summaryrefslogtreecommitdiff
path: root/gcc/config/rx/rx.c
blob: 392e2ff80393e3263ec4fe4c45ac8a3fe8eaf0c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
/* Subroutines used for code generation on Renesas RX processors.
   Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
   Contributed by Red Hat.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

/* To Do:

 * Re-enable memory-to-memory copies and fix up reload.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "toplev.h"
#include "reload.h"
#include "df.h"
#include "ggc.h"
#include "tm_p.h"
#include "debug.h"
#include "target.h"
#include "target-def.h"
#include "langhooks.h"

static void rx_print_operand (FILE *, rtx, int);

#define CC_FLAG_S	(1 << 0)
#define CC_FLAG_Z	(1 << 1)
#define CC_FLAG_O	(1 << 2)
#define CC_FLAG_C	(1 << 3)
#define CC_FLAG_FP	(1 << 4)	/* Fake, to differentiate CC_Fmode.  */

static unsigned int flags_from_mode (enum machine_mode mode);
static unsigned int flags_from_code (enum rtx_code code);

enum rx_cpu_types  rx_cpu_type = RX600;

/* Return true if OP is a reference to an object in a small data area.  */

static bool
rx_small_data_operand (rtx op)
{
  if (rx_small_data_limit == 0)
    return false;

  if (GET_CODE (op) == SYMBOL_REF)
    return SYMBOL_REF_SMALL_P (op);

  return false;
}

static bool
rx_is_legitimate_address (Mmode mode, rtx x, bool strict ATTRIBUTE_UNUSED)
{
  if (RTX_OK_FOR_BASE (x, strict))
    /* Register Indirect.  */
    return true;

  if ((GET_MODE_SIZE (mode) == 4
       || GET_MODE_SIZE (mode) == 2
       || GET_MODE_SIZE (mode) == 1)
      && (GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC))
    /* Pre-decrement Register Indirect or
       Post-increment Register Indirect.  */
    return RTX_OK_FOR_BASE (XEXP (x, 0), strict);

  if (GET_CODE (x) == PLUS)
    {
      rtx arg1 = XEXP (x, 0);
      rtx arg2 = XEXP (x, 1);
      rtx index = NULL_RTX;

      if (REG_P (arg1) && RTX_OK_FOR_BASE (arg1, strict))
	index = arg2;
      else if (REG_P (arg2) && RTX_OK_FOR_BASE (arg2, strict))
	index = arg1;
      else
	return false;

      switch (GET_CODE (index))
	{
	case CONST_INT:
	  {
	    /* Register Relative: REG + INT.
	       Only positive, mode-aligned, mode-sized
	       displacements are allowed.  */
	    HOST_WIDE_INT val = INTVAL (index);
	    int factor;

	    if (val < 0)
	      return false;
	    
	    switch (GET_MODE_SIZE (mode))
	      {
	      default: 
	      case 4: factor = 4; break;
	      case 2: factor = 2; break;
	      case 1: factor = 1; break;
	      }

	    if (val > (65535 * factor))
	      return false;
	    return (val % factor) == 0;
	  }

	case REG:
	  /* Unscaled Indexed Register Indirect: REG + REG
	     Size has to be "QI", REG has to be valid.  */
	  return GET_MODE_SIZE (mode) == 1 && RTX_OK_FOR_BASE (index, strict);

	case MULT:
	  {
	    /* Scaled Indexed Register Indirect: REG + (REG * FACTOR)
	       Factor has to equal the mode size, REG has to be valid.  */
	    rtx factor;

	    factor = XEXP (index, 1);
	    index = XEXP (index, 0);

	    return REG_P (index)
	      && RTX_OK_FOR_BASE (index, strict)
	      && CONST_INT_P (factor)
	      && GET_MODE_SIZE (mode) == INTVAL (factor);
	  }

	default:
	  return false;
	}
    }

  /* Small data area accesses turn into register relative offsets.  */
  return rx_small_data_operand (x);
}

/* Returns TRUE for simple memory addreses, ie ones
   that do not involve register indirect addressing
   or pre/post increment/decrement.  */

bool
rx_is_restricted_memory_address (rtx mem, enum machine_mode mode)
{
  rtx base, index;

  if (! rx_is_legitimate_address
      (mode, mem, reload_in_progress || reload_completed))
    return false;

  switch (GET_CODE (mem))
    {
    case REG:
      /* Simple memory addresses are OK.  */
      return true;

    case PRE_DEC:
    case POST_INC:
      return false;

    case PLUS:
      /* Only allow REG+INT addressing.  */
      base = XEXP (mem, 0);
      index = XEXP (mem, 1);

      if (! RX_REG_P (base) || ! CONST_INT_P (index))
	  return false;

      return IN_RANGE (INTVAL (index), 0, (0x10000 * GET_MODE_SIZE (mode)) - 1);

    case SYMBOL_REF:
      /* Can happen when small data is being supported.
         Assume that it will be resolved into GP+INT.  */
      return true;

    default:
      gcc_unreachable ();
    }
}

/* Implement TARGET_MODE_DEPENDENT_ADDRESS_P.  */

static bool
rx_mode_dependent_address_p (const_rtx addr)
{
  if (GET_CODE (addr) == CONST)
    addr = XEXP (addr, 0);

  switch (GET_CODE (addr))
    {
      /* --REG and REG++ only work in SImode.  */
    case PRE_DEC:
    case POST_INC:
      return true;

    case MINUS:
    case PLUS:
      if (! REG_P (XEXP (addr, 0)))
	return true;

      addr = XEXP (addr, 1);

      switch (GET_CODE (addr))
	{
	case REG:
	  /* REG+REG only works in SImode.  */
	  return true;

	case CONST_INT:
	  /* REG+INT is only mode independent if INT is a
	     multiple of 4, positive and will fit into 8-bits.  */
	  if (((INTVAL (addr) & 3) == 0)
	      && IN_RANGE (INTVAL (addr), 4, 252))
	    return false;
	  return true;

	case SYMBOL_REF:
	case LABEL_REF:
	  return true;

	case MULT:
	  gcc_assert (REG_P (XEXP (addr, 0)));
	  gcc_assert (CONST_INT_P (XEXP (addr, 1)));
	  /* REG+REG*SCALE is always mode dependent.  */
	  return true;

	default:
	  /* Not recognized, so treat as mode dependent.  */
	  return true;
	}

    case CONST_INT:
    case SYMBOL_REF:
    case LABEL_REF:
    case REG:
      /* These are all mode independent.  */
      return false;

    default:
      /* Everything else is unrecognized,
	 so treat as mode dependent.  */
      return true;
    }
}

/* A C compound statement to output to stdio stream FILE the
   assembler syntax for an instruction operand that is a memory
   reference whose address is ADDR.  */

static void
rx_print_operand_address (FILE * file, rtx addr)
{
  switch (GET_CODE (addr))
    {
    case REG:
      fprintf (file, "[");
      rx_print_operand (file, addr, 0);
      fprintf (file, "]");
      break;

    case PRE_DEC:
      fprintf (file, "[-");
      rx_print_operand (file, XEXP (addr, 0), 0);
      fprintf (file, "]");
      break;

    case POST_INC:
      fprintf (file, "[");
      rx_print_operand (file, XEXP (addr, 0), 0);
      fprintf (file, "+]");
      break;

    case PLUS:
      {
	rtx arg1 = XEXP (addr, 0);
	rtx arg2 = XEXP (addr, 1);
	rtx base, index;

	if (REG_P (arg1) && RTX_OK_FOR_BASE (arg1, true))
	  base = arg1, index = arg2;
	else if (REG_P (arg2) && RTX_OK_FOR_BASE (arg2, true))
	  base = arg2, index = arg1;
	else
	  {
	    rx_print_operand (file, arg1, 0);
	    fprintf (file, " + ");
	    rx_print_operand (file, arg2, 0);
	    break;
	  }

	if (REG_P (index) || GET_CODE (index) == MULT)
	  {
	    fprintf (file, "[");
	    rx_print_operand (file, index, 'A');
	    fprintf (file, ",");
	  }
	else /* GET_CODE (index) == CONST_INT  */
	  {
	    rx_print_operand (file, index, 'A');
	    fprintf (file, "[");
	  }
	rx_print_operand (file, base, 0);
	fprintf (file, "]");
	break;
      }

    case CONST:
      if (GET_CODE (XEXP (addr, 0)) == UNSPEC)
	{
	  addr = XEXP (addr, 0);
	  gcc_assert (XINT (addr, 1) == UNSPEC_CONST);
      
	  addr = XVECEXP (addr, 0, 0);
	  gcc_assert (CONST_INT_P (addr));
	}
      /* Fall through.  */
    case LABEL_REF:
    case SYMBOL_REF:
      fprintf (file, "#");

    default:
      output_addr_const (file, addr);
      break;
    }
}

static void
rx_print_integer (FILE * file, HOST_WIDE_INT val)
{
  if (IN_RANGE (val, -64, 64))
    fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
  else
    fprintf (file,
	     TARGET_AS100_SYNTAX
	     ? "0%" HOST_WIDE_INT_PRINT "xH" : HOST_WIDE_INT_PRINT_HEX,
	     val);
}

static bool
rx_assemble_integer (rtx x, unsigned int size, int is_aligned)
{
  const char *  op = integer_asm_op (size, is_aligned);

  if (! CONST_INT_P (x))
    return default_assemble_integer (x, size, is_aligned);

  if (op == NULL)
    return false;
  fputs (op, asm_out_file);

  rx_print_integer (asm_out_file, INTVAL (x));
  fputc ('\n', asm_out_file);
  return true;
}


/* Handles the insertion of a single operand into the assembler output.
   The %<letter> directives supported are:

