1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
|
/* This is an assembly language implementation of mulsi3, divsi3, and modsi3
for the sparc processor.
These routines are derived from the SPARC Architecture Manual, version 8,
slightly edited to match the desired calling convention, and also to
optimize them for our purposes. */
#ifdef L_mulsi3
.text
.align 4
.global .umul
.proc 4
.umul:
or %o0, %o1, %o4 ! logical or of multiplier and multiplicand
mov %o0, %y ! multiplier to Y register
andncc %o4, 0xfff, %o5 ! mask out lower 12 bits
be mul_shortway ! can do it the short way
andcc %g0, %g0, %o4 ! zero the partial product and clear NV cc
!
! long multiply
!
mulscc %o4, %o1, %o4 ! first iteration of 33
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4 ! 32nd iteration
mulscc %o4, %g0, %o4 ! last iteration only shifts
! the upper 32 bits of product are wrong, but we do not care
retl
rd %y, %o0
!
! short multiply
!
mul_shortway:
mulscc %o4, %o1, %o4 ! first iteration of 13
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4
mulscc %o4, %o1, %o4 ! 12th iteration
mulscc %o4, %g0, %o4 ! last iteration only shifts
rd %y, %o5
sll %o4, 12, %o4 ! left shift partial product by 12 bits
srl %o5, 20, %o5 ! right shift partial product by 20 bits
retl
or %o5, %o4, %o0 ! merge for true product
#endif
#ifdef L_divsi3
/*
* Division and remainder, from Appendix E of the SPARC Version 8
* Architecture Manual, with fixes from Gordon Irlam.
*/
/*
* Input: dividend and divisor in %o0 and %o1 respectively.
*
* m4 parameters:
* .div name of function to generate
* div div=div => %o0 / %o1; div=rem => %o0 % %o1
* true true=true => signed; true=false => unsigned
*
* Algorithm parameters:
* N how many bits per iteration we try to get (4)
* WORDSIZE total number of bits (32)
*
* Derived constants:
* TOPBITS number of bits in the top decade of a number
*
* Important variables:
* Q the partial quotient under development (initially 0)
* R the remainder so far, initially the dividend
* ITER number of main division loop iterations required;
* equal to ceil(log2(quotient) / N). Note that this
* is the log base (2^N) of the quotient.
* V the current comparand, initially divisor*2^(ITER*N-1)
*
* Cost:
* Current estimate for non-large dividend is
* ceil(log2(quotient) / N) * (10 + 7N/2) + C
* A large dividend is one greater than 2^(31-TOPBITS) and takes a
* different path, as the upper bits of the quotient must be developed
* one bit at a time.
*/
.global .udiv
.align 4
.proc 4
.text
.udiv:
b ready_to_divide
mov 0, %g3 ! result is always positive
.global .div
.align 4
.proc 4
.text
.div:
! compute sign of result; if neither is negative, no problem
orcc %o1, %o0, %g0 ! either negative?
bge ready_to_divide ! no, go do the divide
xor %o1, %o0, %g3 ! compute sign in any case
tst %o1
bge 1f
tst %o0
! %o1 is definitely negative; %o0 might also be negative
bge ready_to_divide ! if %o0 not negative...
sub %g0, %o1, %o1 ! in any case, make %o1 nonneg
1: ! %o0 is negative, %o1 is nonnegative
sub %g0, %o0, %o0 ! make %o0 nonnegative
ready_to_divide:
! Ready to divide. Compute size of quotient; scale comparand.
orcc %o1, %g0, %o5
bne 1f
mov %o0, %o3
! Divide by zero trap. If it returns, return 0 (about as
! wrong as possible, but that is what SunOS does...).
ta 0x2 ! ST_DIV0
retl
clr %o0
1:
cmp %o3, %o5 ! if %o1 exceeds %o0, done
blu got_result ! (and algorithm fails otherwise)
clr %o2
sethi %hi(1 << (32 - 4 - 1)), %g1
cmp %o3, %g1
blu not_really_big
clr %o4
! Here the dividend is >= 2**(31-N) or so. We must be careful here,
! as our usual N-at-a-shot divide step will cause overflow and havoc.
