1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
|
/* Subroutines for insn-output.c for Tensilica's Xtensa architecture.
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "insn-attr.h"
#include "insn-codes.h"
#include "recog.h"
#include "output.h"
#include "tree.h"
#include "expr.h"
#include "flags.h"
#include "reload.h"
#include "tm_p.h"
#include "function.h"
#include "diagnostic-core.h"
#include "optabs.h"
#include "libfuncs.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#include "langhooks.h"
#include "gimple.h"
#include "df.h"
/* Enumeration for all of the relational tests, so that we can build
arrays indexed by the test type, and not worry about the order
of EQ, NE, etc. */
enum internal_test
{
ITEST_EQ,
ITEST_NE,
ITEST_GT,
ITEST_GE,
ITEST_LT,
ITEST_LE,
ITEST_GTU,
ITEST_GEU,
ITEST_LTU,
ITEST_LEU,
ITEST_MAX
};
/* Array giving truth value on whether or not a given hard register
can support a given mode. */
char xtensa_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
/* Current frame size calculated by compute_frame_size. */
unsigned xtensa_current_frame_size;
/* Largest block move to handle in-line. */
#define LARGEST_MOVE_RATIO 15
/* Define the structure for the machine field in struct function. */
struct GTY(()) machine_function
{
int accesses_prev_frame;
bool need_a7_copy;
bool vararg_a7;
rtx vararg_a7_copy;
rtx set_frame_ptr_insn;
};
/* Vector, indexed by hard register number, which contains 1 for a
register that is allowable in a candidate for leaf function
treatment. */
const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER] =
{
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1
};
/* Map hard register number to register class */
const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER] =
{
RL_REGS, SP_REG, RL_REGS, RL_REGS,
RL_REGS, RL_REGS, RL_REGS, GR_REGS,
RL_REGS, RL_REGS, RL_REGS, RL_REGS,
RL_REGS, RL_REGS, RL_REGS, RL_REGS,
AR_REGS, AR_REGS, BR_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
ACC_REG,
};
static void xtensa_option_override (void);
static enum internal_test map_test_to_internal_test (enum rtx_code);
static rtx gen_int_relational (enum rtx_code, rtx, rtx, int *);
static rtx gen_float_relational (enum rtx_code, rtx, rtx);
static rtx gen_conditional_move (enum rtx_code, enum machine_mode, rtx, rtx);
static rtx fixup_subreg_mem (rtx);
static struct machine_function * xtensa_init_machine_status (void);
static rtx xtensa_legitimize_tls_address (rtx);
static rtx xtensa_legitimize_address (rtx, rtx, enum machine_mode);
static bool xtensa_mode_dependent_address_p (const_rtx);
static bool xtensa_return_in_msb (const_tree);
static void printx (FILE *, signed int);
static void xtensa_function_epilogue (FILE *, HOST_WIDE_INT);
static rtx xtensa_builtin_saveregs (void);
static bool xtensa_legitimate_address_p (enum machine_mode, rtx, bool);
static unsigned int xtensa_multibss_section_type_flags (tree, const char *,
int) ATTRIBUTE_UNUSED;
static section *xtensa_select_rtx_section (enum machine_mode, rtx,
unsigned HOST_WIDE_INT);
static bool xtensa_rtx_costs (rtx, int, int, int *, bool);
static int xtensa_register_move_cost (enum machine_mode, reg_class_t,
reg_class_t);
static int xtensa_memory_move_cost (enum machine_mode, reg_class_t, bool);
static tree xtensa_build_builtin_va_list (void);
static bool xtensa_return_in_memory (const_tree, const_tree);
static tree xtensa_gimplify_va_arg_expr (tree, tree, gimple_seq *,
gimple_seq *);
static void xtensa_function_arg_advance (CUMULATIVE_ARGS *, enum machine_mode,
const_tree, bool);
static rtx xtensa_function_arg (CUMULATIVE_ARGS *, enum machine_mode,
const_tree, bool);
static rtx xtensa_function_incoming_arg (CUMULATIVE_ARGS *,
enum machine_mode, const_tree, bool);
static rtx xtensa_function_value (const_tree, const_tree, bool);
static rtx xtensa_libcall_value (enum machine_mode, const_rtx);
static bool xtensa_function_value_regno_p (const unsigned int);
static unsigned int xtensa_function_arg_boundary (enum machine_mode,
const_tree);
static void xtensa_init_builtins (void);
static tree xtensa_fold_builtin (tree, int, tree *, bool);
static rtx xtensa_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
static void xtensa_va_start (tree, rtx);
static bool xtensa_frame_pointer_required (void);
static rtx xtensa_static_chain (const_tree, bool);
static void xtensa_asm_trampoline_template (FILE *);
static void xtensa_trampoline_init (rtx, tree, rtx);
static bool xtensa_output_addr_const_extra (FILE *, rtx);
static reg_class_t xtensa_preferred_reload_class (rtx, reg_class_t);
static reg_class_t xtensa_preferred_output_reload_class (rtx, reg_class_t);
static reg_class_t xtensa_secondary_reload (bool, rtx, reg_class_t,
enum machine_mode,
struct secondary_reload_info *);
static bool constantpool_address_p (const_rtx addr);
static const int reg_nonleaf_alloc_order[FIRST_PSEUDO_REGISTER] =
REG_ALLOC_ORDER;
/* Implement TARGET_OPTION_OPTIMIZATION_TABLE. */
static const struct default_options xtensa_option_optimization_table[] =
{
{ OPT_LEVELS_1_PLUS, OPT_fomit_frame_pointer, NULL, 1 },
/* Reordering blocks for Xtensa is not a good idea unless the
compiler understands the range of conditional branches.
Currently all branch relaxation for Xtensa is handled in the
assembler, so GCC cannot do a good job of reordering blocks.
Do not enable reordering unless it is explicitly requested. */
{ OPT_LEVELS_ALL, OPT_freorder_blocks, NULL, 0 },
{ OPT_LEVELS_NONE, 0, NULL, 0 }
};
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE. */
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE xtensa_function_epilogue
/* These hooks specify assembly directives for creating certain kinds
of integer object. */
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION xtensa_select_rtx_section
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT)
#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS xtensa_legitimize_address
#undef TARGET_MODE_DEPENDENT_ADDRESS_P
#define TARGET_MODE_DEPENDENT_ADDRESS_P xtensa_mode_dependent_address_p
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST xtensa_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST xtensa_memory_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS xtensa_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_bool_0
#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST xtensa_build_builtin_va_list
#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START xtensa_va_start
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY xtensa_return_in_memory
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE xtensa_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE xtensa_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P xtensa_function_value_regno_p
#undef TARGET_SPLIT_COMPLEX_ARG
#define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE xtensa_function_arg_advance
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG xtensa_function_arg
#undef TARGET_FUNCTION_INCOMING_ARG
#define TARGET_FUNCTION_INCOMING_ARG xtensa_function_incoming_arg
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY xtensa_function_arg_boundary
#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS xtensa_builtin_saveregs
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR xtensa_gimplify_va_arg_expr
#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB xtensa_return_in_msb
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS xtensa_init_builtins
#undef TARGET_FOLD_BUILTIN
#define TARGET_FOLD_BUILTIN xtensa_fold_builtin
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN xtensa_expand_builtin
#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS xtensa_preferred_reload_class
#undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
#define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS xtensa_preferred_output_reload_class
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD xtensa_secondary_reload
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS (TARGET_THREADPTR && HAVE_AS_TLS)
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM xtensa_tls_referenced_p
#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P xtensa_legitimate_address_p
#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED xtensa_frame_pointer_required
#undef TARGET_STATIC_CHAIN
#define TARGET_STATIC_CHAIN xtensa_static_chain
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE xtensa_asm_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT xtensa_trampoline_init
#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE xtensa_option_override
#undef TARGET_OPTION_OPTIMIZATION_TABLE
#define TARGET_OPTION_OPTIMIZATION_TABLE xtensa_option_optimization_table
#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA xtensa_output_addr_const_extra
struct gcc_target targetm = TARGET_INITIALIZER;
/* Functions to test Xtensa immediate operand validity. */
bool
xtensa_simm8 (HOST_WIDE_INT v)
{
return v >= -128 && v <= 127;
}
bool
xtensa_simm8x256 (HOST_WIDE_INT v)
{
return (v & 255) == 0 && (v >= -32768 && v <= 32512);
}
bool
xtensa_simm12b (HOST_WIDE_INT v)
{
return v >= -2048 && v <= 2047;
}
static bool
xtensa_uimm8 (HOST_WIDE_INT v)
{
return v >= 0 && v <= 255;
}
static bool
xtensa_uimm8x2 (HOST_WIDE_INT v)
{
return (v & 1) == 0 && (v >= 0 && v <= 510);
}
static bool
xtensa_uimm8x4 (HOST_WIDE_INT v)
{
return (v & 3) == 0 && (v >= 0 && v <= 1020);
}
static bool
xtensa_b4const (HOST_WIDE_INT v)
{
switch (v)
{
case -1:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 10:
case 12:
case 16:
case 32:
case 64:
case 128:
case 256:
return true;
}
return false;
}
bool
xtensa_b4const_or_zero (HOST_WIDE_INT v)
{
if (v == 0)
return true;
return xtensa_b4const (v);
}
bool
xtensa_b4constu (HOST_WIDE_INT v)
{
switch (v)
{
case 32768:
case 65536:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 10:
case 12:
case 16:
case 32:
case 64:
case 128:
case 256:
return true;
}
return false;
}
bool
xtensa_mask_immediate (HOST_WIDE_INT v)
{
#define MAX_MASK_SIZE 16
int mask_size;
for (mask_size = 1; mask_size <= MAX_MASK_SIZE; mask_size++)
{
if ((v & 1) == 0)
return false;
v = v >> 1;
if (v == 0)
return true;
}
return false;
}
/* This is just like the standard true_regnum() function except that it
works even when reg_renumber is not initialized. */
int
xt_true_regnum (rtx x)
{
if (GET_CODE (x) == REG)
{
if (reg_renumber
&& REGNO (x) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (x)] >= 0)
return reg_renumber[REGNO (x)];
return REGNO (x);
}
if (GET_CODE (x) == SUBREG)
{
int base = xt_true_regnum (SUBREG_REG (x));
if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x), GET_MODE (x));
}
return -1;
}
int
xtensa_valid_move (enum machine_mode mode, rtx *operands)
{
/* Either the destination or source must be a register, and the
MAC16 accumulator doesn't count. */
if (register_operand (operands[0], mode))
{
int dst_regnum = xt_true_regnum (operands[0]);
/* The stack pointer can only be assigned with a MOVSP opcode. */
if (dst_regnum == STACK_POINTER_REGNUM)
return (mode == SImode
&& register_operand (operands[1], mode)
&& !ACC_REG_P (xt_true_regnum (operands[1])));
if (!ACC_REG_P (dst_regnum))
return true;
}
if (register_operand (operands[1], mode))
{
int src_regnum = xt_true_regnum (operands[1]);
if (!ACC_REG_P (src_regnum))
return true;
}
return FALSE;
}
int
smalloffset_mem_p (rtx op)
{
if (GET_CODE (op) == MEM)
{
rtx addr = XEXP (op, 0);
if (GET_CODE (addr) == REG)
return BASE_REG_P (addr, 0);
if (GET_CODE (addr) == PLUS)
{
rtx offset = XEXP (addr, 0);
HOST_WIDE_INT val;
if (GET_CODE (offset) != CONST_INT)
offset = XEXP (addr, 1);
if (GET_CODE (offset) != CONST_INT)
return FALSE;
val = INTVAL (offset);
return (val & 3) == 0 && (val >= 0 && val <= 60);