     %A  Print an operand without a leading # character.
     %B  Print an integer comparison name.
     %C  Print a control register name.
     %F  Print a condition code flag name.
     %H  Print high part of a DImode register, integer or address.
     %L  Print low part of a DImode register, integer or address.
     %N  Print the negation of the immediate value.
     %Q  If the operand is a MEM, then correctly generate
         register indirect or register relative addressing.
     %R  Like %Q but for zero-extending loads.  */

static void
rx_print_operand (FILE * file, rtx op, int letter)
{
  bool unsigned_load = false;

  switch (letter)
    {
    case 'A':
      /* Print an operand without a leading #.  */
      if (MEM_P (op))
	op = XEXP (op, 0);

      switch (GET_CODE (op))
	{
	case LABEL_REF:
	case SYMBOL_REF:
	  output_addr_const (file, op);
	  break;
	case CONST_INT:
	  fprintf (file, "%ld", (long) INTVAL (op));
	  break;
	default:
	  rx_print_operand (file, op, 0);
	  break;
	}
      break;

    case 'B':
      {
	enum rtx_code code = GET_CODE (op);
	enum machine_mode mode = GET_MODE (XEXP (op, 0));
	const char *ret;

	if (mode == CC_Fmode)
	  {
	    /* C flag is undefined, and O flag carries unordered.  None of the
	       branch combinations that include O use it helpfully.  */
	    switch (code)
	      {
	      case ORDERED:
		ret = "no";
		break;
	      case UNORDERED:
		ret = "o";
		break;
	      case LT:
		ret = "n";
		break;
	      case GE:
		ret = "pz";
		break;
	      case EQ:
		ret = "eq";
		break;
	      case NE:
		ret = "ne";
		break;
	      default:
		gcc_unreachable ();
	      }
	  }
	else
	  {
	    unsigned int flags = flags_from_mode (mode);

	    switch (code)
	      {
	      case LT:
		ret = (flags & CC_FLAG_O ? "lt" : "n");
		break;
	      case GE:
		ret = (flags & CC_FLAG_O ? "ge" : "pz");
		break;
	      case GT:
		ret = "gt";
		break;
	      case LE:
		ret = "le";
		break;
	      case GEU:
		ret = "geu";
		break;
	      case LTU:
		ret = "ltu";
		break;
	      case GTU:
		ret = "gtu";
		break;
	      case LEU:
		ret = "leu";
		break;
	      case EQ:
		ret = "eq";
		break;
	      case NE:
		ret = "ne";
		break;
	      default:
		gcc_unreachable ();
	      }
	    gcc_checking_assert ((flags_from_code (code) & ~flags) == 0);
	  }
	fputs (ret, file);
	break;
      }

    case 'C':
      gcc_assert (CONST_INT_P (op));
      switch (INTVAL (op))
	{
	case 0:   fprintf (file, "psw"); break;
	case 2:   fprintf (file, "usp"); break;
	case 3:   fprintf (file, "fpsw"); break;
	case 4:   fprintf (file, "cpen"); break;
	case 8:   fprintf (file, "bpsw"); break;
	case 9:   fprintf (file, "bpc"); break;
	case 0xa: fprintf (file, "isp"); break;
	case 0xb: fprintf (file, "fintv"); break;
	case 0xc: fprintf (file, "intb"); break;
	default:
	  warning (0, "unreocgnized control register number: %d - using 'psw'",
		   (int) INTVAL (op));
	  fprintf (file, "psw");
	  break;
	}
      break;

    case 'F':
      gcc_assert (CONST_INT_P (op));
      switch (INTVAL (op))
	{
	case 0: case 'c': case 'C': fprintf (file, "C"); break;
	case 1:	case 'z': case 'Z': fprintf (file, "Z"); break;
	case 2: case 's': case 'S': fprintf (file, "S"); break;
	case 3: case 'o': case 'O': fprintf (file, "O"); break;
	case 8: case 'i': case 'I': fprintf (file, "I"); break;
	case 9: case 'u': case 'U': fprintf (file, "U"); break;
	default:
	  gcc_unreachable ();
	}
      break;

    case 'H':
      switch (GET_CODE (op))
	{
	case REG:
	  fprintf (file, "%s", reg_names [REGNO (op) + (WORDS_BIG_ENDIAN ? 0 : 1)]);
	  break;
	case CONST_INT:
	  {
	    HOST_WIDE_INT v = INTVAL (op);

	    fprintf (file, "#");
	    /* Trickery to avoid problems with shifting 32 bits at a time.  */
	    v = v >> 16;
	    v = v >> 16;	  
	    rx_print_integer (file, v);
	    break;
	  }
	case CONST_DOUBLE:
	  fprintf (file, "#");
	  rx_print_integer (file, CONST_DOUBLE_HIGH (op));
	  break;
	case MEM:
	  if (! WORDS_BIG_ENDIAN)
	    op = adjust_address (op, SImode, 4);
	  output_address (XEXP (op, 0));
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case 'L':
      switch (GET_CODE (op))
	{
	case REG:
	  fprintf (file, "%s", reg_names [REGNO (op) + (WORDS_BIG_ENDIAN ? 1 : 0)]);
	  break;
	case CONST_INT:
	  fprintf (file, "#");
	  rx_print_integer (file, INTVAL (op) & 0xffffffff);
	  break;
	case CONST_DOUBLE:
	  fprintf (file, "#");
	  rx_print_integer (file, CONST_DOUBLE_LOW (op));
	  break;
	case MEM:
	  if (WORDS_BIG_ENDIAN)
	    op = adjust_address (op, SImode, 4);
	  output_address (XEXP (op, 0));
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case 'N':
      gcc_assert (CONST_INT_P (op));
      fprintf (file, "#");
      rx_print_integer (file, - INTVAL (op));
      break;

    case 'R':
      gcc_assert (GET_MODE_SIZE (GET_MODE (op)) < 4);
      unsigned_load = true;
      /* Fall through.  */
    case 'Q':
      if (MEM_P (op))
	{
	  HOST_WIDE_INT offset;
	  rtx mem = op;

	  op = XEXP (op, 0);

	  if (REG_P (op))
	    offset = 0;
	  else if (GET_CODE (op) == PLUS)
	    {
	      rtx displacement;

	      if (REG_P (XEXP (op, 0)))
		{
		  displacement = XEXP (op, 1);
		  op = XEXP (op, 0);
		}
	      else
		{
		  displacement = XEXP (op, 0);
		  op = XEXP (op, 1);
		  gcc_assert (REG_P (op));
		}

	      gcc_assert (CONST_INT_P (displacement));
	      offset = INTVAL (displacement);
	      gcc_assert (offset >= 0);

	      fprintf (file, "%ld", offset);
	    }
	  else
	    gcc_unreachable ();

	  fprintf (file, "[");
	  rx_print_operand (file, op, 0);
	  fprintf (file, "].");

	  switch (GET_MODE_SIZE (GET_MODE (mem)))
	    {
	    case 1:
	      gcc_assert (offset <= 65535 * 1);
	      fprintf (file, unsigned_load ? "UB" : "B");
	      break;
	    case 2:
	      gcc_assert (offset % 2 == 0);
	      gcc_assert (offset <= 65535 * 2);
	      fprintf (file, unsigned_load ? "UW" : "W");
	      break;
	    case 4:
	      gcc_assert (offset % 4 == 0);
	      gcc_assert (offset <= 65535 * 4);
	      fprintf (file, "L");
	      break;
	    default:
	      gcc_unreachable ();
	    }
	  break;
	}

      /* Fall through.  */

    default:
      switch (GET_CODE (op))
	{
	case MULT:
	  /* Should be the scaled part of an
	     indexed register indirect address.  */
	  {
	    rtx base = XEXP (op, 0);
	    rtx index = XEXP (op, 1);

	    /* Check for a swaped index register and scaling factor.
	       Not sure if this can happen, but be prepared to handle it.  */
	    if (CONST_INT_P (base) && REG_P (index))
	      {
		rtx tmp = base;
		base = index;
		index = tmp;
	      }

	    gcc_assert (REG_P (base));
	    gcc_assert (REGNO (base) < FIRST_PSEUDO_REGISTER);
	    gcc_assert (CONST_INT_P (index));
	    /* Do not try to verify the value of the scalar as it is based
	       on the mode of the MEM not the mode of the MULT.  (Which
	       will always be SImode).  */
	    fprintf (file, "%s", reg_names [REGNO (base)]);
	    break;
	  }

	case MEM:
	  output_address (XEXP (op, 0));
	  break;

	case PLUS:
	  output_address (op);
	  break;

	case REG:
	  gcc_assert (REGNO (op) < FIRST_PSEUDO_REGISTER);
	  fprintf (file, "%s", reg_names [REGNO (op)]);
	  break;

	case SUBREG:
	  gcc_assert (subreg_regno (op) < FIRST_PSEUDO_REGISTER);
	  fprintf (file, "%s", reg_names [subreg_regno (op)]);
	  break;

	  /* This will only be single precision....  */
	case CONST_DOUBLE:
	  {
	    unsigned long val;
	    REAL_VALUE_TYPE rv;

	    REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
	    REAL_VALUE_TO_TARGET_SINGLE (rv, val);
	    fprintf (file, TARGET_AS100_SYNTAX ? "#0%lxH" : "#0x%lx", val);
	    break;
	  }

	case CONST_INT:
	  fprintf (file, "#");
	  rx_print_integer (file, INTVAL (op));
	  break;

	case SYMBOL_REF:
	case CONST:
	case LABEL_REF:
	case CODE_LABEL:
	case UNSPEC:
	  rx_print_operand_address (file, op);
	  break;

	default:
	  gcc_unreachable ();
	}
      break;
    }
}

/* Returns an assembler template for a move instruction.  */

char *
rx_gen_move_template (rtx * operands, bool is_movu)
{
  static char  out_template [64];
  const char * extension = TARGET_AS100_SYNTAX ? ".L" : "";
  const char * src_template;
  const char * dst_template;
  rtx          dest = operands[0];
  rtx          src  = operands[1];

  /* Decide which extension, if any, should be given to the move instruction.  */
  switch (CONST_INT_P (src) ? GET_MODE (dest) : GET_MODE (src))
    {
    case QImode:
      /* The .B extension is not valid when
	 loading an immediate into a register.  */
      if (! REG_P (dest) || ! CONST_INT_P (src))
	extension = ".B";
      break;
    case HImode:
      if (! REG_P (dest) || ! CONST_INT_P (src))
	/* The .W extension is not valid when
	   loading an immediate into a register.  */
	extension = ".W";
      break;
    case SFmode:
    case SImode:
      extension = ".L";
      break;
    case VOIDmode:
      /* This mode is used by constants.  */
      break;
    default:
      debug_rtx (src);
      gcc_unreachable ();
    }

  if (MEM_P (src) && rx_small_data_operand (XEXP (src, 0)))
    src_template = "%%gp(%A1)[r13]";
  else
    src_template = "%1";

  if (MEM_P (dest) && rx_small_data_operand (XEXP (dest, 0)))
    dst_template = "%%gp(%A0)[r13]";
  else
    dst_template = "%0";

  sprintf (out_template, "%s%s\t%s, %s", is_movu ? "movu" : "mov",
	   extension, src_template, dst_template);
  return out_template;
}

/* Return VALUE rounded up to the next ALIGNMENT boundary.  */

static inline unsigned int
rx_round_up (unsigned int value, unsigned int alignment)
{
  alignment -= 1;
  return (value + alignment) & (~ alignment);
}

/* Return the number of bytes in the argument registers
   occupied by an argument of type TYPE and mode MODE.  */

static unsigned int
rx_function_arg_size (Mmode mode, const_tree type)
{
  unsigned int num_bytes;

  num_bytes = (mode == BLKmode)
    ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
  return rx_round_up (num_bytes, UNITS_PER_WORD);
}

#define NUM_ARG_REGS		4
#define MAX_NUM_ARG_BYTES	(NUM_ARG_REGS * UNITS_PER_WORD)

/* Return an RTL expression describing the register holding a function
   parameter of mode MODE and type TYPE or NULL_RTX if the parameter should
   be passed on the stack.  CUM describes the previous parameters to the
   function and NAMED is false if the parameter is part of a variable
   parameter list, or the last named parameter before the start of a
   variable parameter list.  */

static rtx
rx_function_arg (Fargs * cum, Mmode mode, const_tree type, bool named)
{
  unsigned int next_reg;
  unsigned int bytes_so_far = *cum;
  unsigned int size;
  unsigned int rounded_size;

  /* An exploded version of rx_function_arg_size.  */
  size = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
  /* If the size is not known it cannot be passed in registers.  */
  if (size < 1)
    return NULL_RTX;

  rounded_size = rx_round_up (size, UNITS_PER_WORD);

