointer with the stack pointer is
specified first since that is the preferred elimination. */
#define ELIMINABLE_REGS \
{ \
{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
}
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
initial difference between the specified pair of registers. This macro must
be defined if `ELIMINABLE_REGS' is defined. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = frv_initial_elimination_offset (FROM, TO)
/* Passing Function Arguments on the Stack. */
/* If defined, the maximum amount of space required for outgoing arguments will
be computed and placed into the variable
`crtl->outgoing_args_size'. No space will be pushed onto the
stack for each call; instead, the function prologue should increase the
stack frame size by this amount.
Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
proper. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* The number of register assigned to holding function arguments. */
#define FRV_NUM_ARG_REGS 6
/* A C type for declaring a variable that is used as the first argument of
`FUNCTION_ARG' and other related values. For some target machines, the type
`int' suffices and can hold the number of bytes of argument so far.
There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
that have been passed on the stack. The compiler has other variables to
keep track of that. For target machines on which all arguments are passed
on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
however, the data structure must exist and should not be empty, so use
`int'. */
#define CUMULATIVE_ARGS int
/* A C statement (sans semicolon) for initializing the variable CUM for the
state at the beginning of the argument list. The variable has type
`CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
of the function which will receive the args, or 0 if the args are to a
compiler support library function. The value of INDIRECT is nonzero when
processing an indirect call, for example a call through a function pointer.
The value of INDIRECT is zero for a call to an explicitly named function, a
library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
arguments for the function being compiled.
When processing a call to a compiler support library function, LIBNAME
identifies which one. It is a `symbol_ref' rtx which contains the name of
the function, as a string. LIBNAME is 0 when an ordinary C function call is
being processed. Thus, each time this macro is called, either LIBNAME or
FNTYPE is nonzero, but never both of them at once. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
arguments for the function being compiled. If this macro is undefined,
`INIT_CUMULATIVE_ARGS' is used instead.
The value passed for LIBNAME is always 0, since library routines with
special calling conventions are never compiled with GCC. The argument
LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
/* A C expression that is nonzero if REGNO is the number of a hard register in
which function arguments are sometimes passed. This does *not* include
implicit arguments such as the static chain and the structure-value address.
On many machines, no registers can be used for this purpose since all
function arguments are pushed on the stack. */
#define FUNCTION_ARG_REGNO_P(REGNO) \
((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
/* How Scalar Function Values are Returned. */
/* The number of the hard register that is used to return a scalar value from a
function call. */
#define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
#define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
/* How Large Values are Returned. */
/* The number of the register that is used to pass the structure
value address. */
#define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
/* Function Entry and Exit. */
/* Define this macro as a C expression that is nonzero if the return
instruction or the function epilogue ignores the value of the stack pointer;
in other words, if it is safe to delete an instruction to adjust the stack
pointer before a return from the function.
Note that this macro's value is relevant only for functions for which frame
pointers are maintained. It is never safe to delete a final stack
adjustment in a function that has no frame pointer, and the compiler knows
this regardless of `EXIT_IGNORE_STACK'. */
#define EXIT_IGNORE_STACK 1
/* Generating Code for Profiling. */
/* A C statement or compound statement to output to FILE some assembler code to
call the profiling subroutine `mcount'. Before calling, the assembler code
must load the address of a counter variable into a register where `mcount'
expects to find the address. The name of this variable is `LP' followed by
the number LABELNO, so you would generate the name using `LP%d' in a
`fprintf'.
The details of how the address should be passed to `mcount' are determined
by your operating system environment, not by GCC. To figure them out,
compile a small program for profiling using the system's installed C
compiler and look at the assembler code that results.
This declaration must be present, but it can be an abort if profiling is
not implemented. */
#define FUNCTION_PROFILER(FILE, LABELNO)
/* Trampolines for Nested Functions. */
/* A C expression for the size in bytes of the trampoline, as an integer. */
#define TRAMPOLINE_SIZE frv_trampoline_size ()
/* Alignment required for trampolines, in bits.
If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
aligning trampolines. */
#define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
/* Define this macro if trampolines need a special subroutine to do their work.
The macro should expand to a series of `asm' statements which will be
compiled with GCC. They go in a library function named
`__transfer_from_trampoline'.