}
}
return FALSE;
}
static bool
constantpool_address_p (const_rtx addr)
{
const_rtx sym = addr;
if (GET_CODE (addr) == CONST)
{
rtx offset;
/* Only handle (PLUS (SYM, OFFSET)) form. */
addr = XEXP (addr, 0);
if (GET_CODE (addr) != PLUS)
return false;
/* Make sure the address is word aligned. */
offset = XEXP (addr, 1);
if ((!CONST_INT_P (offset))
|| ((INTVAL (offset) & 3) != 0))
return false;
sym = XEXP (addr, 0);
}
if ((GET_CODE (sym) == SYMBOL_REF)
&& CONSTANT_POOL_ADDRESS_P (sym))
return true;
return false;
}
int
constantpool_mem_p (rtx op)
{
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) == MEM)
return constantpool_address_p (XEXP (op, 0));
return FALSE;
}
/* Return TRUE if X is a thread-local symbol. */
static bool
xtensa_tls_symbol_p (rtx x)
{
if (! TARGET_HAVE_TLS)
return false;
return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
}
void
xtensa_extend_reg (rtx dst, rtx src)
{
rtx temp = gen_reg_rtx (SImode);
rtx shift = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (GET_MODE (src)));
/* Generate paradoxical subregs as needed so that the modes match. */
src = simplify_gen_subreg (SImode, src, GET_MODE (src), 0);
dst = simplify_gen_subreg (SImode, dst, GET_MODE (dst), 0);
emit_insn (gen_ashlsi3 (temp, src, shift));
emit_insn (gen_ashrsi3 (dst, temp, shift));
}
bool
xtensa_mem_offset (unsigned v, enum machine_mode mode)
{
switch (mode)
{
case BLKmode:
/* Handle the worst case for block moves. See xtensa_expand_block_move
where we emit an optimized block move operation if the block can be
moved in < "move_ratio" pieces. The worst case is when the block is
aligned but has a size of (3 mod 4) (does this happen?) so that the
last piece requires a byte load/store. */
return (xtensa_uimm8 (v)
&& xtensa_uimm8 (v + MOVE_MAX * LARGEST_MOVE_RATIO));
case QImode:
return xtensa_uimm8 (v);
case HImode:
return xtensa_uimm8x2 (v);
case DFmode:
return (xtensa_uimm8x4 (v) && xtensa_uimm8x4 (v + 4));
default:
break;
}
return xtensa_uimm8x4 (v);
}
/* Make normal rtx_code into something we can index from an array. */
static enum internal_test
map_test_to_internal_test (enum rtx_code test_code)
{
enum internal_test test = ITEST_MAX;
switch (test_code)
{
default: break;
case EQ: test = ITEST_EQ; break;
case NE: test = ITEST_NE; break;
case GT: test = ITEST_GT; break;
case GE: test = ITEST_GE; break;
case LT: test = ITEST_LT; break;
case LE: test = ITEST_LE; break;
case GTU: test = ITEST_GTU; break;
case GEU: test = ITEST_GEU; break;
case LTU: test = ITEST_LTU; break;
case LEU: test = ITEST_LEU; break;
}
return test;
}
/* Generate the code to compare two integer values. The return value is
the comparison expression. */
static rtx
gen_int_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
rtx cmp0, /* first operand to compare */
rtx cmp1, /* second operand to compare */
int *p_invert /* whether branch needs to reverse test */)
{
struct cmp_info
{
enum rtx_code test_code; /* test code to use in insn */
bool (*const_range_p) (HOST_WIDE_INT); /* range check function */
int const_add; /* constant to add (convert LE -> LT) */
int reverse_regs; /* reverse registers in test */
int invert_const; /* != 0 if invert value if cmp1 is constant */
int invert_reg; /* != 0 if invert value if cmp1 is register */
int unsignedp; /* != 0 for unsigned comparisons. */
};
static struct cmp_info info[ (int)ITEST_MAX ] = {
{ EQ, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* EQ */
{ NE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* NE */
{ LT, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* GT */
{ GE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* GE */
{ LT, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* LT */
{ GE, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* LE */
{ LTU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* GTU */
{ GEU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* GEU */
{ LTU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* LTU */
{ GEU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* LEU */
};
enum internal_test test;
enum machine_mode mode;
struct cmp_info *p_info;
test = map_test_to_internal_test (test_code);
gcc_assert (test != ITEST_MAX);
p_info = &info[ (int)test ];
mode = GET_MODE (cmp0);
if (mode == VOIDmode)
mode = GET_MODE (cmp1);
/* Make sure we can handle any constants given to us. */
if (GET_CODE (cmp1) == CONST_INT)
{
HOST_WIDE_INT value = INTVAL (cmp1);
unsigned HOST_WIDE_INT uvalue = (unsigned HOST_WIDE_INT)value;
/* if the immediate overflows or does not fit in the immediate field,
spill it to a register */
if ((p_info->unsignedp ?
(uvalue + p_info->const_add > uvalue) :
(value + p_info->const_add > value)) != (p_info->const_add > 0))
{
cmp1 = force_reg (mode, cmp1);
}
else if (!(p_info->const_range_p) (value + p_info->const_add))
{
cmp1 = force_reg (mode, cmp1);
}
}
else if ((GET_CODE (cmp1) != REG) && (GET_CODE (cmp1) != SUBREG))
{
cmp1 = force_reg (mode, cmp1);
}
/* See if we need to invert the result. */
*p_invert = ((GET_CODE (cmp1) == CONST_INT)
? p_info->invert_const
: p_info->invert_reg);
/* Comparison to constants, may involve adding 1 to change a LT into LE.
Comparison between two registers, may involve switching operands. */
if (GET_CODE (cmp1) == CONST_INT)
{
if (p_info->const_add != 0)
cmp1 = GEN_INT (INTVAL (cmp1) + p_info->const_add);
}
else if (p_info->reverse_regs)
{
rtx temp = cmp0;
cmp0 = cmp1;
cmp1 = temp;
}
return gen_rtx_fmt_ee (p_info->test_code, VOIDmode, cmp0, cmp1);
}
/* Generate the code to compare two float values. The return value is
the comparison expression. */
static rtx
gen_float_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
rtx cmp0, /* first operand to compare */
rtx cmp1 /* second operand to compare */)
{
rtx (*gen_fn) (rtx, rtx, rtx);
rtx brtmp;
int reverse_regs, invert;
switch (test_code)
{
case EQ: reverse_regs = 0; invert = 0; gen_fn = gen_seq_sf; break;
case NE: reverse_regs = 0; invert = 1; gen_fn = gen_seq_sf; break;
case LE: reverse_regs = 0; invert = 0; gen_fn = gen_sle_sf; break;
case GT: reverse_regs = 1; invert = 0; gen_fn = gen_slt_sf; break;
case LT: reverse_regs = 0; invert = 0; gen_fn = gen_slt_sf; break;
case GE: reverse_regs = 1; invert = 0; gen_fn = gen_sle_sf; break;
case UNEQ: reverse_regs = 0; invert = 0; gen_fn = gen_suneq_sf; break;
case LTGT: reverse_regs = 0; invert = 1; gen_fn = gen_suneq_sf; break;
case UNLE: reverse_regs = 0; invert = 0; gen_fn = gen_sunle_sf; break;
case UNGT: reverse_regs = 1; invert = 0; gen_fn = gen_sunlt_sf; break;
case UNLT: reverse_regs = 0; invert = 0; gen_fn = gen_sunlt_sf; break;
case UNGE: reverse_regs = 1; invert = 0; gen_fn = gen_sunle_sf; break;
case UNORDERED:
reverse_regs = 0; invert = 0; gen_fn = gen_sunordered_sf; break;
case ORDERED:
reverse_regs = 0; invert = 1; gen_fn = gen_sunordered_sf; break;
default:
fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
reverse_regs = 0; invert = 0; gen_fn = 0; /* avoid compiler warnings */
}
if (reverse_regs)
{
rtx temp = cmp0;
cmp0 = cmp1;
cmp1 = temp;
}
brtmp = gen_rtx_REG (CCmode, FPCC_REGNUM);
emit_insn (gen_fn (brtmp, cmp0, cmp1));
return gen_rtx_fmt_ee (invert ? EQ : NE, VOIDmode, brtmp, const0_rtx);
}
void
xtensa_expand_conditional_branch (rtx *operands, enum machine_mode mode)
{
enum rtx_code test_code = GET_CODE (operands[0]);
rtx cmp0 = operands[1];
rtx cmp1 = operands[2];
rtx cmp;
int invert;
rtx label1, label2;
switch (mode)
{
case DFmode:
default:
fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
case SImode:
invert = FALSE;
cmp = gen_int_relational (test_code, cmp0, cmp1, &invert);
break;
case SFmode:
if (!TARGET_HARD_FLOAT)
fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode,
cmp0, cmp1));
invert = FALSE;
cmp = gen_float_relational (test_code, cmp0, cmp1);
break;
}
/* Generate the branch. */
label1 = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
label2 = pc_rtx;
if (invert)
{
label2 = label1;
label1 = pc_rtx;
}
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode, cmp,
label1,
label2)));
}
static rtx
gen_conditional_move (enum rtx_code code, enum machine_mode mode,
rtx op0, rtx op1)
{
if (mode == SImode)
{
rtx cmp;
/* Jump optimization calls get_condition() which canonicalizes
comparisons like (GE x <const>) to (GT x <const-1>).
Transform those comparisons back to GE, since that is the
comparison supported in Xtensa. We shouldn't have to
transform <LE x const> comparisons, because neither
xtensa_expand_conditional_branch() nor get_condition() will
produce them. */
if ((code == GT) && (op1 == constm1_rtx))
{
code = GE;
op1 = const0_rtx;
}
cmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
if (boolean_operator (cmp, VOIDmode))
{
/* Swap the operands to make const0 second. */
if (op0 == const0_rtx)
{
op0 = op1;
op1 = const0_rtx;
}
/* If not comparing against zero, emit a comparison (subtract). */
if (op1 != const0_rtx)
{
op0 = expand_binop (SImode, sub_optab, op0, op1,
0, 0, OPTAB_LIB_WIDEN);
op1 = const0_rtx;
}
}
else if (branch_operator (cmp, VOIDmode))
{
/* Swap the operands to make const0 second. */
if (op0 == const0_rtx)
{
op0 = op1;
op1 = const0_rtx;
switch (code)
{
case LT: code = GE; break;
case GE: code = LT; break;
default: gcc_unreachable ();
}
}
if (op1 != const0_rtx)
return 0;
}
else
return 0;
return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
}
if (TARGET_HARD_FLOAT && mode == SFmode)
return gen_float_relational (code, op0, op1);
return 0;
}
int
xtensa_expand_conditional_move (rtx *operands, int isflt)
{
rtx dest = operands[0];
rtx cmp = operands[1];
enum machine_mode cmp_mode = GET_MODE (XEXP (cmp, 0));
rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
if (!(cmp = gen_conditional_move (GET_CODE (cmp), cmp_mode,
XEXP (cmp, 0), XEXP (cmp, 1))))
return 0;
if (isflt)
gen_fn = (cmp_mode == SImode
? gen_movsfcc_internal0
: gen_movsfcc_internal1);
else
gen_fn = (cmp_mode == SImode
? gen_movsicc_internal0
: gen_movsicc_internal1);
emit_insn (gen_fn (dest, XEXP (cmp, 0), operands[2], operands[3], cmp));
return 1;
}
int
xtensa_expand_scc (rtx operands[4], enum machine_mode cmp_mode)
{
rtx dest = operands[0];
rtx cmp;
rtx one_tmp, zero_tmp;
rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
if (!(cmp = gen_conditional_move (GET_CODE (operands[1]), cmp_mode,
operands[2], operands[3])))
return 0;
one_tmp = gen_reg_rtx (SImode);
zero_tmp = gen_reg_rtx (SImode);
emit_insn (gen_movsi (one_tmp, const_true_rtx));
emit_insn (gen_movsi (zero_tmp, const0_rtx));
gen_fn = (cmp_mode == SImode
? gen_movsicc_internal0
: gen_movsicc_internal1);
emit_insn (gen_fn (dest, XEXP (cmp, 0), one_tmp, zero_tmp, cmp));
return 1;
}
/* Split OP[1] into OP[2,3] and likewise for OP[0] into OP[0,1]. MODE is
for the output, i.e., the input operands are twice as big as MODE. */
void
xtensa_split_operand_pair (rtx operands[4], enum machine_mode mode)
{
switch (GET_CODE (operands[1]))
{
case REG:
operands[3] = gen_rtx_REG (mode, REGNO (operands[1]) + 1);
operands[2] = gen_rtx_REG (mode, REGNO (operands[1]));
break;
case MEM:
operands[3] = adjust_address (operands[1], mode, GET_MODE_SIZE (mode));
operands[2] = adjust_address (operands[1], mode, 0);
break;
case CONST_INT:
case CONST_DOUBLE:
split_double (operands[1], &operands[2], &operands[3]);
break;
default:
gcc_unreachable ();
}
switch (GET_CODE (operands[0]))
{
case REG:
operands[1] = gen_rtx_REG (mode, REGNO (operands[0]) + 1);
operands[0] = gen_rtx_REG (mode, REGNO (operands[0]));
break;
case MEM:
operands[1] = adjust_address (operands[0], mode, GET_MODE_SIZE (mode));
operands[0] = adjust_address (operands[0], mode, 0);
break;
default:
gcc_unreachable ();
}
}
/* Emit insns to move operands[1] into operands[0].