  /* Don't pass this arg via registers if there
     are insufficient registers to hold all of it.  */
  if (rounded_size + bytes_so_far > MAX_NUM_ARG_BYTES)
    return NULL_RTX;

  /* Unnamed arguments and the last named argument in a
     variadic function are always passed on the stack.  */
  if (!named)
    return NULL_RTX;

  /* Structures must occupy an exact number of registers,
     otherwise they are passed on the stack.  */
  if ((type == NULL || AGGREGATE_TYPE_P (type))
      && (size % UNITS_PER_WORD) != 0)
    return NULL_RTX;

  next_reg = (bytes_so_far / UNITS_PER_WORD) + 1;

  return gen_rtx_REG (mode, next_reg);
}

static void
rx_function_arg_advance (Fargs * cum, Mmode mode, const_tree type,
			 bool named ATTRIBUTE_UNUSED)
{
  *cum += rx_function_arg_size (mode, type);
}

static unsigned int
rx_function_arg_boundary (Mmode mode ATTRIBUTE_UNUSED,
			  const_tree type ATTRIBUTE_UNUSED)
{
  return 32;
}

/* Return an RTL describing where a function return value of type RET_TYPE
   is held.  */

static rtx
rx_function_value (const_tree ret_type,
		   const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
		   bool       outgoing ATTRIBUTE_UNUSED)
{
  enum machine_mode mode = TYPE_MODE (ret_type);

  /* RX ABI specifies that small integer types are
     promoted to int when returned by a function.  */
  if (GET_MODE_SIZE (mode) > 0
      && GET_MODE_SIZE (mode) < 4
      && ! COMPLEX_MODE_P (mode)
      )
    return gen_rtx_REG (SImode, FUNC_RETURN_REGNUM);
    
  return gen_rtx_REG (mode, FUNC_RETURN_REGNUM);
}

/* TARGET_PROMOTE_FUNCTION_MODE must behave in the same way with
   regard to function returns as does TARGET_FUNCTION_VALUE.  */

static enum machine_mode
rx_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
			  enum machine_mode mode,
			  int * punsignedp ATTRIBUTE_UNUSED,
			  const_tree funtype ATTRIBUTE_UNUSED,
			  int for_return)
{
  if (for_return != 1
      || GET_MODE_SIZE (mode) >= 4
      || COMPLEX_MODE_P (mode)
      || GET_MODE_SIZE (mode) < 1)
    return mode;

  return SImode;
}

static bool
rx_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  HOST_WIDE_INT size;

  if (TYPE_MODE (type) != BLKmode
      && ! AGGREGATE_TYPE_P (type))
    return false;

  size = int_size_in_bytes (type);
  /* Large structs and those whose size is not an
     exact multiple of 4 are returned in memory.  */
  return size < 1
    || size > 16
    || (size % UNITS_PER_WORD) != 0;
}

static rtx
rx_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED,
		     int incoming ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (Pmode, STRUCT_VAL_REGNUM);
}

static bool
rx_return_in_msb (const_tree valtype)
{
  return TARGET_BIG_ENDIAN_DATA
    && (AGGREGATE_TYPE_P (valtype) || TREE_CODE (valtype) == COMPLEX_TYPE);
}

/* Returns true if the provided function has the specified attribute.  */

static inline bool
has_func_attr (const_tree decl, const char * func_attr)
{
  if (decl == NULL_TREE)
    decl = current_function_decl;

  return lookup_attribute (func_attr, DECL_ATTRIBUTES (decl)) != NULL_TREE;
}

/* Returns true if the provided function has the "fast_interrupt" attribute.  */

static inline bool
is_fast_interrupt_func (const_tree decl)
{
  return has_func_attr (decl, "fast_interrupt");
}

/* Returns true if the provided function has the "interrupt" attribute.  */

static inline bool
is_interrupt_func (const_tree decl)
{
  return has_func_attr (decl, "interrupt");
}

/* Returns true if the provided function has the "naked" attribute.  */

static inline bool
is_naked_func (const_tree decl)
{
  return has_func_attr (decl, "naked");
}

static bool use_fixed_regs = false;

static void
rx_conditional_register_usage (void)
{
  static bool using_fixed_regs = false;

  if (rx_small_data_limit > 0)
    fixed_regs[GP_BASE_REGNUM] = call_used_regs [GP_BASE_REGNUM] = 1;

  if (use_fixed_regs != using_fixed_regs)
    {
      static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
      static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];

      if (use_fixed_regs)
	{
	  unsigned int r;

	  memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
	  memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);

	  /* This is for fast interrupt handlers.  Any register in
	     the range r10 to r13 (inclusive) that is currently
	     marked as fixed is now a viable, call-used register.  */	  
	  for (r = 10; r <= 13; r++)
	    if (fixed_regs[r])
	      {
		fixed_regs[r] = 0;
		call_used_regs[r] = 1;
	      }

	  /* Mark r7 as fixed.  This is just a hack to avoid
	     altering the reg_alloc_order array so that the newly
	     freed r10-r13 registers are the preferred registers.  */
	  fixed_regs[7] = call_used_regs[7] = 1;
	}
      else
	{
	  /* Restore the normal register masks.  */
	  memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
	  memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
	}

      using_fixed_regs = use_fixed_regs;
    }
}

/* Perform any actions necessary before starting to compile FNDECL.
   For the RX we use this to make sure that we have the correct
   set of register masks selected.  If FNDECL is NULL then we are
   compiling top level things.  */

static void
rx_set_current_function (tree fndecl)
{
  /* Remember the last target of rx_set_current_function.  */
  static tree rx_previous_fndecl;
  bool prev_was_fast_interrupt;
  bool current_is_fast_interrupt;

  /* Only change the context if the function changes.  This hook is called
     several times in the course of compiling a function, and we don't want
     to slow things down too much or call target_reinit when it isn't safe.  */
  if (fndecl == rx_previous_fndecl)
    return;

  prev_was_fast_interrupt
    = rx_previous_fndecl
    ? is_fast_interrupt_func (rx_previous_fndecl) : false;

  current_is_fast_interrupt
    = fndecl ? is_fast_interrupt_func (fndecl) : false;
      
  if (prev_was_fast_interrupt != current_is_fast_interrupt)
    {
      use_fixed_regs = current_is_fast_interrupt;
      target_reinit ();
    }

  rx_previous_fndecl = fndecl;
}

/* Typical stack layout should looks like this after the function's prologue:

                            |    |
                              --                       ^
                            |    | \                   |
                            |    |   arguments saved   | Increasing
                            |    |   on the stack      |  addresses
    PARENT   arg pointer -> |    | /
  -------------------------- ---- -------------------
    CHILD                   |ret |   return address
                              --
                            |    | \
                            |    |   call saved
                            |    |   registers
			    |    | /
                              --
                            |    | \
                            |    |   local
                            |    |   variables
        frame pointer ->    |    | /
                              --
                            |    | \
                            |    |   outgoing          | Decreasing
                            |    |   arguments         |  addresses
   current stack pointer -> |    | /                   |
  -------------------------- ---- ------------------   V
                            |    |                 */

static unsigned int
bit_count (unsigned int x)
{
  const unsigned int m1 = 0x55555555;
  const unsigned int m2 = 0x33333333;
  const unsigned int m4 = 0x0f0f0f0f;

  x -= (x >> 1) & m1;
  x = (x & m2) + ((x >> 2) & m2);
  x = (x + (x >> 4)) & m4;
  x += x >>  8;

  return (x + (x >> 16)) & 0x3f;
}

#define MUST_SAVE_ACC_REGISTER			\
  (TARGET_SAVE_ACC_REGISTER			\
   && (is_interrupt_func (NULL_TREE)		\
       || is_fast_interrupt_func (NULL_TREE)))

/* Returns either the lowest numbered and highest numbered registers that
   occupy the call-saved area of the stack frame, if the registers are
   stored as a contiguous block, or else a bitmask of the individual
   registers if they are stored piecemeal.

   Also computes the size of the frame and the size of the outgoing
   arguments block (in bytes).  */

static void
rx_get_stack_layout (unsigned int * lowest,
		     unsigned int * highest,
		     unsigned int * register_mask,
		     unsigned int * frame_size,
		     unsigned int * stack_size)
{
  unsigned int reg;
  unsigned int low;
  unsigned int high;
  unsigned int fixed_reg = 0;
  unsigned int save_mask;
  unsigned int pushed_mask;
  unsigned int unneeded_pushes;

  if (is_naked_func (NULL_TREE))
    {
      /* Naked functions do not create their own stack frame.
	 Instead the programmer must do that for us.  */
      * lowest = 0;
      * highest = 0;
      * register_mask = 0;
      * frame_size = 0;
      * stack_size = 0;
      return;
    }

  for (save_mask = high = low = 0, reg = 1; reg < CC_REGNUM; reg++)
    {
      if ((df_regs_ever_live_p (reg)
	   /* Always save all call clobbered registers inside non-leaf
	      interrupt handlers, even if they are not live - they may
	      be used in (non-interrupt aware) routines called from this one.  */
	   || (call_used_regs[reg]
	       && is_interrupt_func (NULL_TREE)
	       && ! current_function_is_leaf))
	  && (! call_used_regs[reg]
	      /* Even call clobbered registered must
		 be pushed inside interrupt handlers.  */
	      || is_interrupt_func (NULL_TREE)
	      /* Likewise for fast interrupt handlers, except registers r10 -
		 r13.  These are normally call-saved, but may have been set
		 to call-used by rx_conditional_register_usage.  If so then
		 they can be used in the fast interrupt handler without
		 saving them on the stack.  */
	      || (is_fast_interrupt_func (NULL_TREE)
		  && ! IN_RANGE (reg, 10, 13))))
	{
	  if (low == 0)
	    low = reg;
	  high = reg;

	  save_mask |= 1 << reg;
	}

      /* Remember if we see a fixed register
	 after having found the low register.  */
      if (low != 0 && fixed_reg == 0 && fixed_regs [reg])
	fixed_reg = reg;
    }

  /* If we have to save the accumulator register, make sure
     that at least two registers are pushed into the frame.  */
  if (MUST_SAVE_ACC_REGISTER
      && bit_count (save_mask) < 2)
    {
      save_mask |= (1 << 13) | (1 << 14);
      if (low == 0)
	low = 13;
      if (high == 0 || low == high)
	high = low + 1;
    }

  /* Decide if it would be faster fill in the call-saved area of the stack
     frame using multiple PUSH instructions instead of a single PUSHM
     instruction.

     SAVE_MASK is a bitmask of the registers that must be stored in the
     call-save area.  PUSHED_MASK is a bitmask of the registers that would
     be pushed into the area if we used a PUSHM instruction.  UNNEEDED_PUSHES
     is a bitmask of those registers in pushed_mask that are not in
     save_mask.

     We use a simple heuristic that says that it is better to use
     multiple PUSH instructions if the number of unnecessary pushes is
     greater than the number of necessary pushes.

     We also use multiple PUSH instructions if there are any fixed registers
     between LOW and HIGH.  The only way that this can happen is if the user
     has specified --fixed-<reg-name> on the command line and in such
     circumstances we do not want to touch the fixed registers at all.