If you need to avoid executing the ordinary prologue code of a compiled C
function when you jump to the subroutine, you can do so by placing a special
label of your own in the assembler code. Use one `asm' statement to
generate an assembler label, and another to make the label global. Then
trampolines can use that label to jump directly to your special assembler
code. */
#ifdef __FRV_UNDERSCORE__
#define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
#else
#define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
#endif
#define Twrite _write
#if ! __FRV_FDPIC__
#define TRANSFER_FROM_TRAMPOLINE \
extern int Twrite (int, const void *, unsigned); \
\
void \
__trampoline_setup (short * addr, int size, int fnaddr, int sc) \
{ \
extern short __trampoline_template[]; \
short * to = addr; \
short * from = &__trampoline_template[0]; \
int i; \
\
if (size < 20) \
{ \
Twrite (2, "__trampoline_setup bad size\n", \
sizeof ("__trampoline_setup bad size\n") - 1); \
exit (-1); \
} \
\
to[0] = from[0]; \
to[1] = (short)(fnaddr); \
to[2] = from[2]; \
to[3] = (short)(sc); \
to[4] = from[4]; \
to[5] = (short)(fnaddr >> 16); \
to[6] = from[6]; \
to[7] = (short)(sc >> 16); \
to[8] = from[8]; \
to[9] = from[9]; \
\
for (i = 0; i < 20; i++) \
__asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
} \
\
__asm__("\n" \
"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
"\t.text\n" \
TRAMPOLINE_TEMPLATE_NAME ":\n" \
"\tsetlos #0, gr6\n" /* jump register */ \
"\tsetlos #0, gr7\n" /* static chain */ \
"\tsethi #0, gr6\n" \
"\tsethi #0, gr7\n" \
"\tjmpl @(gr0,gr6)\n");
#else
#define TRANSFER_FROM_TRAMPOLINE \
extern int Twrite (int, const void *, unsigned); \
\
void \
__trampoline_setup (addr, size, fnaddr, sc) \
short * addr; \
int size; \
int fnaddr; \
int sc; \
{ \
extern short __trampoline_template[]; \
short * from = &__trampoline_template[0]; \
int i; \
short **desc = (short **)addr; \
short * to = addr + 4; \
\
if (size != 32) \
{ \
Twrite (2, "__trampoline_setup bad size\n", \
sizeof ("__trampoline_setup bad size\n") - 1); \
exit (-1); \
} \
\
/* Create a function descriptor with the address of the code below \
and NULL as the FDPIC value. We don't need the real GOT value \
here, since we don't use it, so we use NULL, that is just as \
good. */ \
desc[0] = to; \
desc[1] = NULL; \
size -= 8; \
\
to[0] = from[0]; \
to[1] = (short)(fnaddr); \
to[2] = from[2]; \
to[3] = (short)(sc); \
to[4] = from[4]; \
to[5] = (short)(fnaddr >> 16); \
to[6] = from[6]; \
to[7] = (short)(sc >> 16); \
to[8] = from[8]; \
to[9] = from[9]; \
to[10] = from[10]; \
to[11] = from[11]; \
\
for (i = 0; i < size; i++) \
__asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
} \
\
__asm__("\n" \
"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
"\t.text\n" \
TRAMPOLINE_TEMPLATE_NAME ":\n" \
"\tsetlos #0, gr6\n" /* Jump register. */ \
"\tsetlos #0, gr7\n" /* Static chain. */ \
"\tsethi #0, gr6\n" \
"\tsethi #0, gr7\n" \
"\tldd @(gr6,gr0),gr14\n" \
"\tjmpl @(gr14,gr0)\n" \
);
#endif
/* Addressing Modes. */
/* A number, the maximum number of registers that can appear in a valid memory
address. Note that it is up to you to specify a value equal to the maximum
number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept. */
#define MAX_REGS_PER_ADDRESS 2
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
use as a base register. For hard registers, it should always accept those
which the hardware permits and reject the others. Whether the macro accepts
or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
described above. This usually requires two variant definitions, of which
`REG_OK_STRICT' controls the one actually used. */
#ifdef REG_OK_STRICT
#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
#else
#define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
#endif
/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
use as an index register.