Return 1 if we have written out everything that needs to be done to
do the move. Otherwise, return 0 and the caller will emit the move
normally. */
int
xtensa_emit_move_sequence (rtx *operands, enum machine_mode mode)
{
rtx src = operands[1];
if (CONSTANT_P (src)
&& (GET_CODE (src) != CONST_INT || ! xtensa_simm12b (INTVAL (src))))
{
rtx dst = operands[0];
if (xtensa_tls_referenced_p (src))
{
rtx addend = NULL;
if (GET_CODE (src) == CONST && GET_CODE (XEXP (src, 0)) == PLUS)
{
addend = XEXP (XEXP (src, 0), 1);
src = XEXP (XEXP (src, 0), 0);
}
src = xtensa_legitimize_tls_address (src);
if (addend)
{
src = gen_rtx_PLUS (mode, src, addend);
src = force_operand (src, dst);
}
emit_move_insn (dst, src);
return 1;
}
if (! TARGET_CONST16)
{
src = force_const_mem (SImode, src);
operands[1] = src;
}
/* PC-relative loads are always SImode, and CONST16 is only
supported in the movsi pattern, so add a SUBREG for any other
(smaller) mode. */
if (mode != SImode)
{
if (register_operand (dst, mode))
{
emit_move_insn (simplify_gen_subreg (SImode, dst, mode, 0), src);
return 1;
}
else
{
src = force_reg (SImode, src);
src = gen_lowpart_SUBREG (mode, src);
operands[1] = src;
}
}
}
if (!(reload_in_progress | reload_completed)
&& !xtensa_valid_move (mode, operands))
operands[1] = force_reg (mode, operands[1]);
operands[1] = xtensa_copy_incoming_a7 (operands[1]);
/* During reload we don't want to emit (subreg:X (mem:Y)) since that
instruction won't be recognized after reload, so we remove the
subreg and adjust mem accordingly. */
if (reload_in_progress)
{
operands[0] = fixup_subreg_mem (operands[0]);
operands[1] = fixup_subreg_mem (operands[1]);
}
return 0;
}
static rtx
fixup_subreg_mem (rtx x)
{
if (GET_CODE (x) == SUBREG
&& GET_CODE (SUBREG_REG (x)) == REG
&& REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
{
rtx temp =
gen_rtx_SUBREG (GET_MODE (x),
reg_equiv_mem [REGNO (SUBREG_REG (x))],
SUBREG_BYTE (x));
x = alter_subreg (&temp);
}
return x;
}
/* Check if an incoming argument in a7 is expected to be used soon and
if OPND is a register or register pair that includes a7. If so,
create a new pseudo and copy a7 into that pseudo at the very
beginning of the function, followed by the special "set_frame_ptr"
unspec_volatile insn. The return value is either the original
operand, if it is not a7, or the new pseudo containing a copy of
the incoming argument. This is necessary because the register
allocator will ignore conflicts with a7 and may either assign some
other pseudo to a7 or use a7 as the hard_frame_pointer, clobbering
the incoming argument in a7. By copying the argument out of a7 as
the very first thing, and then immediately following that with an
unspec_volatile to keep the scheduler away, we should avoid any
problems. Putting the set_frame_ptr insn at the beginning, with
only the a7 copy before it, also makes it easier for the prologue
expander to initialize the frame pointer after the a7 copy and to
fix up the a7 copy to use the stack pointer instead of the frame
pointer. */
rtx
xtensa_copy_incoming_a7 (rtx opnd)
{
rtx entry_insns = 0;
rtx reg, tmp;
enum machine_mode mode;
if (!cfun->machine->need_a7_copy)
return opnd;
/* This function should never be called again once a7 has been copied. */
gcc_assert (!cfun->machine->set_frame_ptr_insn);
mode = GET_MODE (opnd);
/* The operand using a7 may come in a later instruction, so just return
the original operand if it doesn't use a7. */
reg = opnd;
if (GET_CODE (reg) == SUBREG)
{
gcc_assert (SUBREG_BYTE (reg) == 0);
reg = SUBREG_REG (reg);
}
if (GET_CODE (reg) != REG
|| REGNO (reg) > A7_REG
|| REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) <= A7_REG)
return opnd;
/* 1-word args will always be in a7; 2-word args in a6/a7. */
gcc_assert (REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) - 1 == A7_REG);
cfun->machine->need_a7_copy = false;
/* Copy a7 to a new pseudo at the function entry. Use gen_raw_REG to
create the REG for a7 so that hard_frame_pointer_rtx is not used. */
start_sequence ();
tmp = gen_reg_rtx (mode);
switch (mode)
{
case DFmode:
case DImode:
/* Copy the value out of A7 here but keep the first word in A6 until
after the set_frame_ptr insn. Otherwise, the register allocator
may decide to put "subreg (tmp, 0)" in A7 and clobber the incoming
value. */
emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 4),
gen_raw_REG (SImode, A7_REG)));
break;
case SFmode:
emit_insn (gen_movsf_internal (tmp, gen_raw_REG (mode, A7_REG)));
break;
case SImode:
emit_insn (gen_movsi_internal (tmp, gen_raw_REG (mode, A7_REG)));
break;
case HImode:
emit_insn (gen_movhi_internal (tmp, gen_raw_REG (mode, A7_REG)));
break;
case QImode:
emit_insn (gen_movqi_internal (tmp, gen_raw_REG (mode, A7_REG)));
break;
default:
gcc_unreachable ();
}
cfun->machine->set_frame_ptr_insn = emit_insn (gen_set_frame_ptr ());
/* For DF and DI mode arguments, copy the incoming value in A6 now. */
if (mode == DFmode || mode == DImode)
emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 0),
gen_rtx_REG (SImode, A7_REG - 1)));
entry_insns = get_insns ();
end_sequence ();
if (cfun->machine->vararg_a7)
{
/* This is called from within builtin_saveregs, which will insert the
saveregs code at the function entry, ahead of anything placed at
the function entry now. Instead, save the sequence to be inserted
at the beginning of the saveregs code. */
cfun->machine->vararg_a7_copy = entry_insns;
}
else
{
/* Put entry_insns after the NOTE that starts the function. If
this is inside a start_sequence, make the outer-level insn
chain current, so the code is placed at the start of the
function. */
push_topmost_sequence ();
/* Do not use entry_of_function() here. This is called from within
expand_function_start, when the CFG still holds GIMPLE. */
emit_insn_after (entry_insns, get_insns ());
pop_topmost_sequence ();
}
return tmp;
}
/* Try to expand a block move operation to a sequence of RTL move
instructions. If not optimizing, or if the block size is not a
constant, or if the block is too large, the expansion fails and GCC
falls back to calling memcpy().
operands[0] is the destination
operands[1] is the source
operands[2] is the length
operands[3] is the alignment */
int
xtensa_expand_block_move (rtx *operands)
{
static const enum machine_mode mode_from_align[] =
{
VOIDmode, QImode, HImode, VOIDmode, SImode,
};
rtx dst_mem = operands[0];
rtx src_mem = operands[1];
HOST_WIDE_INT bytes, align;
int num_pieces, move_ratio;
rtx temp[2];
enum machine_mode mode[2];
int amount[2];
bool active[2];
int phase = 0;
int next;
int offset_ld = 0;
int offset_st = 0;
rtx x;
/* If this is not a fixed size move, just call memcpy. */
if (!optimize || (GET_CODE (operands[2]) != CONST_INT))
return 0;
bytes = INTVAL (operands[2]);
align = INTVAL (operands[3]);
/* Anything to move? */
if (bytes <= 0)
return 0;
if (align > MOVE_MAX)
align = MOVE_MAX;
/* Decide whether to expand inline based on the optimization level. */
move_ratio = 4;
if (optimize > 2)
move_ratio = LARGEST_MOVE_RATIO;
num_pieces = (bytes / align) + (bytes % align); /* Close enough anyway. */
if (num_pieces > move_ratio)
return 0;
x = XEXP (dst_mem, 0);
if (!REG_P (x))
{
x = force_reg (Pmode, x);
dst_mem = replace_equiv_address (dst_mem, x);
}
x = XEXP (src_mem, 0);
if (!REG_P (x))
{
x = force_reg (Pmode, x);
src_mem = replace_equiv_address (src_mem, x);
}
active[0] = active[1] = false;
do
{
next = phase;
phase ^= 1;
if (bytes > 0)
{
int next_amount;
next_amount = (bytes >= 4 ? 4 : (bytes >= 2 ? 2 : 1));
next_amount = MIN (next_amount, align);
amount[next] = next_amount;
mode[next] = mode_from_align[next_amount];
temp[next] = gen_reg_rtx (mode[next]);
x = adjust_address (src_mem, mode[next], offset_ld);
emit_insn (gen_rtx_SET (VOIDmode, temp[next], x));
offset_ld += next_amount;
bytes -= next_amount;
active[next] = true;
}
if (active[phase])
{
active[phase] = false;
x = adjust_address (dst_mem, mode[phase], offset_st);
emit_insn (gen_rtx_SET (VOIDmode, x, temp[phase]));
offset_st += amount[phase];
}
}
while (active[next]);
return 1;
}
void
xtensa_expand_nonlocal_goto (rtx *operands)
{
rtx goto_handler = operands[1];
rtx containing_fp = operands[3];
/* Generate a call to "__xtensa_nonlocal_goto" (in libgcc); the code
is too big to generate in-line. */
if (GET_CODE (containing_fp) != REG)
containing_fp = force_reg (Pmode, containing_fp);
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_nonlocal_goto"),
LCT_NORMAL, VOIDmode, 2,
containing_fp, Pmode,
goto_handler, Pmode);
}
static struct machine_function *
xtensa_init_machine_status (void)
{
return ggc_alloc_cleared_machine_function ();
}
/* Shift VAL of mode MODE left by COUNT bits. */
static inline rtx
xtensa_expand_mask_and_shift (rtx val, enum machine_mode mode, rtx count)
{
val = expand_simple_binop (SImode, AND, val, GEN_INT (GET_MODE_MASK (mode)),
NULL_RTX, 1, OPTAB_DIRECT);
return expand_simple_binop (SImode, ASHIFT, val, count,
NULL_RTX, 1, OPTAB_DIRECT);
}
/* Structure to hold the initial parameters for a compare_and_swap operation
in HImode and QImode. */
struct alignment_context
{
rtx memsi; /* SI aligned memory location. */
rtx shift; /* Bit offset with regard to lsb. */
rtx modemask; /* Mask of the HQImode shifted by SHIFT bits. */
rtx modemaski; /* ~modemask */
};
/* Initialize structure AC for word access to HI and QI mode memory. */
static void
init_alignment_context (struct alignment_context *ac, rtx mem)
{
enum machine_mode mode = GET_MODE (mem);
rtx byteoffset = NULL_RTX;
bool aligned = (MEM_ALIGN (mem) >= GET_MODE_BITSIZE (SImode));
if (aligned)
ac->memsi = adjust_address (mem, SImode, 0); /* Memory is aligned. */
else
{
/* Alignment is unknown. */
rtx addr, align;
/* Force the address into a register. */
addr = force_reg (Pmode, XEXP (mem, 0));
/* Align it to SImode. */
align = expand_simple_binop (Pmode, AND, addr,
GEN_INT (-GET_MODE_SIZE (SImode)),
NULL_RTX, 1, OPTAB_DIRECT);
/* Generate MEM. */
ac->memsi = gen_rtx_MEM (SImode, align);
MEM_VOLATILE_P (ac->memsi) = MEM_VOLATILE_P (mem);
set_mem_alias_set (ac->memsi, ALIAS_SET_MEMORY_BARRIER);
set_mem_align (ac->memsi, GET_MODE_BITSIZE (SImode));
byteoffset = expand_simple_binop (Pmode, AND, addr,
GEN_INT (GET_MODE_SIZE (SImode) - 1),
NULL_RTX, 1, OPTAB_DIRECT);
}
/* Calculate shiftcount. */
if (TARGET_BIG_ENDIAN)
{
ac->shift = GEN_INT (GET_MODE_SIZE (SImode) - GET_MODE_SIZE (mode));
if (!aligned)
ac->shift = expand_simple_binop (SImode, MINUS, ac->shift, byteoffset,
NULL_RTX, 1, OPTAB_DIRECT);
}
else
{
if (aligned)
ac->shift = NULL_RTX;
else
ac->shift = byteoffset;
}
if (ac->shift != NULL_RTX)
{
/* Shift is the byte count, but we need the bitcount. */
ac->shift = expand_simple_binop (SImode, MULT, ac->shift,
GEN_INT (BITS_PER_UNIT),
NULL_RTX, 1, OPTAB_DIRECT);
ac->modemask = expand_simple_binop (SImode, ASHIFT,
GEN_INT (GET_MODE_MASK (mode)),
ac->shift,
NULL_RTX, 1, OPTAB_DIRECT);
}
else
ac->modemask = GEN_INT (GET_MODE_MASK (mode));
ac->modemaski = expand_simple_unop (SImode, NOT, ac->modemask, NULL_RTX, 1);
}
/* Expand an atomic compare and swap operation for HImode and QImode.