     FIXME: Is it worth improving this heuristic ?  */
  pushed_mask = (-1 << low) & ~(-1 << (high + 1));
  unneeded_pushes = (pushed_mask & (~ save_mask)) & pushed_mask;

  if ((fixed_reg && fixed_reg <= high)
      || (optimize_function_for_speed_p (cfun)
	  && bit_count (save_mask) < bit_count (unneeded_pushes)))
    {
      /* Use multiple pushes.  */
      * lowest = 0;
      * highest = 0;
      * register_mask = save_mask;
    }
  else
    {
      /* Use one push multiple instruction.  */
      * lowest = low;
      * highest = high;
      * register_mask = 0;
    }

  * frame_size = rx_round_up
    (get_frame_size (), STACK_BOUNDARY / BITS_PER_UNIT);

  if (crtl->args.size > 0)
    * frame_size += rx_round_up
      (crtl->args.size, STACK_BOUNDARY / BITS_PER_UNIT);

  * stack_size = rx_round_up
    (crtl->outgoing_args_size, STACK_BOUNDARY / BITS_PER_UNIT);
}

/* Generate a PUSHM instruction that matches the given operands.  */

void
rx_emit_stack_pushm (rtx * operands)
{
  HOST_WIDE_INT last_reg;
  rtx first_push;

  gcc_assert (CONST_INT_P (operands[0]));
  last_reg = (INTVAL (operands[0]) / UNITS_PER_WORD) - 1;

  gcc_assert (GET_CODE (operands[1]) == PARALLEL);
  first_push = XVECEXP (operands[1], 0, 1);
  gcc_assert (SET_P (first_push));
  first_push = SET_SRC (first_push);
  gcc_assert (REG_P (first_push));

  asm_fprintf (asm_out_file, "\tpushm\t%s-%s\n",
	       reg_names [REGNO (first_push) - last_reg],
	       reg_names [REGNO (first_push)]);
}

/* Generate a PARALLEL that will pass the rx_store_multiple_vector predicate.  */

static rtx
gen_rx_store_vector (unsigned int low, unsigned int high)
{
  unsigned int i;
  unsigned int count = (high - low) + 2;
  rtx vector;

  vector = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));

  XVECEXP (vector, 0, 0) =
    gen_rtx_SET (VOIDmode, stack_pointer_rtx,
		 gen_rtx_MINUS (SImode, stack_pointer_rtx,
				GEN_INT ((count - 1) * UNITS_PER_WORD)));

  for (i = 0; i < count - 1; i++)
    XVECEXP (vector, 0, i + 1) =
      gen_rtx_SET (VOIDmode,
		   gen_rtx_MEM (SImode,
				gen_rtx_MINUS (SImode, stack_pointer_rtx,
					       GEN_INT ((i + 1) * UNITS_PER_WORD))),
		   gen_rtx_REG (SImode, high - i));
  return vector;
}

/* Mark INSN as being frame related.  If it is a PARALLEL
   then mark each element as being frame related as well.  */

static void
mark_frame_related (rtx insn)
{
  RTX_FRAME_RELATED_P (insn) = 1;
  insn = PATTERN (insn);

  if (GET_CODE (insn) == PARALLEL)
    {
      unsigned int i;

      for (i = 0; i < (unsigned) XVECLEN (insn, 0); i++)
	RTX_FRAME_RELATED_P (XVECEXP (insn, 0, i)) = 1;
    }
}

static bool
ok_for_max_constant (HOST_WIDE_INT val)
{
  if (rx_max_constant_size == 0  || rx_max_constant_size == 4)
    /* If there is no constraint on the size of constants
       used as operands, then any value is legitimate.  */
    return true;

  /* rx_max_constant_size specifies the maximum number
     of bytes that can be used to hold a signed value.  */
  return IN_RANGE (val, (-1 << (rx_max_constant_size * 8)),
		        ( 1 << (rx_max_constant_size * 8)));
}

/* Generate an ADD of SRC plus VAL into DEST.
   Handles the case where VAL is too big for max_constant_value.
   Sets FRAME_RELATED_P on the insn if IS_FRAME_RELATED is true.  */

static void
gen_safe_add (rtx dest, rtx src, rtx val, bool is_frame_related)
{
  rtx insn;

  if (val == NULL_RTX || INTVAL (val) == 0)
    {
      gcc_assert (dest != src);

      insn = emit_move_insn (dest, src);
    }
  else if (ok_for_max_constant (INTVAL (val)))
    insn = emit_insn (gen_addsi3 (dest, src, val));
  else
    {
      /* Wrap VAL in an UNSPEC so that rx_is_legitimate_constant
	 will not reject it.  */
      val = gen_rtx_CONST (SImode, gen_rtx_UNSPEC (SImode, gen_rtvec (1, val), UNSPEC_CONST));
      insn = emit_insn (gen_addsi3 (dest, src, val));

      if (is_frame_related)
	/* We have to provide our own frame related note here
	   as the dwarf2out code cannot be expected to grok
	   our unspec.  */
	add_reg_note (insn, REG_FRAME_RELATED_EXPR,
		      gen_rtx_SET (SImode, dest,
				   gen_rtx_PLUS (SImode, src, val)));
      return;
    }

  if (is_frame_related)
    RTX_FRAME_RELATED_P (insn) = 1;
  return;
}

void
rx_expand_prologue (void)
{
  unsigned int stack_size;
  unsigned int frame_size;
  unsigned int mask;
  unsigned int low;
  unsigned int high;
  unsigned int reg;
  rtx insn;

  /* Naked functions use their own, programmer provided prologues.  */
  if (is_naked_func (NULL_TREE))
    return;

  rx_get_stack_layout (& low, & high, & mask, & frame_size, & stack_size);

  /* If we use any of the callee-saved registers, save them now.  */
  if (mask)
    {
      /* Push registers in reverse order.  */
      for (reg = CC_REGNUM; reg --;)
	if (mask & (1 << reg))
	  {
	    insn = emit_insn (gen_stack_push (gen_rtx_REG (SImode, reg)));
	    mark_frame_related (insn);
	  }
    }
  else if (low)
    {
      if (high == low)
	insn = emit_insn (gen_stack_push (gen_rtx_REG (SImode, low)));
      else
	insn = emit_insn (gen_stack_pushm (GEN_INT (((high - low) + 1)
						    * UNITS_PER_WORD),
					   gen_rx_store_vector (low, high)));
      mark_frame_related (insn);
    }

  if (MUST_SAVE_ACC_REGISTER)
    {
      unsigned int acc_high, acc_low;

      /* Interrupt handlers have to preserve the accumulator
	 register if so requested by the user.  Use the first
         two pushed registers as intermediaries.  */
      if (mask)
	{
	  acc_low = acc_high = 0;

	  for (reg = 1; reg < CC_REGNUM; reg ++)
	    if (mask & (1 << reg))
	      {
		if (acc_low == 0)
		  acc_low = reg;
		else
		  {
		    acc_high = reg;
		    break;
		  }
	      }
	    
	  /* We have assumed that there are at least two registers pushed... */
	  gcc_assert (acc_high != 0);

	  /* Note - the bottom 16 bits of the accumulator are inaccessible.
	     We just assume that they are zero.  */
	  emit_insn (gen_mvfacmi (gen_rtx_REG (SImode, acc_low)));
	  emit_insn (gen_mvfachi (gen_rtx_REG (SImode, acc_high)));
	  emit_insn (gen_stack_push (gen_rtx_REG (SImode, acc_low)));
	  emit_insn (gen_stack_push (gen_rtx_REG (SImode, acc_high)));
	}
      else
	{
	  acc_low = low;
	  acc_high = low + 1;

	  /* We have assumed that there are at least two registers pushed... */
	  gcc_assert (acc_high <= high);

	  emit_insn (gen_mvfacmi (gen_rtx_REG (SImode, acc_low)));
	  emit_insn (gen_mvfachi (gen_rtx_REG (SImode, acc_high)));
	  emit_insn (gen_stack_pushm (GEN_INT (2 * UNITS_PER_WORD),
				      gen_rx_store_vector (acc_low, acc_high)));
	}
    }

  /* If needed, set up the frame pointer.  */
  if (frame_pointer_needed)
    gen_safe_add (frame_pointer_rtx, stack_pointer_rtx,
		  GEN_INT (- (HOST_WIDE_INT) frame_size), true);

  /* Allocate space for the outgoing args.
     If the stack frame has not already been set up then handle this as well.  */
  if (stack_size)
    {
      if (frame_size)
	{
	  if (frame_pointer_needed)
	    gen_safe_add (stack_pointer_rtx, frame_pointer_rtx,
			  GEN_INT (- (HOST_WIDE_INT) stack_size), true);
	  else
	    gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
			  GEN_INT (- (HOST_WIDE_INT) (frame_size + stack_size)),
			  true);
	}
      else
	gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
		      GEN_INT (- (HOST_WIDE_INT) stack_size), true);
    }
  else if (frame_size)
    {
      if (! frame_pointer_needed)
	gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
		      GEN_INT (- (HOST_WIDE_INT) frame_size), true);
      else
	gen_safe_add (stack_pointer_rtx, frame_pointer_rtx, NULL_RTX,
		      true);
    }
}

static void
rx_output_function_prologue (FILE * file,
			     HOST_WIDE_INT frame_size ATTRIBUTE_UNUSED)
{
  if (is_fast_interrupt_func (NULL_TREE))
    asm_fprintf (file, "\t; Note: Fast Interrupt Handler\n");

  if (is_interrupt_func (NULL_TREE))
    asm_fprintf (file, "\t; Note: Interrupt Handler\n");

  if (is_naked_func (NULL_TREE))
    asm_fprintf (file, "\t; Note: Naked Function\n");

  if (cfun->static_chain_decl != NULL)
    asm_fprintf (file, "\t; Note: Nested function declared "
		 "inside another function.\n");

  if (crtl->calls_eh_return)
    asm_fprintf (file, "\t; Note: Calls __builtin_eh_return.\n");
}

/* Generate a POPM or RTSD instruction that matches the given operands.  */

void
rx_emit_stack_popm (rtx * operands, bool is_popm)
{
  HOST_WIDE_INT stack_adjust;
  HOST_WIDE_INT last_reg;
  rtx first_push;

  gcc_assert (CONST_INT_P (operands[0]));
  stack_adjust = INTVAL (operands[0]);
  
  gcc_assert (GET_CODE (operands[1]) == PARALLEL);
  last_reg = XVECLEN (operands[1], 0) - (is_popm ? 2 : 3);

  first_push = XVECEXP (operands[1], 0, 1);
  gcc_assert (SET_P (first_push));
  first_push = SET_DEST (first_push);
  gcc_assert (REG_P (first_push));

  if (is_popm)
    asm_fprintf (asm_out_file, "\tpopm\t%s-%s\n",
		 reg_names [REGNO (first_push)],
		 reg_names [REGNO (first_push) + last_reg]);
  else
    asm_fprintf (asm_out_file, "\trtsd\t#%d, %s-%s\n",
		 (int) stack_adjust,
		 reg_names [REGNO (first_push)],
		 reg_names [REGNO (first_push) + last_reg]);
}