The difference between an index register and a base register is that the
index register may be scaled. If an address involves the sum of two
registers, neither one of them scaled, then either one may be labeled the
"base" and the other the "index"; but whichever labeling is used must fit
the machine's constraints of which registers may serve in each capacity.
The compiler will try both labelings, looking for one that is valid, and
will reload one or both registers only if neither labeling works. */
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
#define FIND_BASE_TERM frv_find_base_term
/* A C expression that is nonzero if X is a legitimate constant for an
immediate operand on the target machine. You can assume that X satisfies
`CONSTANT_P', so you need not check this. In fact, `1' is a suitable
definition for this macro on machines where anything `CONSTANT_P' is valid. */
#define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
/* The load-and-update commands allow pre-modification in addresses.
The index has to be in a register. */
#define HAVE_PRE_MODIFY_REG 1
/* We define extra CC modes in frv-modes.def so we need a selector. */
#define SELECT_CC_MODE frv_select_cc_mode
/* A C expression whose value is one if it is always safe to reverse a
comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
must be zero.
You need not define this macro if it would always returns zero or if the
floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
example, here is the definition used on the SPARC, where floating-point
inequality comparisons are always given `CCFPEmode':
#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
/* On frv, don't consider floating point comparisons to be reversible. In
theory, fp equality comparisons can be reversible. */
#define REVERSIBLE_CC_MODE(MODE) \
((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
/* Frv CCR_MODE's are not reversible. */
#define REVERSE_CONDEXEC_PREDICATES_P(x,y) 0
/* Describing Relative Costs of Operations. */
/* A C expression for the cost of a branch instruction. A value of 1 is the
default; other values are interpreted relative to that. */
#define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
/* Define this macro as a C expression which is nonzero if accessing less than
a word of memory (i.e. a `char' or a `short') is no faster than accessing a
word of memory, i.e., if such access require more than one instruction or if
there is no difference in cost between byte and (aligned) word loads.
When this macro is not defined, the compiler will access a field by finding
the smallest containing object; when it is defined, a fullword load will be
used if alignment permits. Unless bytes accesses are faster than word
accesses, using word accesses is preferable since it may eliminate
subsequent memory access if subsequent accesses occur to other fields in the
same word of the structure, but to different bytes. */
#define SLOW_BYTE_ACCESS 1
/* Define this macro if it is as good or better to call a constant function
address than to call an address kept in a register. */
#define NO_FUNCTION_CSE
/* Dividing the output into sections. */
/* A C expression whose value is a string containing the assembler operation
that should precede instructions and read-only data. Normally `".text"' is
right. */
#define TEXT_SECTION_ASM_OP "\t.text"
/* A C expression whose value is a string containing the assembler operation to
identify the following data as writable initialized data. Normally
`".data"' is right. */
#define DATA_SECTION_ASM_OP "\t.data"
/* If defined, a C expression whose value is a string containing the
assembler operation to identify the following data as
uninitialized global data. If not defined, and neither
`ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
uninitialized global data will be output in the data section if
`-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
used. */
#define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
/* Short Data Support */
#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
#undef INIT_SECTION_ASM_OP
#undef FINI_SECTION_ASM_OP
#define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
#define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
#undef CTORS_SECTION_ASM_OP
#undef DTORS_SECTION_ASM_OP
#define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
#define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
/* A C expression whose value is a string containing the assembler operation to
switch to the fixup section that records all initialized pointers in a -fpic
program so they can be changed program startup time if the program is loaded
at a different address than linked for. */
#define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
/* Position Independent Code. */
/* A C expression that is nonzero if X is a legitimate immediate operand on the
target machine when generating position independent code. You can assume
that X satisfies `CONSTANT_P', so you need not check this. You can also
assume FLAG_PIC is true, so you need not check it either. You need not
define this macro if all constants (including `SYMBOL_REF') can be immediate
operands when generating position independent code. */
#define LEGITIMATE_PIC_OPERAND_P(X) \
( GET_CODE (X) == CONST_INT \
|| GET_CODE (X) == CONST_DOUBLE \
|| (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
|| got12_operand (X, VOIDmode)) \
/* The Overall Framework of an Assembler File. */
/* A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will end at the
end of the line. */
#define ASM_COMMENT_START ";"
/* A C string constant for text to be output before each `asm' statement or
group of consecutive ones. Normally this is `"#APP"', which is a comment
that has no effect on most assemblers but tells the GNU assembler that it
must check the lines that follow for all valid assembler constructs. */
#define ASM_APP_ON "#APP\n"
/* A C string constant for text to be output after each `asm' statement or
group of consecutive ones. Normally this is `"#NO_APP"', which tells the
GNU assembler to resume making the time-saving assumptions that are valid
for ordinary compiler output. */
#define ASM_APP_OFF "#NO_APP\n"
/* Output of Data. */
/* This is how to output a label to dwarf/dwarf2. */
#define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
do { \
fprintf (STREAM, "\t.picptr\t"); \
assemble_name (STREAM, LABEL); \
} while (0)
/* Whether to emit the gas specific dwarf2 line number support. */
#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
/* Output of Uninitialized Variables. */
/* A C statement (sans semicolon) to output to the stdio stream STREAM the
assembler definition of a local-common-label named NAME whose size is SIZE
bytes. The variable ROUNDED is the size rounded up to whatever alignment
the caller wants.
Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
before and after that, output the additional assembler syntax for defining
the name, and a newline.
This macro controls how the assembler definitions of uninitialized static
variables are output. */
#undef ASM_OUTPUT_LOCAL
#undef ASM_OUTPUT_ALIGNED_LOCAL
/* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
extern int size_directive_output;
/* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
parameter - the DECL of variable to be output, if there is one.
This macro can be called with DECL == NULL_TREE. If you define
this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
`ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
handling the destination of the variable. */
#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
do { \
if ((SIZE) > 0 && (SIZE) <= (unsigned HOST_WIDE_INT) g_switch_value) \
switch_to_section (get_named_section (NULL, ".sbss", 0)); \
else \
switch_to_section (bss_section); \
ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
} while (0)
/* Output and Generation of Labels. */
/* A C statement (sans semicolon) to output to the stdio stream STREAM the
assembler definition of a label named NAME. Use the expression
`assemble_name (STREAM, NAME)' to output the name itself; before and after
that, output the additional assembler syntax for defining the name, and a
newline. */
#define ASM_OUTPUT_LABEL(STREAM, NAME) \
do { \
assemble_name (STREAM, NAME); \
fputs (":\n", STREAM); \
} while (0)
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.globl "
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
do { \
sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
} while (0)
/* Macros Controlling Initialization Routines. */
#undef INIT_SECTION_ASM_OP
/* If defined, `main' will call `__main' despite the presence of
`INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
init section is not actually run automatically, but is still useful for
collecting the lists of constructors and destructors. */
#define INVOKE__main
/* Output of Assembler Instructions. */
/* A C initializer containing the assembler's names for the machine registers,
each one as a C string constant. This is what translates register numbers
in the compiler into assembler language. */
#define REGISTER_NAMES \
{ \
"gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
"gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
"gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
"gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
"gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
"gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
"gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
"gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
\
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
"fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
"fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
"fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
"fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
"fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
"fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
\
"fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
"cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
"acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
"acc8", "acc9", "acc10", "acc11", \
"accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
"accg8", "accg9", "accg10", "accg11", \
"ap", "lr", "lcr", "iacc0h", "iacc0l" \
}
/* Define this macro if you are using an unusual assembler that
requires different names for the machine instructions.
The definition is a C statement or statements which output an
assembler instruction opcode to the stdio stream STREAM. The
macro-operand PTR is a variable of type `char *' which points to
the opcode name in its "internal" form--the form that is written
in the machine description. The definition should output the
opcode name to STREAM, performing any translation you desire, and
increment the variable PTR to point at the end of the opcode so
that it will not be output twice.
In fact, your macro definition may process less than the entire
opcode name, or more than the opcode name; but if you want to
process text that includes `%'-sequences to substitute operands,
you must take care of the substitution yourself. Just be sure to
increment PTR over whatever text should not be output normally.
If you need to look at the operand values, they can be found as the
elements of `recog_operand'.
If the macro definition does nothing, the instruction is output in
the usual way. */
#define ASM_OUTPUT_OPCODE(STREAM, PTR)\
(PTR) = frv_asm_output_opcode (STREAM, PTR)
/* If defined, a C statement to be executed just prior to the output
of assembler code for INSN, to modify the extracted operands so
they will be output differently.