MEM is the memory location, CMP the old value to compare MEM with
and NEW_RTX the value to set if CMP == MEM. */
void
xtensa_expand_compare_and_swap (rtx target, rtx mem, rtx cmp, rtx new_rtx)
{
enum machine_mode mode = GET_MODE (mem);
struct alignment_context ac;
rtx tmp, cmpv, newv, val;
rtx oldval = gen_reg_rtx (SImode);
rtx res = gen_reg_rtx (SImode);
rtx csloop = gen_label_rtx ();
rtx csend = gen_label_rtx ();
init_alignment_context (&ac, mem);
if (ac.shift != NULL_RTX)
{
cmp = xtensa_expand_mask_and_shift (cmp, mode, ac.shift);
new_rtx = xtensa_expand_mask_and_shift (new_rtx, mode, ac.shift);
}
/* Load the surrounding word into VAL with the MEM value masked out. */
val = force_reg (SImode, expand_simple_binop (SImode, AND, ac.memsi,
ac.modemaski, NULL_RTX, 1,
OPTAB_DIRECT));
emit_label (csloop);
/* Patch CMP and NEW_RTX into VAL at correct position. */
cmpv = force_reg (SImode, expand_simple_binop (SImode, IOR, cmp, val,
NULL_RTX, 1, OPTAB_DIRECT));
newv = force_reg (SImode, expand_simple_binop (SImode, IOR, new_rtx, val,
NULL_RTX, 1, OPTAB_DIRECT));
/* Jump to end if we're done. */
emit_insn (gen_sync_compare_and_swapsi (res, ac.memsi, cmpv, newv));
emit_cmp_and_jump_insns (res, cmpv, EQ, const0_rtx, SImode, true, csend);
/* Check for changes outside mode. */
emit_move_insn (oldval, val);
tmp = expand_simple_binop (SImode, AND, res, ac.modemaski,
val, 1, OPTAB_DIRECT);
if (tmp != val)
emit_move_insn (val, tmp);
/* Loop internal if so. */
emit_cmp_and_jump_insns (oldval, val, NE, const0_rtx, SImode, true, csloop);
emit_label (csend);
/* Return the correct part of the bitfield. */
convert_move (target,
(ac.shift == NULL_RTX ? res
: expand_simple_binop (SImode, LSHIFTRT, res, ac.shift,
NULL_RTX, 1, OPTAB_DIRECT)),
1);
}
/* Expand an atomic operation CODE of mode MODE (either HImode or QImode --
the default expansion works fine for SImode). MEM is the memory location
and VAL the value to play with. If AFTER is true then store the value
MEM holds after the operation, if AFTER is false then store the value MEM
holds before the operation. If TARGET is zero then discard that value, else
store it to TARGET. */
void
xtensa_expand_atomic (enum rtx_code code, rtx target, rtx mem, rtx val,
bool after)
{
enum machine_mode mode = GET_MODE (mem);
struct alignment_context ac;
rtx csloop = gen_label_rtx ();
rtx cmp, tmp;
rtx old = gen_reg_rtx (SImode);
rtx new_rtx = gen_reg_rtx (SImode);
rtx orig = NULL_RTX;
init_alignment_context (&ac, mem);
/* Prepare values before the compare-and-swap loop. */
if (ac.shift != NULL_RTX)
val = xtensa_expand_mask_and_shift (val, mode, ac.shift);
switch (code)
{
case PLUS:
case MINUS:
orig = gen_reg_rtx (SImode);
convert_move (orig, val, 1);
break;
case SET:
case IOR:
case XOR:
break;
case MULT: /* NAND */
case AND:
/* val = "11..1<val>11..1" */
val = expand_simple_binop (SImode, XOR, val, ac.modemaski,
NULL_RTX, 1, OPTAB_DIRECT);
break;
default:
gcc_unreachable ();
}
/* Load full word. Subsequent loads are performed by S32C1I. */
cmp = force_reg (SImode, ac.memsi);
emit_label (csloop);
emit_move_insn (old, cmp);
switch (code)
{
case PLUS:
case MINUS:
val = expand_simple_binop (SImode, code, old, orig,
NULL_RTX, 1, OPTAB_DIRECT);
val = expand_simple_binop (SImode, AND, val, ac.modemask,
NULL_RTX, 1, OPTAB_DIRECT);
/* FALLTHRU */
case SET:
tmp = expand_simple_binop (SImode, AND, old, ac.modemaski,
NULL_RTX, 1, OPTAB_DIRECT);
tmp = expand_simple_binop (SImode, IOR, tmp, val,
new_rtx, 1, OPTAB_DIRECT);
break;
case AND:
case IOR:
case XOR:
tmp = expand_simple_binop (SImode, code, old, val,
new_rtx, 1, OPTAB_DIRECT);
break;
case MULT: /* NAND */
tmp = expand_simple_binop (SImode, XOR, old, ac.modemask,
NULL_RTX, 1, OPTAB_DIRECT);
tmp = expand_simple_binop (SImode, AND, tmp, val,
new_rtx, 1, OPTAB_DIRECT);
break;
default:
gcc_unreachable ();
}
if (tmp != new_rtx)
emit_move_insn (new_rtx, tmp);
emit_insn (gen_sync_compare_and_swapsi (cmp, ac.memsi, old, new_rtx));
emit_cmp_and_jump_insns (cmp, old, NE, const0_rtx, SImode, true, csloop);
if (target)
{
tmp = (after ? new_rtx : cmp);
convert_move (target,
(ac.shift == NULL_RTX ? tmp
: expand_simple_binop (SImode, LSHIFTRT, tmp, ac.shift,
NULL_RTX, 1, OPTAB_DIRECT)),
1);
}
}
void
xtensa_setup_frame_addresses (void)
{
/* Set flag to cause TARGET_FRAME_POINTER_REQUIRED to return true. */
cfun->machine->accesses_prev_frame = 1;
emit_library_call
(gen_rtx_SYMBOL_REF (Pmode, "__xtensa_libgcc_window_spill"),
LCT_NORMAL, VOIDmode, 0);
}
/* Emit the assembly for the end of a zero-cost loop. Normally we just emit
a comment showing where the end of the loop is. However, if there is a
label or a branch at the end of the loop then we need to place a nop
there. If the loop ends with a label we need the nop so that branches
targeting that label will target the nop (and thus remain in the loop),
instead of targeting the instruction after the loop (and thus exiting
the loop). If the loop ends with a branch, we need the nop in case the
branch is targeting a location inside the loop. When the branch
executes it will cause the loop count to be decremented even if it is
taken (because it is the last instruction in the loop), so we need to
nop after the branch to prevent the loop count from being decremented
when the branch is taken. */
void
xtensa_emit_loop_end (rtx insn, rtx *operands)
{
char done = 0;
for (insn = PREV_INSN (insn); insn && !done; insn = PREV_INSN (insn))
{
switch (GET_CODE (insn))
{
case NOTE:
case BARRIER:
break;
case CODE_LABEL:
output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
done = 1;
break;
default:
{
rtx body = PATTERN (insn);
if (GET_CODE (body) == JUMP_INSN)
{
output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
done = 1;
}
else if ((GET_CODE (body) != USE)
&& (GET_CODE (body) != CLOBBER))
done = 1;
}
break;
}
}
output_asm_insn ("# loop end for %0", operands);
}
char *
xtensa_emit_branch (bool inverted, bool immed, rtx *operands)
{
static char result[64];
enum rtx_code code;
const char *op;
code = GET_CODE (operands[3]);
switch (code)
{
case EQ: op = inverted ? "ne" : "eq"; break;
case NE: op = inverted ? "eq" : "ne"; break;
case LT: op = inverted ? "ge" : "lt"; break;
case GE: op = inverted ? "lt" : "ge"; break;
case LTU: op = inverted ? "geu" : "ltu"; break;
case GEU: op = inverted ? "ltu" : "geu"; break;
default: gcc_unreachable ();
}
if (immed)
{
if (INTVAL (operands[1]) == 0)
sprintf (result, "b%sz%s\t%%0, %%2", op,
(TARGET_DENSITY && (code == EQ || code == NE)) ? ".n" : "");
else
sprintf (result, "b%si\t%%0, %%d1, %%2", op);
}
else
sprintf (result, "b%s\t%%0, %%1, %%2", op);
return result;
}
char *
xtensa_emit_bit_branch (bool inverted, bool immed, rtx *operands)
{
static char result[64];
const char *op;
switch (GET_CODE (operands[3]))
{
case EQ: op = inverted ? "bs" : "bc"; break;
case NE: op = inverted ? "bc" : "bs"; break;
default: gcc_unreachable ();
}
if (immed)
{
unsigned bitnum = INTVAL (operands[1]) & 0x1f;
operands[1] = GEN_INT (bitnum);
sprintf (result, "b%si\t%%0, %%d1, %%2", op);
}
else
sprintf (result, "b%s\t%%0, %%1, %%2", op);
return result;
}
char *
xtensa_emit_movcc (bool inverted, bool isfp, bool isbool, rtx *operands)
{
static char result[64];
enum rtx_code code;
const char *op;
code = GET_CODE (operands[4]);
if (isbool)
{
switch (code)
{
case EQ: op = inverted ? "t" : "f"; break;
case NE: op = inverted ? "f" : "t"; break;
default: gcc_unreachable ();
}
}
else
{
switch (code)
{
case EQ: op = inverted ? "nez" : "eqz"; break;
case NE: op = inverted ? "eqz" : "nez"; break;
case LT: op = inverted ? "gez" : "ltz"; break;
case GE: op = inverted ? "ltz" : "gez"; break;
default: gcc_unreachable ();
}
}
sprintf (result, "mov%s%s\t%%0, %%%d, %%1",
op, isfp ? ".s" : "", inverted ? 3 : 2);
return result;
}
char *
xtensa_emit_call (int callop, rtx *operands)
{
static char result[64];
rtx tgt = operands[callop];
if (GET_CODE (tgt) == CONST_INT)
sprintf (result, "call8\t0x%lx", INTVAL (tgt));
else if (register_operand (tgt, VOIDmode))
sprintf (result, "callx8\t%%%d", callop);
else
sprintf (result, "call8\t%%%d", callop);
return result;
}
bool
xtensa_legitimate_address_p (enum machine_mode mode, rtx addr, bool strict)
{
/* Allow constant pool addresses. */
if (mode != BLKmode && GET_MODE_SIZE (mode) >= UNITS_PER_WORD
&& ! TARGET_CONST16 && constantpool_address_p (addr)
&& ! xtensa_tls_referenced_p (addr))
return true;
while (GET_CODE (addr) == SUBREG)
addr = SUBREG_REG (addr);
/* Allow base registers. */
if (GET_CODE (addr) == REG && BASE_REG_P (addr, strict))
return true;
/* Check for "register + offset" addressing. */
if (GET_CODE (addr) == PLUS)
{
rtx xplus0 = XEXP (addr, 0);
rtx xplus1 = XEXP (addr, 1);
enum rtx_code code0;
enum rtx_code code1;
while (GET_CODE (xplus0) == SUBREG)
xplus0 = SUBREG_REG (xplus0);
code0 = GET_CODE (xplus0);
while (GET_CODE (xplus1) == SUBREG)
xplus1 = SUBREG_REG (xplus1);
code1 = GET_CODE (xplus1);
/* Swap operands if necessary so the register is first. */
if (code0 != REG && code1 == REG)
{
xplus0 = XEXP (addr, 1);
xplus1 = XEXP (addr, 0);
code0 = GET_CODE (xplus0);