/* Generate a PARALLEL which will satisfy the rx_rtsd_vector predicate.  */

static rtx
gen_rx_rtsd_vector (unsigned int adjust, unsigned int low, unsigned int high)
{
  unsigned int i;
  unsigned int bias = 3;
  unsigned int count = (high - low) + bias;
  rtx vector;

  vector = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));

  XVECEXP (vector, 0, 0) =
    gen_rtx_SET (VOIDmode, stack_pointer_rtx,
		 plus_constant (stack_pointer_rtx, adjust));

  for (i = 0; i < count - 2; i++)
    XVECEXP (vector, 0, i + 1) =
      gen_rtx_SET (VOIDmode,
		   gen_rtx_REG (SImode, low + i),
		   gen_rtx_MEM (SImode,
				i == 0 ? stack_pointer_rtx
				: plus_constant (stack_pointer_rtx,
						 i * UNITS_PER_WORD)));

  XVECEXP (vector, 0, count - 1) = gen_rtx_RETURN (VOIDmode);

  return vector;
}
  
/* Generate a PARALLEL which will satisfy the rx_load_multiple_vector predicate.  */

static rtx
gen_rx_popm_vector (unsigned int low, unsigned int high)
{
  unsigned int i;  
  unsigned int count = (high - low) + 2;
  rtx vector;

  vector = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));

  XVECEXP (vector, 0, 0) =
    gen_rtx_SET (VOIDmode, stack_pointer_rtx,
		 plus_constant (stack_pointer_rtx,
				(count - 1) * UNITS_PER_WORD));

  for (i = 0; i < count - 1; i++)
    XVECEXP (vector, 0, i + 1) =
      gen_rtx_SET (VOIDmode,
		   gen_rtx_REG (SImode, low + i),
		   gen_rtx_MEM (SImode,
				i == 0 ? stack_pointer_rtx
				: plus_constant (stack_pointer_rtx,
						 i * UNITS_PER_WORD)));

  return vector;
}
  
void
rx_expand_epilogue (bool is_sibcall)
{
  unsigned int low;
  unsigned int high;
  unsigned int frame_size;
  unsigned int stack_size;
  unsigned int register_mask;
  unsigned int regs_size;
  unsigned int reg;
  unsigned HOST_WIDE_INT total_size;

  /* FIXME: We do not support indirect sibcalls at the moment becaause we
     cannot guarantee that the register holding the function address is a
     call-used register.  If it is a call-saved register then the stack
     pop instructions generated in the epilogue will corrupt the address
     before it is used.

     Creating a new call-used-only register class works but then the
     reload pass gets stuck because it cannot always find a call-used
     register for spilling sibcalls.

     The other possible solution is for this pass to scan forward for the
     sibcall instruction (if it has been generated) and work out if it
     is an indirect sibcall using a call-saved register.  If it is then
     the address can copied into a call-used register in this epilogue
     code and the sibcall instruction modified to use that register.  */

  if (is_naked_func (NULL_TREE))
    {
      gcc_assert (! is_sibcall);

      /* Naked functions use their own, programmer provided epilogues.
	 But, in order to keep gcc happy we have to generate some kind of
	 epilogue RTL.  */
      emit_jump_insn (gen_naked_return ());
      return;
    }

  rx_get_stack_layout (& low, & high, & register_mask,
		       & frame_size, & stack_size);

  total_size = frame_size + stack_size;
  regs_size = ((high - low) + 1) * UNITS_PER_WORD;

  /* See if we are unable to use the special stack frame deconstruct and
     return instructions.  In most cases we can use them, but the exceptions
     are:

     - Sibling calling functions deconstruct the frame but do not return to
       their caller.  Instead they branch to their sibling and allow their
       return instruction to return to this function's parent.

     - Fast and normal interrupt handling functions have to use special
       return instructions.

     - Functions where we have pushed a fragmented set of registers into the
       call-save area must have the same set of registers popped.  */
  if (is_sibcall
      || is_fast_interrupt_func (NULL_TREE)
      || is_interrupt_func (NULL_TREE)
      || register_mask)
    {
      /* Cannot use the special instructions - deconstruct by hand.  */
      if (total_size)
	gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
		      GEN_INT (total_size), false);

      if (MUST_SAVE_ACC_REGISTER)
	{
	  unsigned int acc_low, acc_high;

	  /* Reverse the saving of the accumulator register onto the stack.
	     Note we must adjust the saved "low" accumulator value as it
	     is really the middle 32-bits of the accumulator.  */
	  if (register_mask)
	    {
	      acc_low = acc_high = 0;

	      for (reg = 1; reg < CC_REGNUM; reg ++)
		if (register_mask & (1 << reg))
		  {
		    if (acc_low == 0)
		      acc_low = reg;
		    else
		      {
			acc_high = reg;
			break;
		      }
		  }
	      emit_insn (gen_stack_pop (gen_rtx_REG (SImode, acc_high)));
	      emit_insn (gen_stack_pop (gen_rtx_REG (SImode, acc_low)));
	    }
	  else
	    {
	      acc_low = low;
	      acc_high = low + 1;
	      emit_insn (gen_stack_popm (GEN_INT (2 * UNITS_PER_WORD),
					 gen_rx_popm_vector (acc_low, acc_high)));
	    }

	  emit_insn (gen_ashlsi3 (gen_rtx_REG (SImode, acc_low),
				  gen_rtx_REG (SImode, acc_low),
				  GEN_INT (16)));
	  emit_insn (gen_mvtaclo (gen_rtx_REG (SImode, acc_low)));
	  emit_insn (gen_mvtachi (gen_rtx_REG (SImode, acc_high)));
	}

      if (register_mask)
	{
	  for (reg = 0; reg < CC_REGNUM; reg ++)
	    if (register_mask & (1 << reg))
	      emit_insn (gen_stack_pop (gen_rtx_REG (SImode, reg)));
	}
      else if (low)
	{
	  if (high == low)
	    emit_insn (gen_stack_pop (gen_rtx_REG (SImode, low)));
	  else
	    emit_insn (gen_stack_popm (GEN_INT (regs_size),
				       gen_rx_popm_vector (low, high)));
	}

      if (is_fast_interrupt_func (NULL_TREE))
	{
	  gcc_assert (! is_sibcall);
	  emit_jump_insn (gen_fast_interrupt_return ());
	}
      else if (is_interrupt_func (NULL_TREE))
	{
	  gcc_assert (! is_sibcall);
	  emit_jump_insn (gen_exception_return ());
	}
      else if (! is_sibcall)
	emit_jump_insn (gen_simple_return ());

      return;
    }

  /* If we allocated space on the stack, free it now.  */
  if (total_size)
    {
      unsigned HOST_WIDE_INT rtsd_size;

      /* See if we can use the RTSD instruction.  */
      rtsd_size = total_size + regs_size;
      if (rtsd_size < 1024 && (rtsd_size % 4) == 0)
	{
	  if (low)
	    emit_jump_insn (gen_pop_and_return
			    (GEN_INT (rtsd_size),
			     gen_rx_rtsd_vector (rtsd_size, low, high)));
	  else
	    emit_jump_insn (gen_deallocate_and_return (GEN_INT (total_size)));

	  return;
	}

      gen_safe_add (stack_pointer_rtx, stack_pointer_rtx,
		    GEN_INT (total_size), false);
    }

  if (low)
    emit_jump_insn (gen_pop_and_return (GEN_INT (regs_size),
					gen_rx_rtsd_vector (regs_size,
							    low, high)));
  else
    emit_jump_insn (gen_simple_return ());
}


/* Compute the offset (in words) between FROM (arg pointer
   or frame pointer) and TO (frame pointer or stack pointer).
   See ASCII art comment at the start of rx_expand_prologue
   for more information.  */

int
rx_initial_elimination_offset (int from, int to)
{
  unsigned int low;
  unsigned int high;
  unsigned int frame_size;
  unsigned int stack_size;
  unsigned int mask;

  rx_get_stack_layout (& low, & high, & mask, & frame_size, & stack_size);

  if (from == ARG_POINTER_REGNUM)
    {
      /* Extend the computed size of the stack frame to
	 include the registers pushed in the prologue.  */
      if (low)
	frame_size += ((high - low) + 1) * UNITS_PER_WORD;
      else
	frame_size += bit_count (mask) * UNITS_PER_WORD;

      /* Remember to include the return address.  */
      frame_size += 1 * UNITS_PER_WORD;

      if (to == FRAME_POINTER_REGNUM)
	return frame_size;

      gcc_assert (to == STACK_POINTER_REGNUM);
      return frame_size + stack_size;
    }

  gcc_assert (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM);
  return stack_size;
}

/* Decide if a variable should go into one of the small data sections.  */

static bool
rx_in_small_data (const_tree decl)
{
  int size;
  const_tree section;

  if (rx_small_data_limit == 0)
    return false;

  if (TREE_CODE (decl) != VAR_DECL)
    return false;

  /* We do not put read-only variables into a small data area because
     they would be placed with the other read-only sections, far away
     from the read-write data sections, and we only have one small
     data area pointer.
     Similarly commons are placed in the .bss section which might be
     far away (and out of alignment with respect to) the .data section.  */
  if (TREE_READONLY (decl) || DECL_COMMON (decl))
    return false;

  section = DECL_SECTION_NAME (decl);
  if (section)
    {
      const char * const name = TREE_STRING_POINTER (section);

      return (strcmp (name, "D_2") == 0) || (strcmp (name, "B_2") == 0);
    }

  size = int_size_in_bytes (TREE_TYPE (decl));

  return (size > 0) && (size <= rx_small_data_limit);
}

/* Return a section for X.
   The only special thing we do here is to honor small data.  */

static section *
rx_select_rtx_section (enum machine_mode mode,
		       rtx x,
		       unsigned HOST_WIDE_INT align)
{
  if (rx_small_data_limit > 0
      && GET_MODE_SIZE (mode) <= rx_small_data_limit
      && align <= (unsigned HOST_WIDE_INT) rx_small_data_limit * BITS_PER_UNIT)
    return sdata_section;

  return default_elf_select_rtx_section (mode, x, align);
}

static section *
rx_select_section (tree decl,
		   int reloc,
		   unsigned HOST_WIDE_INT align)
{
  if (rx_small_data_limit > 0)
    {
      switch (categorize_decl_for_section (decl, reloc))
	{
	case SECCAT_SDATA:	return sdata_section;
	case SECCAT_SBSS:	return sbss_section;
	case SECCAT_SRODATA:
	  /* Fall through.  We do not put small, read only
	     data into the C_2 section because we are not
	     using the C_2 section.  We do not use the C_2
	     section because it is located with the other
	     read-only data sections, far away from the read-write
	     data sections and we only have one small data
	     pointer (r13).  */
	default:
	  break;
	}
    }