Here the argument OPVEC is the vector containing the operands
extracted from INSN, and NOPERANDS is the number of elements of
the vector which contain meaningful data for this insn. The
contents of this vector are what will be used to convert the insn
template into assembler code, so you can change the assembler
output by changing the contents of the vector.
This macro is useful when various assembler syntaxes share a single
file of instruction patterns; by defining this macro differently,
you can cause a large class of instructions to be output
differently (such as with rearranged operands). Naturally,
variations in assembler syntax affecting individual insn patterns
ought to be handled by writing conditional output routines in
those patterns.
If this macro is not defined, it is equivalent to a null statement. */
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX ""
#define REGISTER_PREFIX ""
#define LOCAL_LABEL_PREFIX "."
#define IMMEDIATE_PREFIX "#"
/* Output of dispatch tables. */
/* This macro should be provided on machines where the addresses in a dispatch
table are relative to the table's own address.
The definition should be a C statement to output to the stdio stream STREAM
an assembler pseudo-instruction to generate a difference between two labels.
VALUE and REL are the numbers of two internal labels. The definitions of
these labels are output using `(*targetm.asm_out.internal_label)', and they must be
printed in the same way here. For example,
fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
/* This macro should be provided on machines where the addresses in a dispatch
table are absolute.
The definition should be a C statement to output to the stdio stream STREAM
an assembler pseudo-instruction to generate a reference to a label. VALUE
is the number of an internal label whose definition is output using
`(*targetm.asm_out.internal_label)'. For example,
fprintf (STREAM, "\t.word L%d\n", VALUE) */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
fprintf (STREAM, "\t.word .L%d\n", VALUE)
#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
/* Assembler Commands for Exception Regions. */
/* Define this macro to 0 if your target supports DWARF 2 frame unwind
information, but it does not yet work with exception handling. Otherwise,
if your target supports this information (if it defines
`INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
`OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
If this macro is defined to 1, the DWARF 2 unwinder will be the default
exception handling mechanism; otherwise, setjmp/longjmp will be used by
default.
If this macro is defined to anything, the DWARF 2 unwinder will be used
instead of inline unwinders and __unwind_function in the non-setjmp case. */
#define DWARF2_UNWIND_INFO 1
#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
/* Assembler Commands for Alignment. */
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
/* A C statement to output to the stdio stream STREAM an assembler command to
advance the location counter to a multiple of 2 to the POWER bytes. POWER
will be a C expression of type `int'. */
#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
fprintf ((STREAM), "\t.p2align %d\n", (POWER))
/* Inside the text section, align with unpacked nops rather than zeros. */
#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
/* Macros Affecting all Debug Formats. */
/* A C expression that returns the DBX register number for the compiler
register number REGNO. In simple cases, the value of this expression may be
REGNO itself. But sometimes there are some registers that the compiler
knows about and DBX does not, or vice versa. In such cases, some register
may need to have one number in the compiler and another for DBX.
If two registers have consecutive numbers inside GCC, and they can be
used as a pair to hold a multiword value, then they *must* have consecutive
numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
will be unable to access such a pair, because they expect register pairs to
be consecutive in their own numbering scheme.
If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
preserve register pairs, then what you must do instead is redefine the
actual register numbering scheme.
This declaration is required. */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
/* Miscellaneous Parameters. */
/* An alias for a machine mode name. This is the machine mode that elements of
a jump-table should have. */
#define CASE_VECTOR_MODE SImode
/* Define this macro if operations between registers with integral mode smaller
than a word are always performed on the entire register. Most RISC machines
have this property and most CISC machines do not. */
#define WORD_REGISTER_OPERATIONS
/* Define this macro to be a C expression indicating when insns that read
memory in MODE, an integral mode narrower than a word, set the bits outside
of MODE to be either the sign-extension or the zero-extension of the data
read. Return `SIGN_EXTEND' for values of MODE for which the insn
sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
modes.
This macro is not called with MODE non-integral or with a width greater than
or equal to `BITS_PER_WORD', so you may return any value in this case. Do
not define this macro if it would always return `UNKNOWN'. On machines where
this macro is defined, you will normally define it as the constant
`SIGN_EXTEND' or `ZERO_EXTEND'. */
#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
/* Define if loading short immediate values into registers sign extends. */
#define SHORT_IMMEDIATES_SIGN_EXTEND
/* The maximum number of bytes that a single instruction can move quickly from
memory to memory. */
#define MOVE_MAX 8
/* A C expression which is nonzero if on this machine it is safe to "convert"
an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
than INPREC) by merely operating on it as if it had only OUTPREC bits.