code1 = GET_CODE (xplus1);
}
if (code0 == REG && BASE_REG_P (xplus0, strict)
&& code1 == CONST_INT
&& xtensa_mem_offset (INTVAL (xplus1), mode))
return true;
}
return false;
}
/* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */
static GTY(()) rtx xtensa_tls_module_base_symbol;
static rtx
xtensa_tls_module_base (void)
{
if (! xtensa_tls_module_base_symbol)
{
xtensa_tls_module_base_symbol =
gen_rtx_SYMBOL_REF (Pmode, "_TLS_MODULE_BASE_");
SYMBOL_REF_FLAGS (xtensa_tls_module_base_symbol)
|= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT;
}
return xtensa_tls_module_base_symbol;
}
static rtx
xtensa_call_tls_desc (rtx sym, rtx *retp)
{
rtx fn, arg, a10, call_insn, insns;
start_sequence ();
fn = gen_reg_rtx (Pmode);
arg = gen_reg_rtx (Pmode);
a10 = gen_rtx_REG (Pmode, 10);
emit_insn (gen_tls_func (fn, sym));
emit_insn (gen_tls_arg (arg, sym));
emit_move_insn (a10, arg);
call_insn = emit_call_insn (gen_tls_call (a10, fn, sym, const1_rtx));
CALL_INSN_FUNCTION_USAGE (call_insn)
= gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_USE (VOIDmode, a10),
CALL_INSN_FUNCTION_USAGE (call_insn));
insns = get_insns ();
end_sequence ();
*retp = a10;
return insns;
}
static rtx
xtensa_legitimize_tls_address (rtx x)
{
unsigned int model = SYMBOL_REF_TLS_MODEL (x);
rtx dest, tp, ret, modbase, base, addend, insns;
dest = gen_reg_rtx (Pmode);
switch (model)
{
case TLS_MODEL_GLOBAL_DYNAMIC:
insns = xtensa_call_tls_desc (x, &ret);
emit_libcall_block (insns, dest, ret, x);
break;
case TLS_MODEL_LOCAL_DYNAMIC:
base = gen_reg_rtx (Pmode);
modbase = xtensa_tls_module_base ();
insns = xtensa_call_tls_desc (modbase, &ret);
emit_libcall_block (insns, base, ret, modbase);
addend = force_reg (SImode, gen_sym_DTPOFF (x));
emit_insn (gen_addsi3 (dest, base, addend));
break;
case TLS_MODEL_INITIAL_EXEC:
case TLS_MODEL_LOCAL_EXEC:
tp = gen_reg_rtx (SImode);
emit_insn (gen_load_tp (tp));
addend = force_reg (SImode, gen_sym_TPOFF (x));
emit_insn (gen_addsi3 (dest, tp, addend));
break;
default:
gcc_unreachable ();
}
return dest;
}
rtx
xtensa_legitimize_address (rtx x,
rtx oldx ATTRIBUTE_UNUSED,
enum machine_mode mode)
{
if (xtensa_tls_symbol_p (x))
return xtensa_legitimize_tls_address (x);
if (GET_CODE (x) == PLUS)
{
rtx plus0 = XEXP (x, 0);
rtx plus1 = XEXP (x, 1);
if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
{
plus0 = XEXP (x, 1);
plus1 = XEXP (x, 0);
}
/* Try to split up the offset to use an ADDMI instruction. */
if (GET_CODE (plus0) == REG
&& GET_CODE (plus1) == CONST_INT
&& !xtensa_mem_offset (INTVAL (plus1), mode)
&& !xtensa_simm8 (INTVAL (plus1))
&& xtensa_mem_offset (INTVAL (plus1) & 0xff, mode)
&& xtensa_simm8x256 (INTVAL (plus1) & ~0xff))
{
rtx temp = gen_reg_rtx (Pmode);
rtx addmi_offset = GEN_INT (INTVAL (plus1) & ~0xff);
emit_insn (gen_rtx_SET (Pmode, temp,
gen_rtx_PLUS (Pmode, plus0, addmi_offset)));
return gen_rtx_PLUS (Pmode, temp, GEN_INT (INTVAL (plus1) & 0xff));
}
}
return x;
}
/* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P.
Treat constant-pool references as "mode dependent" since they can
only be accessed with SImode loads. This works around a bug in the
combiner where a constant pool reference is temporarily converted
to an HImode load, which is then assumed to zero-extend based on
our definition of LOAD_EXTEND_OP. This is wrong because the high
bits of a 16-bit value in the constant pool are now sign-extended
by default. */
static bool
xtensa_mode_dependent_address_p (const_rtx addr)
{
return constantpool_address_p (addr);
}
/* Helper for xtensa_tls_referenced_p. */
static int
xtensa_tls_referenced_p_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
{
if (GET_CODE (*x) == SYMBOL_REF)
return SYMBOL_REF_TLS_MODEL (*x) != 0;
/* Ignore TLS references that have already been legitimized. */
if (GET_CODE (*x) == UNSPEC)
{
switch (XINT (*x, 1))
{
case UNSPEC_TPOFF:
case UNSPEC_DTPOFF:
case UNSPEC_TLS_FUNC:
case UNSPEC_TLS_ARG:
case UNSPEC_TLS_CALL:
return -1;
default:
break;
}
}
return 0;
}
/* Return TRUE if X contains any TLS symbol references. */
bool
xtensa_tls_referenced_p (rtx x)
{
if (! TARGET_HAVE_TLS)
return false;
return for_each_rtx (&x, xtensa_tls_referenced_p_1, NULL);
}
/* Return the debugger register number to use for 'regno'. */
int
xtensa_dbx_register_number (int regno)
{
int first = -1;
if (GP_REG_P (regno))
{
regno -= GP_REG_FIRST;
first = 0;
}
else if (BR_REG_P (regno))
{
regno -= BR_REG_FIRST;
first = 16;
}
else if (FP_REG_P (regno))
{
regno -= FP_REG_FIRST;
first = 48;
}
else if (ACC_REG_P (regno))
{
first = 0x200; /* Start of Xtensa special registers. */
regno = 16; /* ACCLO is special register 16. */
}
/* When optimizing, we sometimes get asked about pseudo-registers
that don't represent hard registers. Return 0 for these. */
if (first == -1)
return 0;
return first + regno;
}
/* Argument support functions. */
/* Initialize CUMULATIVE_ARGS for a function. */
void
init_cumulative_args (CUMULATIVE_ARGS *cum, int incoming)
{
cum->arg_words = 0;
cum->incoming = incoming;
}
/* Advance the argument to the next argument position. */
static void
xtensa_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
const_tree type, bool named ATTRIBUTE_UNUSED)
{
int words, max;
int *arg_words;
arg_words = &cum->arg_words;
max = MAX_ARGS_IN_REGISTERS;
words = (((mode != BLKmode)
? (int) GET_MODE_SIZE (mode)
: int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (*arg_words < max
&& (targetm.calls.must_pass_in_stack (mode, type)
|| *arg_words + words > max))
*arg_words = max;
*arg_words += words;
}
/* Return an RTL expression containing the register for the given mode,
or 0 if the argument is to be passed on the stack. INCOMING_P is nonzero
if this is an incoming argument to the current function. */
static rtx
xtensa_function_arg_1 (CUMULATIVE_ARGS *cum, enum machine_mode mode,
const_tree type, bool incoming_p)
{
int regbase, words, max;
int *arg_words;
int regno;
arg_words = &cum->arg_words;
regbase = (incoming_p ? GP_ARG_FIRST : GP_OUTGOING_ARG_FIRST);
max = MAX_ARGS_IN_REGISTERS;
words = (((mode != BLKmode)
? (int) GET_MODE_SIZE (mode)
: int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (type && (TYPE_ALIGN (type) > BITS_PER_WORD))
{
int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_WORD;
*arg_words = (*arg_words + align - 1) & -align;
}
if (*arg_words + words > max)
return (rtx)0;
regno = regbase + *arg_words;
if (cum->incoming && regno <= A7_REG && regno + words > A7_REG)
cfun->machine->need_a7_copy = true;
return gen_rtx_REG (mode, regno);
}
/* Implement TARGET_FUNCTION_ARG. */
static rtx
xtensa_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
const_tree type, bool named ATTRIBUTE_UNUSED)
{
return xtensa_function_arg_1 (cum, mode, type, false);
}
/* Implement TARGET_FUNCTION_INCOMING_ARG. */
static rtx
xtensa_function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
const_tree type, bool named ATTRIBUTE_UNUSED)
{
return xtensa_function_arg_1 (cum, mode, type, true);
}
static unsigned int
xtensa_function_arg_boundary (enum machine_mode mode, const_tree type)
{
unsigned int alignment;
alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
if (alignment < PARM_BOUNDARY)
alignment = PARM_BOUNDARY;
if (alignment > STACK_BOUNDARY)
alignment = STACK_BOUNDARY;
return alignment;
}
static bool
xtensa_return_in_msb (const_tree valtype)
{
return (TARGET_BIG_ENDIAN
&& AGGREGATE_TYPE_P (valtype)
&& int_size_in_bytes (valtype) >= UNITS_PER_WORD);
}
static void
xtensa_option_override (void)
{
int regno;
enum machine_mode mode;
if (!TARGET_BOOLEANS && TARGET_HARD_FLOAT)
error ("boolean registers required for the floating-point option");
/* Set up array giving whether a given register can hold a given mode. */
for (mode = VOIDmode;
mode != MAX_MACHINE_MODE;
mode = (enum machine_mode) ((int) mode + 1))
{
int size = GET_MODE_SIZE (mode);
enum mode_class mclass = GET_MODE_CLASS (mode);
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
int temp;
if (ACC_REG_P (regno))
temp = (TARGET_MAC16
&& (mclass == MODE_INT) && (size <= UNITS_PER_WORD));
else if (GP_REG_P (regno))
temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
else if (FP_REG_P (regno))
temp = (TARGET_HARD_FLOAT && (mode == SFmode));
else if (BR_REG_P (regno))
temp = (TARGET_BOOLEANS && (mode == CCmode));
else
temp = FALSE;
xtensa_hard_regno_mode_ok[(int) mode][regno] = temp;
}
}
init_machine_status = xtensa_init_machine_status;
/* Check PIC settings. PIC is only supported when using L32R
instructions, and some targets need to always use PIC. */
if (flag_pic && TARGET_CONST16)
error ("-f%s is not supported with CONST16 instructions",
(flag_pic > 1 ? "PIC" : "pic"));
else if (TARGET_FORCE_NO_PIC)
flag_pic = 0;
else if (XTENSA_ALWAYS_PIC)
{
if (TARGET_CONST16)
error ("PIC is required but not supported with CONST16 instructions");
flag_pic = 1;
}
/* There's no need for -fPIC (as opposed to -fpic) on Xtensa. */
if (flag_pic > 1)
flag_pic = 1;
if (flag_pic && !flag_pie)
flag_shlib = 1;
/* Hot/cold partitioning does not work on this architecture, because of
constant pools (the load instruction cannot necessarily reach that far).