  /* If we are supporting the Renesas assembler
     we cannot use mergeable sections.  */
  if (TARGET_AS100_SYNTAX)
    switch (categorize_decl_for_section (decl, reloc))
      {
      case SECCAT_RODATA_MERGE_CONST:
      case SECCAT_RODATA_MERGE_STR_INIT:
      case SECCAT_RODATA_MERGE_STR:
	return readonly_data_section;

      default:
	break;
      }

  return default_elf_select_section (decl, reloc, align);
}

enum rx_builtin
{
  RX_BUILTIN_BRK,
  RX_BUILTIN_CLRPSW,
  RX_BUILTIN_INT,
  RX_BUILTIN_MACHI,
  RX_BUILTIN_MACLO,
  RX_BUILTIN_MULHI,
  RX_BUILTIN_MULLO,
  RX_BUILTIN_MVFACHI,
  RX_BUILTIN_MVFACMI,
  RX_BUILTIN_MVFC,
  RX_BUILTIN_MVTACHI,
  RX_BUILTIN_MVTACLO,
  RX_BUILTIN_MVTC,
  RX_BUILTIN_MVTIPL,
  RX_BUILTIN_RACW,
  RX_BUILTIN_REVW,
  RX_BUILTIN_RMPA,
  RX_BUILTIN_ROUND,
  RX_BUILTIN_SETPSW,
  RX_BUILTIN_WAIT,
  RX_BUILTIN_max
};

static void
rx_init_builtins (void)
{
#define ADD_RX_BUILTIN1(UC_NAME, LC_NAME, RET_TYPE, ARG_TYPE)		\
  add_builtin_function ("__builtin_rx_" LC_NAME,			\
			build_function_type_list (RET_TYPE##_type_node, \
						  ARG_TYPE##_type_node, \
						  NULL_TREE),		\
			RX_BUILTIN_##UC_NAME,				\
			BUILT_IN_MD, NULL, NULL_TREE)

#define ADD_RX_BUILTIN2(UC_NAME, LC_NAME, RET_TYPE, ARG_TYPE1, ARG_TYPE2) \
  add_builtin_function ("__builtin_rx_" LC_NAME,			\
			build_function_type_list (RET_TYPE##_type_node, \
						  ARG_TYPE1##_type_node,\
						  ARG_TYPE2##_type_node,\
						  NULL_TREE),		\
			RX_BUILTIN_##UC_NAME,				\
			BUILT_IN_MD, NULL, NULL_TREE)

#define ADD_RX_BUILTIN3(UC_NAME,LC_NAME,RET_TYPE,ARG_TYPE1,ARG_TYPE2,ARG_TYPE3) \
  add_builtin_function ("__builtin_rx_" LC_NAME,			\
			build_function_type_list (RET_TYPE##_type_node, \
						  ARG_TYPE1##_type_node,\
						  ARG_TYPE2##_type_node,\
						  ARG_TYPE3##_type_node,\
						  NULL_TREE),		\
			RX_BUILTIN_##UC_NAME,				\
			BUILT_IN_MD, NULL, NULL_TREE)

  ADD_RX_BUILTIN1 (BRK,     "brk",     void,  void);
  ADD_RX_BUILTIN1 (CLRPSW,  "clrpsw",  void,  integer);
  ADD_RX_BUILTIN1 (SETPSW,  "setpsw",  void,  integer);
  ADD_RX_BUILTIN1 (INT,     "int",     void,  integer);
  ADD_RX_BUILTIN2 (MACHI,   "machi",   void,  intSI, intSI);
  ADD_RX_BUILTIN2 (MACLO,   "maclo",   void,  intSI, intSI);
  ADD_RX_BUILTIN2 (MULHI,   "mulhi",   void,  intSI, intSI);
  ADD_RX_BUILTIN2 (MULLO,   "mullo",   void,  intSI, intSI);
  ADD_RX_BUILTIN1 (MVFACHI, "mvfachi", intSI, void);
  ADD_RX_BUILTIN1 (MVFACMI, "mvfacmi", intSI, void);
  ADD_RX_BUILTIN1 (MVTACHI, "mvtachi", void,  intSI);
  ADD_RX_BUILTIN1 (MVTACLO, "mvtaclo", void,  intSI);
  ADD_RX_BUILTIN1 (RMPA,    "rmpa",    void,  void);
  ADD_RX_BUILTIN1 (MVFC,    "mvfc",    intSI, integer);
  ADD_RX_BUILTIN2 (MVTC,    "mvtc",    void,  integer, integer);
  ADD_RX_BUILTIN1 (MVTIPL,  "mvtipl",  void,  integer);
  ADD_RX_BUILTIN1 (RACW,    "racw",    void,  integer);
  ADD_RX_BUILTIN1 (ROUND,   "round",   intSI, float);
  ADD_RX_BUILTIN1 (REVW,    "revw",    intSI, intSI);
  ADD_RX_BUILTIN1 (WAIT,    "wait",    void,  void);
}

static rtx
rx_expand_void_builtin_1_arg (rtx arg, rtx (* gen_func)(rtx), bool reg)
{
  if (reg && ! REG_P (arg))
    arg = force_reg (SImode, arg);

  emit_insn (gen_func (arg));

  return NULL_RTX;
}

static rtx
rx_expand_builtin_mvtc (tree exp)
{
  rtx arg1 = expand_normal (CALL_EXPR_ARG (exp, 0));
  rtx arg2 = expand_normal (CALL_EXPR_ARG (exp, 1));

  if (! CONST_INT_P (arg1))
    return NULL_RTX;

  if (! REG_P (arg2))
    arg2 = force_reg (SImode, arg2);

  emit_insn (gen_mvtc (arg1, arg2));

  return NULL_RTX;
}

static rtx
rx_expand_builtin_mvfc (tree t_arg, rtx target)
{
  rtx arg = expand_normal (t_arg);

  if (! CONST_INT_P (arg))
    return NULL_RTX;

  if (target == NULL_RTX)
    return NULL_RTX;

  if (! REG_P (target))
    target = force_reg (SImode, target);

  emit_insn (gen_mvfc (target, arg));

  return target;
}

static rtx
rx_expand_builtin_mvtipl (rtx arg)
{
  /* The RX610 does not support the MVTIPL instruction.  */
  if (rx_cpu_type == RX610)
    return NULL_RTX;

  if (! CONST_INT_P (arg) || ! IN_RANGE (INTVAL (arg), 0, (1 << 4) - 1))
    return NULL_RTX;

  emit_insn (gen_mvtipl (arg));

  return NULL_RTX;
}

static rtx
rx_expand_builtin_mac (tree exp, rtx (* gen_func)(rtx, rtx))
{
  rtx arg1 = expand_normal (CALL_EXPR_ARG (exp, 0));
  rtx arg2 = expand_normal (CALL_EXPR_ARG (exp, 1));

  if (! REG_P (arg1))
    arg1 = force_reg (SImode, arg1);

  if (! REG_P (arg2))
    arg2 = force_reg (SImode, arg2);

  emit_insn (gen_func (arg1, arg2));

  return NULL_RTX;
}

static rtx
rx_expand_int_builtin_1_arg (rtx arg,
			     rtx target,
			     rtx (* gen_func)(rtx, rtx),
			     bool mem_ok)
{
  if (! REG_P (arg))
    if (!mem_ok || ! MEM_P (arg))
      arg = force_reg (SImode, arg);

  if (target == NULL_RTX || ! REG_P (target))
    target = gen_reg_rtx (SImode);

  emit_insn (gen_func (target, arg));

  return target;
}

static rtx
rx_expand_int_builtin_0_arg (rtx target, rtx (* gen_func)(rtx))
{
  if (target == NULL_RTX || ! REG_P (target))
    target = gen_reg_rtx (SImode);

  emit_insn (gen_func (target));

  return target;
}

static rtx
rx_expand_builtin_round (rtx arg, rtx target)
{
  if ((! REG_P (arg) && ! MEM_P (arg))
      || GET_MODE (arg) != SFmode)
    arg = force_reg (SFmode, arg);

  if (target == NULL_RTX || ! REG_P (target))
    target = gen_reg_rtx (SImode);

  emit_insn (gen_lrintsf2 (target, arg));

  return target;
}

static int
valid_psw_flag (rtx op, const char *which)
{
  static int mvtc_inform_done = 0;

  if (GET_CODE (op) == CONST_INT)
    switch (INTVAL (op))
      {
      case 0: case 'c': case 'C':
      case 1: case 'z': case 'Z':
      case 2: case 's': case 'S':
      case 3: case 'o': case 'O':
      case 8: case 'i': case 'I':
      case 9: case 'u': case 'U':
	return 1;
      }

  error ("__builtin_rx_%s takes 'C', 'Z', 'S', 'O', 'I', or 'U'", which);
  if (!mvtc_inform_done)
    error ("use __builtin_rx_mvtc (0, ... ) to write arbitrary values to PSW");
  mvtc_inform_done = 1;

  return 0;
}

static rtx
rx_expand_builtin (tree exp,
		   rtx target,
		   rtx subtarget ATTRIBUTE_UNUSED,
		   enum machine_mode mode ATTRIBUTE_UNUSED,
		   int ignore ATTRIBUTE_UNUSED)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  tree arg    = call_expr_nargs (exp) >= 1 ? CALL_EXPR_ARG (exp, 0) : NULL_TREE;
  rtx  op     = arg ? expand_normal (arg) : NULL_RTX;
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);

  switch (fcode)
    {
    case RX_BUILTIN_BRK:     emit_insn (gen_brk ()); return NULL_RTX;
    case RX_BUILTIN_CLRPSW:
      if (!valid_psw_flag (op, "clrpsw"))
	return NULL_RTX;
      return rx_expand_void_builtin_1_arg (op, gen_clrpsw, false);
    case RX_BUILTIN_SETPSW:
      if (!valid_psw_flag (op, "setpsw"))
	return NULL_RTX;
      return rx_expand_void_builtin_1_arg (op, gen_setpsw, false);
    case RX_BUILTIN_INT:     return rx_expand_void_builtin_1_arg
	(op, gen_int, false);
    case RX_BUILTIN_MACHI:   return rx_expand_builtin_mac (exp, gen_machi);
    case RX_BUILTIN_MACLO:   return rx_expand_builtin_mac (exp, gen_maclo);
    case RX_BUILTIN_MULHI:   return rx_expand_builtin_mac (exp, gen_mulhi);
    case RX_BUILTIN_MULLO:   return rx_expand_builtin_mac (exp, gen_mullo);
    case RX_BUILTIN_MVFACHI: return rx_expand_int_builtin_0_arg
	(target, gen_mvfachi);
    case RX_BUILTIN_MVFACMI: return rx_expand_int_builtin_0_arg
	(target, gen_mvfacmi);
    case RX_BUILTIN_MVTACHI: return rx_expand_void_builtin_1_arg
	(op, gen_mvtachi, true);
    case RX_BUILTIN_MVTACLO: return rx_expand_void_builtin_1_arg
	(op, gen_mvtaclo, true);
    case RX_BUILTIN_RMPA:    emit_insn (gen_rmpa ()); return NULL_RTX;
    case RX_BUILTIN_MVFC:    return rx_expand_builtin_mvfc (arg, target);
    case RX_BUILTIN_MVTC:    return rx_expand_builtin_mvtc (exp);
    case RX_BUILTIN_MVTIPL:  return rx_expand_builtin_mvtipl (op);
    case RX_BUILTIN_RACW:    return rx_expand_void_builtin_1_arg
	(op, gen_racw, false);
    case RX_BUILTIN_ROUND:   return rx_expand_builtin_round (op, target);
    case RX_BUILTIN_REVW:    return rx_expand_int_builtin_1_arg
	(op, target, gen_revw, false);
    case RX_BUILTIN_WAIT:    emit_insn (gen_wait ()); return NULL_RTX;

    default:
      internal_error ("bad builtin code");
      break;
    }

  return NULL_RTX;
}

/* Place an element into a constructor or destructor section.
   Like default_ctor_section_asm_out_constructor in varasm.c
   except that it uses .init_array (or .fini_array) and it
   handles constructor priorities.  */

static void
rx_elf_asm_cdtor (rtx symbol, int priority, bool is_ctor)
{
  section * s;

  if (priority != DEFAULT_INIT_PRIORITY)
    {
      char buf[18];

      sprintf (buf, "%s.%.5u",
	       is_ctor ? ".init_array" : ".fini_array",
	       priority);
      s = get_section (buf, SECTION_WRITE, NULL_TREE);
    }
  else if (is_ctor)
    s = ctors_section;
  else
    s = dtors_section;

  switch_to_section (s);
  assemble_align (POINTER_SIZE);
  assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
}

static void
rx_elf_asm_constructor (rtx symbol, int priority)
{
  rx_elf_asm_cdtor (symbol, priority, /* is_ctor= */true);
}

static void
rx_elf_asm_destructor (rtx symbol, int priority)
{
  rx_elf_asm_cdtor (symbol, priority, /* is_ctor= */false);
}