! The number of bits in the result here is N*ITER+SC, where SC <= N.
! Compute ITER in an unorthodox manner: know we need to shift V into
! the top decade: so do not even bother to compare to R.
1:
cmp %o5, %g1
bgeu 3f
mov 1, %g2
sll %o5, 4, %o5
b 1b
add %o4, 1, %o4
! Now compute %g2.
2: addcc %o5, %o5, %o5
bcc not_too_big
add %g2, 1, %g2
! We get here if the %o1 overflowed while shifting.
! This means that %o3 has the high-order bit set.
! Restore %o5 and subtract from %o3.
sll %g1, 4, %g1 ! high order bit
srl %o5, 1, %o5 ! rest of %o5
add %o5, %g1, %o5
b do_single_div
sub %g2, 1, %g2
not_too_big:
3: cmp %o5, %o3
blu 2b
nop
be do_single_div
nop
/* NB: these are commented out in the V8-SPARC manual as well */
/* (I do not understand this) */
! %o5 > %o3: went too far: back up 1 step
! srl %o5, 1, %o5
! dec %g2
! do single-bit divide steps
!
! We have to be careful here. We know that %o3 >= %o5, so we can do the
! first divide step without thinking. BUT, the others are conditional,
! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high-
! order bit set in the first step, just falling into the regular
! division loop will mess up the first time around.
! So we unroll slightly...
do_single_div:
subcc %g2, 1, %g2
bl end_regular_divide
nop
sub %o3, %o5, %o3
mov 1, %o2
b end_single_divloop
nop
single_divloop:
sll %o2, 1, %o2
bl 1f
srl %o5, 1, %o5
! %o3 >= 0
sub %o3, %o5, %o3
b 2f
add %o2, 1, %o2
1: ! %o3 < 0
add %o3, %o5, %o3
sub %o2, 1, %o2
2:
end_single_divloop:
subcc %g2, 1, %g2
bge single_divloop
tst %o3
b,a end_regular_divide
not_really_big:
1:
sll %o5, 4, %o5
cmp %o5, %o3
bleu 1b
addcc %o4, 1, %o4
be got_result
sub %o4, 1, %o4
tst %o3 ! set up for initial iteration
divloop:
sll %o2, 4, %o2
! depth 1, accumulated bits 0
bl L1.16
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 2, accumulated bits 1
bl L2.17
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 3, accumulated bits 3
bl L3.19
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 4, accumulated bits 7
bl L4.23
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (7*2+1), %o2
L4.23:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (7*2-1), %o2
L3.19:
! remainder is negative
addcc %o3,%o5,%o3
! depth 4, accumulated bits 5
bl L4.21
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (5*2+1), %o2
L4.21:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (5*2-1), %o2
L2.17:
! remainder is negative
addcc %o3,%o5,%o3
! depth 3, accumulated bits 1
bl L3.17
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 4, accumulated bits 3
bl L4.19
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (3*2+1), %o2
L4.19:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (3*2-1), %o2
L3.17:
! remainder is negative
addcc %o3,%o5,%o3
! depth 4, accumulated bits 1
bl L4.17
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (1*2+1), %o2
L4.17:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (1*2-1), %o2
L1.16:
! remainder is negative
addcc %o3,%o5,%o3
! depth 2, accumulated bits -1
bl L2.15
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 3, accumulated bits -1
bl L3.15
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 4, accumulated bits -1
bl L4.15
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (-1*2+1), %o2
L4.15:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-1*2-1), %o2
L3.15:
! remainder is negative
addcc %o3,%o5,%o3
! depth 4, accumulated bits -3
bl L4.13
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (-3*2+1), %o2
L4.13:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-3*2-1), %o2
L2.15:
! remainder is negative
addcc %o3,%o5,%o3
! depth 3, accumulated bits -3
bl L3.13
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 4, accumulated bits -5
bl L4.11
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (-5*2+1), %o2
L4.11:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-5*2-1), %o2
L3.13:
! remainder is negative
addcc %o3,%o5,%o3
! depth 4, accumulated bits -7
bl L4.9
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (-7*2+1), %o2
L4.9:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-7*2-1), %o2
9:
end_regular_divide:
subcc %o4, 1, %o4
bge divloop
tst %o3
bl,a got_result
! non-restoring fixup here (one instruction only!)