On many machines, this expression can be 1.
When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
things. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* An alias for the machine mode for pointers. On most machines, define this
to be the integer mode corresponding to the width of a hardware pointer;
`SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
you must define this to be one of the partial integer modes, such as
`PSImode'.
The width of `Pmode' must be at least as large as the value of
`POINTER_SIZE'. If it is not equal, you must define the macro
`POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
#define Pmode SImode
/* An alias for the machine mode used for memory references to functions being
called, in `call' RTL expressions. On most machines this should be
`QImode'. */
#define FUNCTION_MODE QImode
/* A C expression for the maximum number of instructions to execute via
conditional execution instructions instead of a branch. A value of
BRANCH_COST+1 is the default if the machine does not use
cc0, and 1 if it does use cc0. */
#define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
/* A C expression to modify the code described by the conditional if
information CE_INFO, possibly updating the tests in TRUE_EXPR, and
FALSE_EXPR for converting if-then and if-then-else code to conditional
instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
tests cannot be converted. */
#define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
/* A C expression to modify the code described by the conditional if
information CE_INFO, for the basic block BB, possibly updating the tests in
TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
the tests cannot be converted. */
#define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
/* A C expression to modify the code described by the conditional if
information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
insn cannot be converted to be executed conditionally. */
#define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
(PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
/* A C expression to perform any final machine dependent modifications in
converting code to conditional execution in the code described by the
conditional if information CE_INFO. */
#define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
/* A C expression to cancel any machine dependent modifications in converting
code to conditional execution in the code described by the conditional if
information CE_INFO. */
#define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
/* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
#define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
/* The definition of the following macro results in that the 2nd jump
optimization (after the 2nd insn scheduling) is minimal. It is
necessary to define when start cycle marks of insns (TImode is used
for this) is used for VLIW insn packing. Some jump optimizations
make such marks invalid. These marks are corrected for some
(minimal) optimizations. ??? Probably the macro is temporary.
Final solution could making the 2nd jump optimizations before the
2nd instruction scheduling or corrections of the marks for all jump
optimizations. Although some jump optimizations are actually
deoptimizations for VLIW (super-scalar) processors. */