/* Check "fast_interrupt", "interrupt" and "naked" attributes.  */

static tree
rx_handle_func_attribute (tree * node,
			  tree   name,
			  tree   args,
			  int    flags ATTRIBUTE_UNUSED,
			  bool * no_add_attrs)
{
  gcc_assert (DECL_P (* node));
  gcc_assert (args == NULL_TREE);

  if (TREE_CODE (* node) != FUNCTION_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      * no_add_attrs = true;
    }

  /* FIXME: We ought to check for conflicting attributes.  */

  /* FIXME: We ought to check that the interrupt and exception
     handler attributes have been applied to void functions.  */
  return NULL_TREE;
}

/* Table of RX specific attributes.  */
const struct attribute_spec rx_attribute_table[] =
{
  /* Name, min_len, max_len, decl_req, type_req, fn_type_req, handler.  */
  { "fast_interrupt", 0, 0, true, false, false, rx_handle_func_attribute },
  { "interrupt",      0, 0, true, false, false, rx_handle_func_attribute },
  { "naked",          0, 0, true, false, false, rx_handle_func_attribute },
  { NULL,             0, 0, false, false, false, NULL }
};

/* Extra processing for target specific command line options.  */

static bool
rx_handle_option (size_t code, const char *  arg ATTRIBUTE_UNUSED, int value)
{
  switch (code)
    {
    case OPT_mint_register_:
      switch (value)
	{
	case 4:
	  fixed_regs[10] = call_used_regs [10] = 1;
	  /* Fall through.  */
	case 3:
	  fixed_regs[11] = call_used_regs [11] = 1;
	  /* Fall through.  */
	case 2:
	  fixed_regs[12] = call_used_regs [12] = 1;
	  /* Fall through.  */
	case 1:
	  fixed_regs[13] = call_used_regs [13] = 1;
	  /* Fall through.  */
	case 0:
	  return true;
	default:
	  return false;
	}
      break;

    case OPT_mmax_constant_size_:
      /* Make sure that the -mmax-constant_size option is in range.  */
      return value >= 0 && value <= 4;

    case OPT_mcpu_:
      if (strcasecmp (arg, "RX610") == 0)
	rx_cpu_type = RX610;
      else if (strcasecmp (arg, "RX200") == 0)
	{
	  target_flags |= MASK_NO_USE_FPU;
	  rx_cpu_type = RX200;
	}
      else if (strcasecmp (arg, "RX600") != 0)
	warning (0, "unrecognized argument '%s' to -mcpu= option", arg);
      break;
      
    case OPT_fpu:
      if (rx_cpu_type == RX200)
	error ("the RX200 cpu does not have FPU hardware");
      break;

    default:
      break;
    }

  return true;
}

/* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE.  */

static void
rx_override_options_after_change (void)
{
  static bool first_time = TRUE;

  if (first_time)
    {
      /* If this is the first time through and the user has not disabled
	 the use of RX FPU hardware then enable -ffinite-math-only,
	 since the FPU instructions do not support NaNs and infinities.  */
      if (TARGET_USE_FPU)
	flag_finite_math_only = 1;

      first_time = FALSE;
    }
  else
    {
      /* Alert the user if they are changing the optimization options
	 to use IEEE compliant floating point arithmetic with RX FPU insns.  */
      if (TARGET_USE_FPU
	  && !flag_finite_math_only)
	warning (0, "RX FPU instructions do not support NaNs and infinities");
    }
}

static void
rx_option_override (void)
{
  /* This target defaults to strict volatile bitfields.  */
  if (flag_strict_volatile_bitfields < 0 && abi_version_at_least(2))
    flag_strict_volatile_bitfields = 1;

  rx_override_options_after_change ();

  if (align_jumps == 0 && ! optimize_size)
    align_jumps = 3;
  if (align_loops == 0 && ! optimize_size)
    align_loops = 3;
  if (align_labels == 0 && ! optimize_size)
    align_labels = 3;
}

/* Implement TARGET_OPTION_OPTIMIZATION_TABLE.  */
static const struct default_options rx_option_optimization_table[] =
  {
    { OPT_LEVELS_1_PLUS, OPT_fomit_frame_pointer, NULL, 1 },
    { OPT_LEVELS_NONE, 0, NULL, 0 }
  };


static bool
rx_allocate_stack_slots_for_args (void)
{
  /* Naked functions should not allocate stack slots for arguments.  */
  return ! is_naked_func (NULL_TREE);
}

static bool
rx_func_attr_inlinable (const_tree decl)
{
  return ! is_fast_interrupt_func (decl)
    &&   ! is_interrupt_func (decl)
    &&   ! is_naked_func (decl);  
}

/* Return nonzero if it is ok to make a tail-call to DECL,
   a function_decl or NULL if this is an indirect call, using EXP  */

static bool
rx_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
  /* Do not allow indirect tailcalls.  The
     sibcall patterns do not support them.  */
  if (decl == NULL)
    return false;

  /* Never tailcall from inside interrupt handlers or naked functions.  */
  if (is_fast_interrupt_func (NULL_TREE)
      || is_interrupt_func (NULL_TREE)
      || is_naked_func (NULL_TREE))
    return false;

  return true;
}

static void
rx_file_start (void)
{
  if (! TARGET_AS100_SYNTAX)
    default_file_start ();
}

static bool
rx_is_ms_bitfield_layout (const_tree record_type ATTRIBUTE_UNUSED)
{
  /* The packed attribute overrides the MS behaviour.  */
  return ! TYPE_PACKED (record_type);
}

/* Returns true if X a legitimate constant for an immediate
   operand on the RX.  X is already known to satisfy CONSTANT_P.  */

bool
rx_is_legitimate_constant (rtx x)
{
  switch (GET_CODE (x))
    {
    case CONST:
      x = XEXP (x, 0);

      if (GET_CODE (x) == PLUS)
	{
	  if (! CONST_INT_P (XEXP (x, 1)))
	    return false;

	  /* GCC would not pass us CONST_INT + CONST_INT so we
	     know that we have {SYMBOL|LABEL} + CONST_INT.  */
	  x = XEXP (x, 0);
	  gcc_assert (! CONST_INT_P (x));
	}

      switch (GET_CODE (x))
	{
	case LABEL_REF:
	case SYMBOL_REF:
	  return true;

	case UNSPEC:
	  return XINT (x, 1) == UNSPEC_CONST;

	default:
	  /* FIXME: Can this ever happen ?  */
	  gcc_unreachable ();
	}
      break;
      
    case LABEL_REF:
    case SYMBOL_REF:
      return true;
    case CONST_DOUBLE:
      return (rx_max_constant_size == 0 || rx_max_constant_size == 4);
    case CONST_VECTOR:
      return false;
    default:
      gcc_assert (CONST_INT_P (x));
      break;
    }

  return ok_for_max_constant (INTVAL (x));
}

static int
rx_address_cost (rtx addr, bool speed)
{
  rtx a, b;

  if (GET_CODE (addr) != PLUS)
    return COSTS_N_INSNS (1);

  a = XEXP (addr, 0);
  b = XEXP (addr, 1);

  if (REG_P (a) && REG_P (b))
    /* Try to discourage REG+REG addressing as it keeps two registers live.  */
    return COSTS_N_INSNS (4);

  if (speed)
    /* [REG+OFF] is just as fast as [REG].  */
    return COSTS_N_INSNS (1);

  if (CONST_INT_P (b)
      && ((INTVAL (b) > 128) || INTVAL (b) < -127))
    /* Try to discourage REG + <large OFF> when optimizing for size.  */
    return COSTS_N_INSNS (2);
    
  return COSTS_N_INSNS (1);
}

static bool
rx_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
  /* We can always eliminate to the frame pointer.
     We can eliminate to the stack pointer unless a frame
     pointer is needed.  */

  return to == FRAME_POINTER_REGNUM
    || ( to == STACK_POINTER_REGNUM && ! frame_pointer_needed);
}


static void
rx_trampoline_template (FILE * file)
{
  /* Output assembler code for a block containing the constant
     part of a trampoline, leaving space for the variable parts.

     On the RX, (where r8 is the static chain regnum) the trampoline
     looks like:

	   mov 		#<static chain value>, r8
	   mov          #<function's address>, r9
	   jmp		r9