Therefore disable it on this architecture. */
if (flag_reorder_blocks_and_partition)
{
flag_reorder_blocks_and_partition = 0;
flag_reorder_blocks = 1;
}
}
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand X. X is an RTL
expression.
CODE is a value that can be used to specify one of several ways
of printing the operand. It is used when identical operands
must be printed differently depending on the context. CODE
comes from the '%' specification that was used to request
printing of the operand. If the specification was just '%DIGIT'
then CODE is 0; if the specification was '%LTR DIGIT' then CODE
is the ASCII code for LTR.
If X is a register, this macro should print the register's name.
The names can be found in an array 'reg_names' whose type is
'char *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'.
When the machine description has a specification '%PUNCT' (a '%'
followed by a punctuation character), this macro is called with
a null pointer for X and the punctuation character for CODE.
'a', 'c', 'l', and 'n' are reserved.
The Xtensa specific codes are:
'd' CONST_INT, print as signed decimal
'x' CONST_INT, print as signed hexadecimal
'K' CONST_INT, print number of bits in mask for EXTUI
'R' CONST_INT, print (X & 0x1f)
'L' CONST_INT, print ((32 - X) & 0x1f)
'D' REG, print second register of double-word register operand
'N' MEM, print address of next word following a memory operand
'v' MEM, if memory reference is volatile, output a MEMW before it
't' any constant, add "@h" suffix for top 16 bits
'b' any constant, add "@l" suffix for bottom 16 bits
*/
static void
printx (FILE *file, signed int val)
{
/* Print a hexadecimal value in a nice way. */
if ((val > -0xa) && (val < 0xa))
fprintf (file, "%d", val);
else if (val < 0)
fprintf (file, "-0x%x", -val);
else
fprintf (file, "0x%x", val);
}
void
print_operand (FILE *file, rtx x, int letter)
{
if (!x)
error ("PRINT_OPERAND null pointer");
switch (letter)
{
case 'D':
if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
fprintf (file, "%s", reg_names[xt_true_regnum (x) + 1]);
else
output_operand_lossage ("invalid %%D value");
break;
case 'v':
if (GET_CODE (x) == MEM)
{
/* For a volatile memory reference, emit a MEMW before the
load or store. */
if (MEM_VOLATILE_P (x) && TARGET_SERIALIZE_VOLATILE)
fprintf (file, "memw\n\t");
}
else
output_operand_lossage ("invalid %%v value");
break;
case 'N':
if (GET_CODE (x) == MEM
&& (GET_MODE (x) == DFmode || GET_MODE (x) == DImode))
{
x = adjust_address (x, GET_MODE (x) == DFmode ? SFmode : SImode, 4);
output_address (XEXP (x, 0));
}
else
output_operand_lossage ("invalid %%N value");
break;
case 'K':
if (GET_CODE (x) == CONST_INT)
{
int num_bits = 0;
unsigned val = INTVAL (x);
while (val & 1)
{
num_bits += 1;
val = val >> 1;
}
if ((val != 0) || (num_bits == 0) || (num_bits > 16))
fatal_insn ("invalid mask", x);
fprintf (file, "%d", num_bits);
}
else
output_operand_lossage ("invalid %%K value");
break;
case 'L':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%ld", (32 - INTVAL (x)) & 0x1f);
else
output_operand_lossage ("invalid %%L value");
break;
case 'R':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%ld", INTVAL (x) & 0x1f);
else
output_operand_lossage ("invalid %%R value");
break;
case 'x':
if (GET_CODE (x) == CONST_INT)
printx (file, INTVAL (x));
else
output_operand_lossage ("invalid %%x value");
break;
case 'd':
if (GET_CODE (x) == CONST_INT)
fprintf (file, "%ld", INTVAL (x));
else
output_operand_lossage ("invalid %%d value");
break;
case 't':
case 'b':
if (GET_CODE (x) == CONST_INT)
{
printx (file, INTVAL (x));
fputs (letter == 't' ? "@h" : "@l", file);
}
else if (GET_CODE (x) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
if (GET_MODE (x) == SFmode)
{
long l;
REAL_VALUE_TO_TARGET_SINGLE (r, l);
fprintf (file, "0x%08lx@%c", l, letter == 't' ? 'h' : 'l');
}
else
output_operand_lossage ("invalid %%t/%%b value");
}
else if (GET_CODE (x) == CONST)
{
/* X must be a symbolic constant on ELF. Write an expression
suitable for 'const16' that sets the high or low 16 bits. */
if (GET_CODE (XEXP (x, 0)) != PLUS
|| (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
|| GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
output_operand_lossage ("invalid %%t/%%b value");
print_operand (file, XEXP (XEXP (x, 0), 0), 0);
fputs (letter == 't' ? "@h" : "@l", file);
/* There must be a non-alphanumeric character between 'h' or 'l'
and the number. The '-' is added by print_operand() already. */
if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
fputs ("+", file);
print_operand (file, XEXP (XEXP (x, 0), 1), 0);
}
else
{
output_addr_const (file, x);
fputs (letter == 't' ? "@h" : "@l", file);
}
break;
default:
if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
fprintf (file, "%s", reg_names[xt_true_regnum (x)]);
else if (GET_CODE (x) == MEM)
output_address (XEXP (x, 0));
else if (GET_CODE (x) == CONST_INT)
fprintf (file, "%ld", INTVAL (x));
else
output_addr_const (file, x);
}
}
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. ADDR is an RTL expression. */
void
print_operand_address (FILE *file, rtx addr)
{
if (!addr)
error ("PRINT_OPERAND_ADDRESS, null pointer");
switch (GET_CODE (addr))
{
default:
fatal_insn ("invalid address", addr);
break;
case REG:
fprintf (file, "%s, 0", reg_names [REGNO (addr)]);
break;
case PLUS:
{
rtx reg = (rtx)0;
rtx offset = (rtx)0;
rtx arg0 = XEXP (addr, 0);
rtx arg1 = XEXP (addr, 1);
if (GET_CODE (arg0) == REG)
{
reg = arg0;
offset = arg1;
}
else if (GET_CODE (arg1) == REG)
{
reg = arg1;
offset = arg0;
}
else
fatal_insn ("no register in address", addr);
if (CONSTANT_P (offset))
{
fprintf (file, "%s, ", reg_names [REGNO (reg)]);
output_addr_const (file, offset);
}
else
fatal_insn ("address offset not a constant", addr);
}
break;
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
output_addr_const (file, addr);
break;
}
}
/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
static bool
xtensa_output_addr_const_extra (FILE *fp, rtx x)
{
if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 1)
{
switch (XINT (x, 1))
{
case UNSPEC_TPOFF:
output_addr_const (fp, XVECEXP (x, 0, 0));
fputs ("@TPOFF", fp);
return true;
case UNSPEC_DTPOFF:
output_addr_const (fp, XVECEXP (x, 0, 0));
fputs ("@DTPOFF", fp);
return true;
case UNSPEC_PLT:
if (flag_pic)
{
output_addr_const (fp, XVECEXP (x, 0, 0));
fputs ("@PLT", fp);
return true;
}
break;
default:
break;
}
}
return false;
}
void
xtensa_output_literal (FILE *file, rtx x, enum machine_mode mode, int labelno)
{
long value_long[2];
REAL_VALUE_TYPE r;
int size;
rtx first, second;
fprintf (file, "\t.literal .LC%u, ", (unsigned) labelno);
switch (GET_MODE_CLASS (mode))
{
case MODE_FLOAT:
gcc_assert (GET_CODE (x) == CONST_DOUBLE);
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
switch (mode)
{
case SFmode:
REAL_VALUE_TO_TARGET_SINGLE (r, value_long[0]);
if (HOST_BITS_PER_LONG > 32)
value_long[0] &= 0xffffffff;
fprintf (file, "0x%08lx\n", value_long[0]);
break;
case DFmode:
REAL_VALUE_TO_TARGET_DOUBLE (r, value_long);
if (HOST_BITS_PER_LONG > 32)
{
value_long[0] &= 0xffffffff;
value_long[1] &= 0xffffffff;
}
fprintf (file, "0x%08lx, 0x%08lx\n",
value_long[0], value_long[1]);
break;
default:
gcc_unreachable ();
}
break;
case MODE_INT:
case MODE_PARTIAL_INT:
size = GET_MODE_SIZE (mode);
switch (size)
{
case 4:
output_addr_const (file, x);
fputs ("\n", file);
break;
case 8:
split_double (x, &first, &second);
output_addr_const (file, first);
fputs (", ", file);
output_addr_const (file, second);
fputs ("\n", file);
break;
default:
gcc_unreachable ();
}
break;
default:
gcc_unreachable ();
}
}
/* Return the bytes needed to compute the frame pointer from the current
stack pointer. */
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
#define XTENSA_STACK_ALIGN(LOC) (((LOC) + STACK_BYTES-1) & ~(STACK_BYTES-1))
long
compute_frame_size (int size)
{
/* Add space for the incoming static chain value. */
if (cfun->static_chain_decl != NULL)
size += (1 * UNITS_PER_WORD);
xtensa_current_frame_size =
XTENSA_STACK_ALIGN (size
+ crtl->outgoing_args_size
+ (WINDOW_SIZE * UNITS_PER_WORD));
return xtensa_current_frame_size;
}
bool
xtensa_frame_pointer_required (void)
{
/* The code to expand builtin_frame_addr and builtin_return_addr
currently uses the hard_frame_pointer instead of frame_pointer.
This seems wrong but maybe it's necessary for other architectures.