sub %o2, 1, %o2
got_result:
! check to see if answer should be < 0
tst %g3
bl,a 1f
sub %g0, %o2, %o2
1:
retl
mov %o2, %o0
#endif
#ifdef L_modsi3
/* This implementation was taken from glibc:
*
* Input: dividend and divisor in %o0 and %o1 respectively.
*
* Algorithm parameters:
* N how many bits per iteration we try to get (4)
* WORDSIZE total number of bits (32)
*
* Derived constants:
* TOPBITS number of bits in the top decade of a number
*
* Important variables:
* Q the partial quotient under development (initially 0)
* R the remainder so far, initially the dividend
* ITER number of main division loop iterations required;
* equal to ceil(log2(quotient) / N). Note that this
* is the log base (2^N) of the quotient.
* V the current comparand, initially divisor*2^(ITER*N-1)
*
* Cost:
* Current estimate for non-large dividend is
* ceil(log2(quotient) / N) * (10 + 7N/2) + C
* A large dividend is one greater than 2^(31-TOPBITS) and takes a
* different path, as the upper bits of the quotient must be developed
* one bit at a time.
*/
.text
.align 4
.global .urem
.proc 4
.urem:
b divide
mov 0, %g3 ! result always positive
.align 4
.global .rem
.proc 4
.rem:
! compute sign of result; if neither is negative, no problem
orcc %o1, %o0, %g0 ! either negative?
bge 2f ! no, go do the divide
mov %o0, %g3 ! sign of remainder matches %o0
tst %o1
bge 1f
tst %o0
! %o1 is definitely negative; %o0 might also be negative
bge 2f ! if %o0 not negative...
sub %g0, %o1, %o1 ! in any case, make %o1 nonneg
1: ! %o0 is negative, %o1 is nonnegative
sub %g0, %o0, %o0 ! make %o0 nonnegative
2:
! Ready to divide. Compute size of quotient; scale comparand.
divide:
orcc %o1, %g0, %o5
bne 1f
mov %o0, %o3
! Divide by zero trap. If it returns, return 0 (about as
! wrong as possible, but that is what SunOS does...).
ta 0x2 !ST_DIV0
retl
clr %o0
1:
cmp %o3, %o5 ! if %o1 exceeds %o0, done
blu got_result ! (and algorithm fails otherwise)
clr %o2
sethi %hi(1 << (32 - 4 - 1)), %g1
cmp %o3, %g1
blu not_really_big
clr %o4
! Here the dividend is >= 2**(31-N) or so. We must be careful here,
! as our usual N-at-a-shot divide step will cause overflow and havoc.
! The number of bits in the result here is N*ITER+SC, where SC <= N.
! Compute ITER in an unorthodox manner: know we need to shift V into
! the top decade: so do not even bother to compare to R.
1:
cmp %o5, %g1
bgeu 3f
mov 1, %g2
sll %o5, 4, %o5
b 1b
add %o4, 1, %o4
! Now compute %g2.
2: addcc %o5, %o5, %o5
bcc not_too_big
add %g2, 1, %g2
! We get here if the %o1 overflowed while shifting.
! This means that %o3 has the high-order bit set.