     In big-endian-data-mode however instructions are read into the CPU
     4 bytes at a time.  These bytes are then swapped around before being
     passed to the decoder.  So...we must partition our trampoline into
     4 byte packets and swap these packets around so that the instruction
     reader will reverse the process.  But, in order to avoid splitting
     the 32-bit constants across these packet boundaries, (making inserting
     them into the constructed trampoline very difficult) we have to pad the
     instruction sequence with NOP insns.  ie:

           nop
	   nop
           mov.l	#<...>, r8
	   nop
	   nop
           mov.l	#<...>, r9
           jmp		r9
	   nop
	   nop             */

  if (! TARGET_BIG_ENDIAN_DATA)
    {
      asm_fprintf (file, "\tmov.L\t#0deadbeefH, r%d\n", STATIC_CHAIN_REGNUM);
      asm_fprintf (file, "\tmov.L\t#0deadbeefH, r%d\n", TRAMPOLINE_TEMP_REGNUM);
      asm_fprintf (file, "\tjmp\tr%d\n",                TRAMPOLINE_TEMP_REGNUM);
    }
  else
    {
      char r8 = '0' + STATIC_CHAIN_REGNUM;
      char r9 = '0' + TRAMPOLINE_TEMP_REGNUM;

      if (TARGET_AS100_SYNTAX)
        {
          asm_fprintf (file, "\t.BYTE 0%c2H, 0fbH, 003H,  003H\n", r8);
          asm_fprintf (file, "\t.BYTE 0deH,  0adH, 0beH,  0efH\n");
          asm_fprintf (file, "\t.BYTE 0%c2H, 0fbH, 003H,  003H\n", r9);
          asm_fprintf (file, "\t.BYTE 0deH,  0adH, 0beH,  0efH\n");
          asm_fprintf (file, "\t.BYTE 003H,  003H, 00%cH, 07fH\n", r9);
        }
      else
        {
          asm_fprintf (file, "\t.byte 0x%c2, 0xfb, 0x03,  0x03\n", r8);
          asm_fprintf (file, "\t.byte 0xde,  0xad, 0xbe,  0xef\n");
          asm_fprintf (file, "\t.byte 0x%c2, 0xfb, 0x03,  0x03\n", r9);
          asm_fprintf (file, "\t.byte 0xde,  0xad, 0xbe,  0xef\n");
          asm_fprintf (file, "\t.byte 0x03,  0x03, 0x0%c, 0x7f\n", r9);
        }
    }
}

static void
rx_trampoline_init (rtx tramp, tree fndecl, rtx chain)
{
  rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);

  emit_block_move (tramp, assemble_trampoline_template (),
		   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);

  if (TARGET_BIG_ENDIAN_DATA)
    {
      emit_move_insn (adjust_address (tramp, SImode, 4), chain);
      emit_move_insn (adjust_address (tramp, SImode, 12), fnaddr);
    }
  else
    {
      emit_move_insn (adjust_address (tramp, SImode, 2), chain);
      emit_move_insn (adjust_address (tramp, SImode, 6 + 2), fnaddr);
    }
}

static int
rx_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
		     reg_class_t regclass ATTRIBUTE_UNUSED,
		     bool in)
{
  return (in ? 2 : 0) + REGISTER_MOVE_COST (mode, regclass, regclass);
}

/* Convert a CC_MODE to the set of flags that it represents.  */

static unsigned int
flags_from_mode (enum machine_mode mode)
{
  switch (mode)
    {
    case CC_ZSmode:
      return CC_FLAG_S | CC_FLAG_Z;
    case CC_ZSOmode:
      return CC_FLAG_S | CC_FLAG_Z | CC_FLAG_O;
    case CC_ZSCmode:
      return CC_FLAG_S | CC_FLAG_Z | CC_FLAG_C;
    case CCmode:
      return CC_FLAG_S | CC_FLAG_Z | CC_FLAG_O | CC_FLAG_C;
    case CC_Fmode:
      return CC_FLAG_FP;
    default:
      gcc_unreachable ();
    }
}

/* Convert a set of flags to a CC_MODE that can implement it.  */

static enum machine_mode
mode_from_flags (unsigned int f)
{
  if (f & CC_FLAG_FP)
    return CC_Fmode;
  if (f & CC_FLAG_O)
    {
      if (f & CC_FLAG_C)
	return CCmode;
      else
	return CC_ZSOmode;
    }
  else if (f & CC_FLAG_C)
    return CC_ZSCmode;
  else
    return CC_ZSmode;
}

/* Convert an RTX_CODE to the set of flags needed to implement it.
   This assumes an integer comparison.  */

static unsigned int
flags_from_code (enum rtx_code code)
{
  switch (code)
    {
    case LT:
    case GE:
      return CC_FLAG_S;
    case GT:
    case LE:
      return CC_FLAG_S | CC_FLAG_O | CC_FLAG_Z;
    case GEU:
    case LTU:
      return CC_FLAG_C;
    case GTU:
    case LEU:
      return CC_FLAG_C | CC_FLAG_Z;
    case EQ:
    case NE:
      return CC_FLAG_Z;
    default:
      gcc_unreachable ();
    }
}

/* Return a CC_MODE of which both M1 and M2 are subsets.  */

static enum machine_mode
rx_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2)
{
  unsigned f;

  /* Early out for identical modes.  */
  if (m1 == m2)
    return m1;

  /* There's no valid combination for FP vs non-FP.  */
  f = flags_from_mode (m1) | flags_from_mode (m2);
  if (f & CC_FLAG_FP)
    return VOIDmode;

  /* Otherwise, see what mode can implement all the flags.  */
  return mode_from_flags (f);
}

/* Return the minimal CC mode needed to implement (CMP_CODE X Y).  */

enum machine_mode
rx_select_cc_mode (enum rtx_code cmp_code, rtx x, rtx y)
{
  if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
    return CC_Fmode;

  if (y != const0_rtx)
    return CCmode;

  return mode_from_flags (flags_from_code (cmp_code));
}

/* Split the conditional branch.  Emit (COMPARE C1 C2) into CC_REG with
   CC_MODE, and use that in branches based on that compare.  */

void
rx_split_cbranch (enum machine_mode cc_mode, enum rtx_code cmp1,
		  rtx c1, rtx c2, rtx label)
{
  rtx flags, x;

  flags = gen_rtx_REG (cc_mode, CC_REG);
  x = gen_rtx_COMPARE (cc_mode, c1, c2);
  x = gen_rtx_SET (VOIDmode, flags, x);
  emit_insn (x);

  x = gen_rtx_fmt_ee (cmp1, VOIDmode, flags, const0_rtx);
  x = gen_rtx_IF_THEN_ELSE (VOIDmode, x, label, pc_rtx);
  x = gen_rtx_SET (VOIDmode, pc_rtx, x);
  emit_jump_insn (x);
}

/* A helper function for matching parallels that set the flags.  */

bool
rx_match_ccmode (rtx insn, enum machine_mode cc_mode)
{
  rtx op1, flags;
  enum machine_mode flags_mode;

  gcc_checking_assert (XVECLEN (PATTERN (insn), 0) == 2);

  op1 = XVECEXP (PATTERN (insn), 0, 1);
  gcc_checking_assert (GET_CODE (SET_SRC (op1)) == COMPARE);

  flags = SET_DEST (op1);
  flags_mode = GET_MODE (flags);

  if (GET_MODE (SET_SRC (op1)) != flags_mode)
    return false;
  if (GET_MODE_CLASS (flags_mode) != MODE_CC)
    return false;

  /* Ensure that the mode of FLAGS is compatible with CC_MODE.  */
  if (flags_from_mode (flags_mode) & ~flags_from_mode (cc_mode))
    return false;

  return true;
}


int
rx_align_for_label (rtx lab, int uses_threshold)
{
  /* This is a simple heuristic to guess when an alignment would not be useful
     because the delay due to the inserted NOPs would be greater than the delay
     due to the misaligned branch.  If uses_threshold is zero then the alignment
     is always useful.  */
  if (LABEL_P (lab) && LABEL_NUSES (lab) < uses_threshold)
    return 0;

  return optimize_size ? 1 : 3;
}

static int
rx_max_skip_for_label (rtx lab)
{
  int opsize;
  rtx op;

  if (lab == NULL_RTX)
    return 0;
  op = lab;
  do
    {
      op = next_nonnote_nondebug_insn (op);
    }
  while (op && (LABEL_P (op)
		|| (INSN_P (op) && GET_CODE (PATTERN (op)) == USE)));
  if (!op)
    return 0;

  opsize = get_attr_length (op);
  if (opsize >= 0 && opsize < 8)
    return opsize - 1;
  return 0;
}

#undef  TARGET_ASM_JUMP_ALIGN_MAX_SKIP
#define TARGET_ASM_JUMP_ALIGN_MAX_SKIP			rx_max_skip_for_label
#undef  TARGET_ASM_LOOP_ALIGN_MAX_SKIP
#define TARGET_ASM_LOOP_ALIGN_MAX_SKIP			rx_max_skip_for_label
#undef  TARGET_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
#define TARGET_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP	rx_max_skip_for_label
#undef  TARGET_ASM_LABEL_ALIGN_MAX_SKIP
#define TARGET_ASM_LABEL_ALIGN_MAX_SKIP			rx_max_skip_for_label

#undef  TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE		rx_function_value

#undef  TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB		rx_return_in_msb

#undef  TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P		rx_in_small_data

#undef  TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY		rx_return_in_memory

#undef  TARGET_HAVE_SRODATA_SECTION
#define TARGET_HAVE_SRODATA_SECTION	true

#undef	TARGET_ASM_SELECT_RTX_SECTION
#define	TARGET_ASM_SELECT_RTX_SECTION	rx_select_rtx_section

#undef	TARGET_ASM_SELECT_SECTION
#define	TARGET_ASM_SELECT_SECTION	rx_select_section

#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS		rx_init_builtins

#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN		rx_expand_builtin

#undef  TARGET_ASM_CONSTRUCTOR
#define TARGET_ASM_CONSTRUCTOR		rx_elf_asm_constructor

#undef  TARGET_ASM_DESTRUCTOR
#define TARGET_ASM_DESTRUCTOR		rx_elf_asm_destructor

#undef  TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX		rx_struct_value_rtx

#undef  TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE		rx_attribute_table

#undef  TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START			rx_file_start

#undef  TARGET_MS_BITFIELD_LAYOUT_P
#define TARGET_MS_BITFIELD_LAYOUT_P		rx_is_ms_bitfield_layout

#undef  TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P		rx_is_legitimate_address

#undef  TARGET_MODE_DEPENDENT_ADDRESS_P
#define TARGET_MODE_DEPENDENT_ADDRESS_P		rx_mode_dependent_address_p

#undef  TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS
#define TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS	rx_allocate_stack_slots_for_args

#undef  TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE 		rx_output_function_prologue

#undef  TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
#define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P 	rx_func_attr_inlinable

#undef  TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL		rx_function_ok_for_sibcall

#undef  TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG     		rx_function_arg

#undef  TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE     	rx_function_arg_advance

#undef	TARGET_FUNCTION_ARG_BOUNDARY
#define	TARGET_FUNCTION_ARG_BOUNDARY		rx_function_arg_boundary

#undef  TARGET_SET_CURRENT_FUNCTION
#define TARGET_SET_CURRENT_FUNCTION		rx_set_current_function

#undef  TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION			rx_handle_option

#undef  TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER			rx_assemble_integer

#undef  TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P	hook_bool_mode_const_rtx_true

#undef  TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET		32

#undef  TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST			rx_address_cost

#undef  TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE			rx_can_eliminate

#undef  TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE	rx_conditional_register_usage

#undef  TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE		rx_trampoline_template

#undef  TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT			rx_trampoline_init

#undef  TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND			rx_print_operand

#undef  TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS		rx_print_operand_address

#undef  TARGET_CC_MODES_COMPATIBLE
#define TARGET_CC_MODES_COMPATIBLE		rx_cc_modes_compatible

#undef  TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST			rx_memory_move_cost

#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE			rx_option_override

#undef  TARGET_OPTION_OPTIMIZATION_TABLE
#define TARGET_OPTION_OPTIMIZATION_TABLE	rx_option_optimization_table

#undef  TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE		rx_promote_function_mode

#undef  TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE	rx_override_options_after_change

#undef  TARGET_EXCEPT_UNWIND_INFO
#define TARGET_EXCEPT_UNWIND_INFO		sjlj_except_unwind_info

#undef  TARGET_FLAGS_REGNUM
#define TARGET_FLAGS_REGNUM			CC_REG

struct gcc_target targetm = TARGET_INITIALIZER;

/* #include "gt-rx.h" */