This function is derived from the i386 code. */
if (cfun->machine->accesses_prev_frame)
return true;
return false;
}
/* minimum frame = reg save area (4 words) plus static chain (1 word)
and the total number of words must be a multiple of 128 bits. */
#define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
void
xtensa_expand_prologue (void)
{
HOST_WIDE_INT total_size;
rtx size_rtx;
rtx insn, note_rtx;
total_size = compute_frame_size (get_frame_size ());
size_rtx = GEN_INT (total_size);
if (total_size < (1 << (12+3)))
insn = emit_insn (gen_entry (size_rtx));
else
{
/* Use a8 as a temporary since a0-a7 may be live. */
rtx tmp_reg = gen_rtx_REG (Pmode, A8_REG);
emit_insn (gen_entry (GEN_INT (MIN_FRAME_SIZE)));
emit_move_insn (tmp_reg, GEN_INT (total_size - MIN_FRAME_SIZE));
emit_insn (gen_subsi3 (tmp_reg, stack_pointer_rtx, tmp_reg));
insn = emit_insn (gen_movsi (stack_pointer_rtx, tmp_reg));
}
if (frame_pointer_needed)
{
if (cfun->machine->set_frame_ptr_insn)
{
rtx first;
push_topmost_sequence ();
first = get_insns ();
pop_topmost_sequence ();
/* For all instructions prior to set_frame_ptr_insn, replace
hard_frame_pointer references with stack_pointer. */
for (insn = first;
insn != cfun->machine->set_frame_ptr_insn;
insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
PATTERN (insn) = replace_rtx (copy_rtx (PATTERN (insn)),
hard_frame_pointer_rtx,
stack_pointer_rtx);
df_insn_rescan (insn);
}
}
}
else
insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
stack_pointer_rtx));
}
/* Create a note to describe the CFA. Because this is only used to set
DW_AT_frame_base for debug info, don't bother tracking changes through
each instruction in the prologue. It just takes up space. */
note_rtx = gen_rtx_SET (VOIDmode, (frame_pointer_needed
? hard_frame_pointer_rtx
: stack_pointer_rtx),
plus_constant (stack_pointer_rtx, -total_size));
RTX_FRAME_RELATED_P (insn) = 1;
add_reg_note (insn, REG_FRAME_RELATED_EXPR, note_rtx);
}
/* Clear variables at function end. */
void
xtensa_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
xtensa_current_frame_size = 0;
}
rtx
xtensa_return_addr (int count, rtx frame)
{
rtx result, retaddr, curaddr, label;
if (count == -1)
retaddr = gen_rtx_REG (Pmode, A0_REG);
else
{
rtx addr = plus_constant (frame, -4 * UNITS_PER_WORD);
addr = memory_address (Pmode, addr);
retaddr = gen_reg_rtx (Pmode);
emit_move_insn (retaddr, gen_rtx_MEM (Pmode, addr));
}
/* The 2 most-significant bits of the return address on Xtensa hold
the register window size. To get the real return address, these
bits must be replaced with the high bits from some address in the
code. */
/* Get the 2 high bits of a local label in the code. */
curaddr = gen_reg_rtx (Pmode);
label = gen_label_rtx ();
emit_label (label);
LABEL_PRESERVE_P (label) = 1;
emit_move_insn (curaddr, gen_rtx_LABEL_REF (Pmode, label));
emit_insn (gen_lshrsi3 (curaddr, curaddr, GEN_INT (30)));
emit_insn (gen_ashlsi3 (curaddr, curaddr, GEN_INT (30)));
/* Clear the 2 high bits of the return address. */
result = gen_reg_rtx (Pmode);
emit_insn (gen_ashlsi3 (result, retaddr, GEN_INT (2)));
emit_insn (gen_lshrsi3 (result, result, GEN_INT (2)));
/* Combine them to get the result. */
emit_insn (gen_iorsi3 (result, result, curaddr));
return result;
}
/* Create the va_list data type.
This structure is set up by __builtin_saveregs. The __va_reg field
points to a stack-allocated region holding the contents of the
incoming argument registers. The __va_ndx field is an index
initialized to the position of the first unnamed (variable)
argument. This same index is also used to address the arguments
passed in memory. Thus, the __va_stk field is initialized to point
to the position of the first argument in memory offset to account
for the arguments passed in registers and to account for the size
of the argument registers not being 16-byte aligned. E.G., there
are 6 argument registers of 4 bytes each, but we want the __va_ndx
for the first stack argument to have the maximal alignment of 16
bytes, so we offset the __va_stk address by 32 bytes so that
__va_stk[32] references the first argument on the stack. */
static tree
xtensa_build_builtin_va_list (void)
{
tree f_stk, f_reg, f_ndx, record, type_decl;
record = (*lang_hooks.types.make_type) (RECORD_TYPE);
type_decl = build_decl (BUILTINS_LOCATION,
TYPE_DECL, get_identifier ("__va_list_tag"), record);
f_stk = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__va_stk"),
ptr_type_node);
f_reg = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__va_reg"),
ptr_type_node);
f_ndx = build_decl (BUILTINS_LOCATION,
FIELD_DECL, get_identifier ("__va_ndx"),
integer_type_node);
DECL_FIELD_CONTEXT (f_stk) = record;
DECL_FIELD_CONTEXT (f_reg) = record;
DECL_FIELD_CONTEXT (f_ndx) = record;
TYPE_STUB_DECL (record) = type_decl;
TYPE_NAME (record) = type_decl;
TYPE_FIELDS (record) = f_stk;
DECL_CHAIN (f_stk) = f_reg;
DECL_CHAIN (f_reg) = f_ndx;
layout_type (record);
return record;
}
/* Save the incoming argument registers on the stack. Returns the
address of the saved registers. */
static rtx
xtensa_builtin_saveregs (void)
{
rtx gp_regs;
int arg_words = crtl->args.info.arg_words;
int gp_left = MAX_ARGS_IN_REGISTERS - arg_words;
if (gp_left <= 0)
return const0_rtx;
/* Allocate the general-purpose register space. */
gp_regs = assign_stack_local
(BLKmode, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1);
set_mem_alias_set (gp_regs, get_varargs_alias_set ());
/* Now store the incoming registers. */
cfun->machine->need_a7_copy = true;
cfun->machine->vararg_a7 = true;
move_block_from_reg (GP_ARG_FIRST + arg_words,
adjust_address (gp_regs, BLKmode,
arg_words * UNITS_PER_WORD),
gp_left);
gcc_assert (cfun->machine->vararg_a7_copy != 0);
emit_insn_before (cfun->machine->vararg_a7_copy, get_insns ());
return XEXP (gp_regs, 0);
}
/* Implement `va_start' for varargs and stdarg. We look at the
current function to fill in an initial va_list. */
static void
xtensa_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
{
tree f_stk, stk;
tree f_reg, reg;
tree f_ndx, ndx;
tree t, u;
int arg_words;
arg_words = crtl->args.info.arg_words;
f_stk = TYPE_FIELDS (va_list_type_node);
f_reg = DECL_CHAIN (f_stk);
f_ndx = DECL_CHAIN (f_reg);
stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
f_reg, NULL_TREE);
ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
f_ndx, NULL_TREE);
/* Call __builtin_saveregs; save the result in __va_reg */
u = make_tree (sizetype, expand_builtin_saveregs ());
u = fold_convert (ptr_type_node, u);
t = build2 (MODIFY_EXPR, ptr_type_node, reg, u);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Set the __va_stk member to ($arg_ptr - 32). */
u = make_tree (ptr_type_node, virtual_incoming_args_rtx);
u = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, u, size_int (-32));
t = build2 (MODIFY_EXPR, ptr_type_node, stk, u);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Set the __va_ndx member. If the first variable argument is on
the stack, adjust __va_ndx by 2 words to account for the extra
alignment offset for __va_stk. */
if (arg_words >= MAX_ARGS_IN_REGISTERS)
arg_words += 2;
t = build2 (MODIFY_EXPR, integer_type_node, ndx,
build_int_cst (integer_type_node, arg_words * UNITS_PER_WORD));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Implement `va_arg'. */
static tree
xtensa_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
gimple_seq *post_p ATTRIBUTE_UNUSED)
{
tree f_stk, stk;
tree f_reg, reg;
tree f_ndx, ndx;
tree type_size, array, orig_ndx, addr, size, va_size, t;
tree lab_false, lab_over, lab_false2;
bool indirect;
indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
if (indirect)
type = build_pointer_type (type);
/* Handle complex values as separate real and imaginary parts. */
if (TREE_CODE (type) == COMPLEX_TYPE)
{
tree real_part, imag_part;
real_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
pre_p, NULL);
real_part = get_initialized_tmp_var (real_part, pre_p, NULL);
imag_part = xtensa_gimplify_va_arg_expr (unshare_expr (valist),
TREE_TYPE (type),
pre_p, NULL);
imag_part = get_initialized_tmp_var (imag_part, pre_p, NULL);
return build2 (COMPLEX_EXPR, type, real_part, imag_part);
}
f_stk = TYPE_FIELDS (va_list_type_node);
f_reg = DECL_CHAIN (f_stk);
f_ndx = DECL_CHAIN (f_reg);
stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist,
f_stk, NULL_TREE);
reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
f_reg, NULL_TREE);
ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
f_ndx, NULL_TREE);
type_size = size_in_bytes (type);
va_size = round_up (type_size, UNITS_PER_WORD);
gimplify_expr (&va_size, pre_p, NULL, is_gimple_val, fb_rvalue);
/* First align __va_ndx if necessary for this arg:
orig_ndx = (AP).__va_ndx;
if (__alignof__ (TYPE) > 4 )
orig_ndx = ((orig_ndx + __alignof__ (TYPE) - 1)
& -__alignof__ (TYPE)); */
orig_ndx = get_initialized_tmp_var (ndx, pre_p, NULL);
if (TYPE_ALIGN (type) > BITS_PER_WORD)
{
int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_UNIT;
t = build2 (PLUS_EXPR, integer_type_node, unshare_expr (orig_ndx),
build_int_cst (integer_type_node, align - 1));
t = build2 (BIT_AND_EXPR, integer_type_node, t,
build_int_cst (integer_type_node, -align));
gimplify_assign (unshare_expr (orig_ndx), t, pre_p);
}
/* Increment __va_ndx to point past the argument:
(AP).__va_ndx = orig_ndx + __va_size (TYPE); */
t = fold_convert (integer_type_node, va_size);
t = build2 (PLUS_EXPR, integer_type_node, orig_ndx, t);
gimplify_assign (unshare_expr (ndx), t, pre_p);
/* Check if the argument is in registers:
if ((AP).__va_ndx <= __MAX_ARGS_IN_REGISTERS * 4
&& !must_pass_in_stack (type))
__array = (AP).__va_reg; */
array = create_tmp_var (ptr_type_node, NULL);
lab_over = NULL;
if (!targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
{
lab_false = create_artificial_label (UNKNOWN_LOCATION);
lab_over = create_artificial_label (UNKNOWN_LOCATION);
t = build2 (GT_EXPR, boolean_type_node, unshare_expr (ndx),
build_int_cst (integer_type_node,
MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
t = build3 (COND_EXPR, void_type_node, t,
build1 (GOTO_EXPR, void_type_node, lab_false),
NULL_TREE);
gimplify_and_add (t, pre_p);
gimplify_assign (unshare_expr (array), reg, pre_p);
t = build1 (GOTO_EXPR, void_type_node, lab_over);