#define MINIMAL_SECOND_JUMP_OPTIMIZATION
/* If the following macro is defined and nonzero and deterministic
finite state automata are used for pipeline hazard recognition, we
will try to exchange insns in queue ready to improve the schedule.
The more macro value, the more tries will be made. */
#define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
/* The following macro is used only when value of
FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
the more tries will be made to choose better schedule. If the
macro value is zero or negative there will be no multi-pass
scheduling. */
#define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
enum frv_builtins
{
FRV_BUILTIN_MAND,
FRV_BUILTIN_MOR,
FRV_BUILTIN_MXOR,
FRV_BUILTIN_MNOT,
FRV_BUILTIN_MAVEH,
FRV_BUILTIN_MSATHS,
FRV_BUILTIN_MSATHU,
FRV_BUILTIN_MADDHSS,
FRV_BUILTIN_MADDHUS,
FRV_BUILTIN_MSUBHSS,
FRV_BUILTIN_MSUBHUS,
FRV_BUILTIN_MPACKH,
FRV_BUILTIN_MQADDHSS,
FRV_BUILTIN_MQADDHUS,
FRV_BUILTIN_MQSUBHSS,
FRV_BUILTIN_MQSUBHUS,
FRV_BUILTIN_MUNPACKH,
FRV_BUILTIN_MDPACKH,
FRV_BUILTIN_MBTOH,
FRV_BUILTIN_MHTOB,
FRV_BUILTIN_MCOP1,
FRV_BUILTIN_MCOP2,
FRV_BUILTIN_MROTLI,
FRV_BUILTIN_MROTRI,
FRV_BUILTIN_MWCUT,
FRV_BUILTIN_MSLLHI,
FRV_BUILTIN_MSRLHI,
FRV_BUILTIN_MSRAHI,
FRV_BUILTIN_MEXPDHW,
FRV_BUILTIN_MEXPDHD,
FRV_BUILTIN_MMULHS,
FRV_BUILTIN_MMULHU,
FRV_BUILTIN_MMULXHS,
FRV_BUILTIN_MMULXHU,
FRV_BUILTIN_MMACHS,
FRV_BUILTIN_MMACHU,
FRV_BUILTIN_MMRDHS,
FRV_BUILTIN_MMRDHU,
FRV_BUILTIN_MQMULHS,
FRV_BUILTIN_MQMULHU,
FRV_BUILTIN_MQMULXHU,
FRV_BUILTIN_MQMULXHS,
FRV_BUILTIN_MQMACHS,
FRV_BUILTIN_MQMACHU,
FRV_BUILTIN_MCPXRS,
FRV_BUILTIN_MCPXRU,
FRV_BUILTIN_MCPXIS,
FRV_BUILTIN_MCPXIU,
FRV_BUILTIN_MQCPXRS,
FRV_BUILTIN_MQCPXRU,
FRV_BUILTIN_MQCPXIS,
FRV_BUILTIN_MQCPXIU,
FRV_BUILTIN_MCUT,
FRV_BUILTIN_MCUTSS,
FRV_BUILTIN_MWTACC,
FRV_BUILTIN_MWTACCG,
FRV_BUILTIN_MRDACC,
FRV_BUILTIN_MRDACCG,
FRV_BUILTIN_MTRAP,
FRV_BUILTIN_MCLRACC,
FRV_BUILTIN_MCLRACCA,
FRV_BUILTIN_MDUNPACKH,
FRV_BUILTIN_MBTOHE,
FRV_BUILTIN_MQXMACHS,
FRV_BUILTIN_MQXMACXHS,
FRV_BUILTIN_MQMACXHS,
FRV_BUILTIN_MADDACCS,
FRV_BUILTIN_MSUBACCS,
FRV_BUILTIN_MASACCS,
FRV_BUILTIN_MDADDACCS,
FRV_BUILTIN_MDSUBACCS,
FRV_BUILTIN_MDASACCS,
FRV_BUILTIN_MABSHS,
FRV_BUILTIN_MDROTLI,
FRV_BUILTIN_MCPLHI,
FRV_BUILTIN_MCPLI,
FRV_BUILTIN_MDCUTSSI,
FRV_BUILTIN_MQSATHS,
FRV_BUILTIN_MQLCLRHS,
FRV_BUILTIN_MQLMTHS,
FRV_BUILTIN_MQSLLHI,
FRV_BUILTIN_MQSRAHI,
FRV_BUILTIN_MHSETLOS,
FRV_BUILTIN_MHSETLOH,
FRV_BUILTIN_MHSETHIS,
FRV_BUILTIN_MHSETHIH,
FRV_BUILTIN_MHDSETS,
FRV_BUILTIN_MHDSETH,
FRV_BUILTIN_SMUL,
FRV_BUILTIN_UMUL,
FRV_BUILTIN_PREFETCH0,
FRV_BUILTIN_PREFETCH,
FRV_BUILTIN_SMASS,
FRV_BUILTIN_SMSSS,
FRV_BUILTIN_SMU,
FRV_BUILTIN_SCUTSS,
FRV_BUILTIN_ADDSS,
FRV_BUILTIN_SUBSS,
FRV_BUILTIN_SLASS,
FRV_BUILTIN_IACCreadll,
FRV_BUILTIN_IACCreadl,
FRV_BUILTIN_IACCsetll,
FRV_BUILTIN_IACCsetl,
FRV_BUILTIN_SCAN,
FRV_BUILTIN_READ8,
FRV_BUILTIN_READ16,
FRV_BUILTIN_READ32,
FRV_BUILTIN_READ64,
FRV_BUILTIN_WRITE8,
FRV_BUILTIN_WRITE16,
FRV_BUILTIN_WRITE32,
FRV_BUILTIN_WRITE64
};
#define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
/* Enable prototypes on the call rtl functions. */
#define MD_CALL_PROTOTYPES 1
#define CPU_UNITS_QUERY 1
#ifdef __FRV_FDPIC__
#define CRT_GET_RFIB_DATA(dbase) \
({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
#endif
#endif /* __FRV_H__ */
|