! Restore %o5 and subtract from %o3.
sll %g1, 4, %g1 ! high order bit
srl %o5, 1, %o5 ! rest of %o5
add %o5, %g1, %o5
b do_single_div
sub %g2, 1, %g2
not_too_big:
3: cmp %o5, %o3
blu 2b
nop
be do_single_div
nop
/* NB: these are commented out in the V8-SPARC manual as well */
/* (I do not understand this) */
! %o5 > %o3: went too far: back up 1 step
! srl %o5, 1, %o5
! dec %g2
! do single-bit divide steps
!
! We have to be careful here. We know that %o3 >= %o5, so we can do the
! first divide step without thinking. BUT, the others are conditional,
! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high-
! order bit set in the first step, just falling into the regular
! division loop will mess up the first time around.
! So we unroll slightly...
do_single_div:
subcc %g2, 1, %g2
bl end_regular_divide
nop
sub %o3, %o5, %o3
mov 1, %o2
b end_single_divloop
nop
single_divloop:
sll %o2, 1, %o2
bl 1f
srl %o5, 1, %o5
! %o3 >= 0
sub %o3, %o5, %o3
b 2f
add %o2, 1, %o2
1: ! %o3 < 0
add %o3, %o5, %o3
sub %o2, 1, %o2
2:
end_single_divloop:
subcc %g2, 1, %g2
bge single_divloop
tst %o3
b,a end_regular_divide
not_really_big:
1:
sll %o5, 4, %o5
cmp %o5, %o3
bleu 1b
addcc %o4, 1, %o4
be got_result
sub %o4, 1, %o4
tst %o3 ! set up for initial iteration
divloop:
sll %o2, 4, %o2
! depth 1, accumulated bits 0
bl L1.16
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 2, accumulated bits 1
bl L2.17
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 3, accumulated bits 3
bl L3.19
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 4, accumulated bits 7
bl L4.23
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (7*2+1), %o2
L4.23:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (7*2-1), %o2
L3.19:
! remainder is negative
addcc %o3,%o5,%o3
! depth 4, accumulated bits 5
bl L4.21
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (5*2+1), %o2
L4.21:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (5*2-1), %o2
L2.17:
! remainder is negative
addcc %o3,%o5,%o3
! depth 3, accumulated bits 1
bl L3.17
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 4, accumulated bits 3
bl L4.19
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (3*2+1), %o2
L4.19:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (3*2-1), %o2
L3.17:
! remainder is negative
addcc %o3,%o5,%o3
! depth 4, accumulated bits 1
bl L4.17
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (1*2+1), %o2
L4.17:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (1*2-1), %o2
L1.16:
! remainder is negative
addcc %o3,%o5,%o3
! depth 2, accumulated bits -1
bl L2.15
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 3, accumulated bits -1
bl L3.15
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 4, accumulated bits -1
bl L4.15
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (-1*2+1), %o2
L4.15:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-1*2-1), %o2
L3.15:
! remainder is negative
addcc %o3,%o5,%o3
! depth 4, accumulated bits -3
bl L4.13
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (-3*2+1), %o2
L4.13:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-3*2-1), %o2
L2.15:
! remainder is negative
addcc %o3,%o5,%o3
! depth 3, accumulated bits -3
bl L3.13
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
! depth 4, accumulated bits -5
bl L4.11
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (-5*2+1), %o2
L4.11:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-5*2-1), %o2
L3.13:
! remainder is negative
addcc %o3,%o5,%o3
! depth 4, accumulated bits -7
bl L4.9
srl %o5,1,%o5
! remainder is positive
subcc %o3,%o5,%o3
b 9f
add %o2, (-7*2+1), %o2
L4.9:
! remainder is negative
addcc %o3,%o5,%o3
b 9f
add %o2, (-7*2-1), %o2
9:
end_regular_divide:
subcc %o4, 1, %o4
bge divloop
tst %o3
bl,a got_result
! non-restoring fixup here (one instruction only!)
add %o3, %o1, %o3
got_result:
! check to see if answer should be < 0
tst %g3
bl,a 1f
sub %g0, %o3, %o3
1:
retl
mov %o3, %o0
#endif
|