gimplify_and_add (t, pre_p);
t = build1 (LABEL_EXPR, void_type_node, lab_false);
gimplify_and_add (t, pre_p);
}
/* ...otherwise, the argument is on the stack (never split between
registers and the stack -- change __va_ndx if necessary):
else
{
if (orig_ndx <= __MAX_ARGS_IN_REGISTERS * 4)
(AP).__va_ndx = 32 + __va_size (TYPE);
__array = (AP).__va_stk;
} */
lab_false2 = create_artificial_label (UNKNOWN_LOCATION);
t = build2 (GT_EXPR, boolean_type_node, unshare_expr (orig_ndx),
build_int_cst (integer_type_node,
MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
t = build3 (COND_EXPR, void_type_node, t,
build1 (GOTO_EXPR, void_type_node, lab_false2),
NULL_TREE);
gimplify_and_add (t, pre_p);
t = size_binop (PLUS_EXPR, unshare_expr (va_size), size_int (32));
t = fold_convert (integer_type_node, t);
gimplify_assign (unshare_expr (ndx), t, pre_p);
t = build1 (LABEL_EXPR, void_type_node, lab_false2);
gimplify_and_add (t, pre_p);
gimplify_assign (array, stk, pre_p);
if (lab_over)
{
t = build1 (LABEL_EXPR, void_type_node, lab_over);
gimplify_and_add (t, pre_p);
}
/* Given the base array pointer (__array) and index to the subsequent
argument (__va_ndx), find the address:
__array + (AP).__va_ndx - (BYTES_BIG_ENDIAN && sizeof (TYPE) < 4
? sizeof (TYPE)
: __va_size (TYPE))
The results are endian-dependent because values smaller than one word
are aligned differently. */
if (BYTES_BIG_ENDIAN && TREE_CODE (type_size) == INTEGER_CST)
{
t = fold_build2 (GE_EXPR, boolean_type_node, unshare_expr (type_size),
size_int (PARM_BOUNDARY / BITS_PER_UNIT));
t = fold_build3 (COND_EXPR, sizetype, t, unshare_expr (va_size),
unshare_expr (type_size));
size = t;
}
else
size = unshare_expr (va_size);
t = fold_convert (sizetype, unshare_expr (ndx));
t = build2 (MINUS_EXPR, sizetype, t, size);
addr = build2 (POINTER_PLUS_EXPR, ptr_type_node, unshare_expr (array), t);
addr = fold_convert (build_pointer_type (type), addr);
if (indirect)
addr = build_va_arg_indirect_ref (addr);
return build_va_arg_indirect_ref (addr);
}
/* Builtins. */
enum xtensa_builtin
{
XTENSA_BUILTIN_UMULSIDI3,
XTENSA_BUILTIN_THREAD_POINTER,
XTENSA_BUILTIN_SET_THREAD_POINTER,
XTENSA_BUILTIN_max
};
static void
xtensa_init_builtins (void)
{
tree ftype, decl;
ftype = build_function_type_list (unsigned_intDI_type_node,
unsigned_intSI_type_node,
unsigned_intSI_type_node, NULL_TREE);
decl = add_builtin_function ("__builtin_umulsidi3", ftype,
XTENSA_BUILTIN_UMULSIDI3, BUILT_IN_MD,
"__umulsidi3", NULL_TREE);
TREE_NOTHROW (decl) = 1;
TREE_READONLY (decl) = 1;
if (TARGET_THREADPTR)
{
ftype = build_function_type (ptr_type_node, void_list_node);
decl = add_builtin_function ("__builtin_thread_pointer", ftype,
XTENSA_BUILTIN_THREAD_POINTER, BUILT_IN_MD,
NULL, NULL_TREE);
TREE_READONLY (decl) = 1;
TREE_NOTHROW (decl) = 1;
ftype = build_function_type_list (void_type_node, ptr_type_node,
NULL_TREE);
decl = add_builtin_function ("__builtin_set_thread_pointer", ftype,
XTENSA_BUILTIN_SET_THREAD_POINTER,
BUILT_IN_MD, NULL, NULL_TREE);
TREE_NOTHROW (decl) = 1;
}
}
static tree
xtensa_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED, tree *args,
bool ignore ATTRIBUTE_UNUSED)
{
unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
tree arg0, arg1;
switch (fcode)
{
case XTENSA_BUILTIN_UMULSIDI3:
arg0 = args[0];
arg1 = args[1];
if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
|| TARGET_MUL32_HIGH)
return fold_build2 (MULT_EXPR, unsigned_intDI_type_node,
fold_convert (unsigned_intDI_type_node, arg0),
fold_convert (unsigned_intDI_type_node, arg1));
break;
case XTENSA_BUILTIN_THREAD_POINTER:
case XTENSA_BUILTIN_SET_THREAD_POINTER:
break;
default:
internal_error ("bad builtin code");
break;
}
return NULL;
}
static rtx
xtensa_expand_builtin (tree exp, rtx target,
rtx subtarget ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
int ignore)
{
tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
rtx arg;
switch (fcode)
{
case XTENSA_BUILTIN_UMULSIDI3:
/* The umulsidi3 builtin is just a mechanism to avoid calling the real
__umulsidi3 function when the Xtensa configuration can directly
implement it. If not, just call the function. */
return expand_call (exp, target, ignore);
case XTENSA_BUILTIN_THREAD_POINTER:
if (!target || !register_operand (target, Pmode))
target = gen_reg_rtx (Pmode);
emit_insn (gen_load_tp (target));
return target;
case XTENSA_BUILTIN_SET_THREAD_POINTER:
arg = expand_normal (CALL_EXPR_ARG (exp, 0));
if (!register_operand (arg, Pmode))
arg = copy_to_mode_reg (Pmode, arg);
emit_insn (gen_set_tp (arg));
return const0_rtx;
default:
internal_error ("bad builtin code");
}
return NULL_RTX;
}
/* Worker function for TARGET_PREFERRED_RELOAD_CLASS. */
static reg_class_t
xtensa_preferred_reload_class (rtx x, reg_class_t rclass)
{
if (CONSTANT_P (x) && CONST_DOUBLE_P (x))
return NO_REGS;
/* Don't use the stack pointer or hard frame pointer for reloads!
The hard frame pointer would normally be OK except that it may
briefly hold an incoming argument in the prologue, and reload
won't know that it is live because the hard frame pointer is
treated specially. */
if (rclass == AR_REGS || rclass == GR_REGS)
return RL_REGS;
return rclass;
}
/* Worker function for TARGET_PREFERRED_OUTPUT_RELOAD_CLASS. */
static reg_class_t
xtensa_preferred_output_reload_class (rtx x ATTRIBUTE_UNUSED,
reg_class_t rclass)
{
/* Don't use the stack pointer or hard frame pointer for reloads!
The hard frame pointer would normally be OK except that it may
briefly hold an incoming argument in the prologue, and reload
won't know that it is live because the hard frame pointer is
treated specially. */
if (rclass == AR_REGS || rclass == GR_REGS)
return RL_REGS;
return rclass;
}
/* Worker function for TARGET_SECONDARY_RELOAD. */
static reg_class_t
xtensa_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
enum machine_mode mode, secondary_reload_info *sri)
{
int regno;
if (in_p && constantpool_mem_p (x))
{
if (rclass == FP_REGS)
return RL_REGS;
if (mode == QImode)
sri->icode = CODE_FOR_reloadqi_literal;
else if (mode == HImode)
sri->icode = CODE_FOR_reloadhi_literal;
}
regno = xt_true_regnum (x);
if (ACC_REG_P (regno))
return ((rclass == GR_REGS || rclass == RL_REGS) ? NO_REGS : RL_REGS);
if (rclass == ACC_REG)
return (GP_REG_P (regno) ? NO_REGS : RL_REGS);
return NO_REGS;
}
void
order_regs_for_local_alloc (void)
{
if (!leaf_function_p ())
{
memcpy (reg_alloc_order, reg_nonleaf_alloc_order,
FIRST_PSEUDO_REGISTER * sizeof (int));
}
else
{
int i, num_arg_regs;
int nxt = 0;
/* Use the AR registers in increasing order (skipping a0 and a1)
but save the incoming argument registers for a last resort. */
num_arg_regs = crtl->args.info.arg_words;
if (num_arg_regs > MAX_ARGS_IN_REGISTERS)
num_arg_regs = MAX_ARGS_IN_REGISTERS;
for (i = GP_ARG_FIRST; i < 16 - num_arg_regs; i++)
reg_alloc_order[nxt++] = i + num_arg_regs;
for (i = 0; i < num_arg_regs; i++)
reg_alloc_order[nxt++] = GP_ARG_FIRST + i;
/* List the coprocessor registers in order. */
for (i = 0; i < BR_REG_NUM; i++)
reg_alloc_order[nxt++] = BR_REG_FIRST + i;
/* List the FP registers in order for now. */
for (i = 0; i < 16; i++)
reg_alloc_order[nxt++] = FP_REG_FIRST + i;
/* GCC requires that we list *all* the registers.... */
reg_alloc_order[nxt++] = 0; /* a0 = return address */
reg_alloc_order[nxt++] = 1; /* a1 = stack pointer */
reg_alloc_order[nxt++] = 16; /* pseudo frame pointer */
reg_alloc_order[nxt++] = 17; /* pseudo arg pointer */
reg_alloc_order[nxt++] = ACC_REG_FIRST; /* MAC16 accumulator */
}
}
/* Some Xtensa targets support multiple bss sections. If the section
name ends with ".bss", add SECTION_BSS to the flags. */
static unsigned int
xtensa_multibss_section_type_flags (tree decl, const char *name, int reloc)
{
unsigned int flags = default_section_type_flags (decl, name, reloc);
const char *suffix;
suffix = strrchr (name, '.');
if (suffix && strcmp (suffix, ".bss") == 0)
{
if (!decl || (TREE_CODE (decl) == VAR_DECL
&& DECL_INITIAL (decl) == NULL_TREE))
flags |= SECTION_BSS; /* @nobits */
else
warning (0, "only uninitialized variables can be placed in a "
".bss section");
}
return flags;
}
/* The literal pool stays with the function. */
static section *
xtensa_select_rtx_section (enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x ATTRIBUTE_UNUSED,
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
{
return function_section (current_function_decl);
}
/* Worker function for TARGET_REGISTER_MOVE_COST. */
static int
xtensa_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t from, reg_class_t to)
{
if (from == to && from != BR_REGS && to != BR_REGS)
return 2;
else if (reg_class_subset_p (from, AR_REGS)
&& reg_class_subset_p (to, AR_REGS))
return 2;
else if (reg_class_subset_p (from, AR_REGS) && to == ACC_REG)
return 3;
else if (from == ACC_REG && reg_class_subset_p (to, AR_REGS))
return 3;
else
return 10;
}
/* Worker function for TARGET_MEMORY_MOVE_COST. */
static int
xtensa_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t rclass ATTRIBUTE_UNUSED,
bool in ATTRIBUTE_UNUSED)
{
return 4;
}
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
static bool
xtensa_rtx_costs (rtx x, int code, int outer_code, int *total,
bool speed ATTRIBUTE_UNUSED)
{
switch (code)
{
case CONST_INT:
switch (outer_code)
{
case SET:
if (xtensa_simm12b (INTVAL (x)))
{
*total = 4;
return true;
}
break;
case PLUS:
if (xtensa_simm8 (INTVAL (x))
|| xtensa_simm8x256 (INTVAL (x)))
{
*total = 0;
return true;
}
break;
case AND:
if (xtensa_mask_immediate (INTVAL (x)))
{
*total = 0;
return true;
}
break;
case COMPARE:
if ((INTVAL (x) == 0) || xtensa_b4const (INTVAL (x)))
{
*total = 0;
return true;
}
break;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
case ROTATE:
case ROTATERT:
/* No way to tell if X is the 2nd operand so be conservative. */
default: break;
}
if (xtensa_simm12b (INTVAL (x)))
*total = 5;
else if (TARGET_CONST16)
*total = COSTS_N_INSNS (2);
else
*total = 6;
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
if (TARGET_CONST16)
*total = COSTS_N_INSNS (2);
else
*total = 5;
return true;
case CONST_DOUBLE:
if (TARGET_CONST16)
*total = COSTS_N_INSNS (4);
else
*total = 7;
return true;
case MEM:
{
int num_words =
(GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ? 2 : 1;
if (memory_address_p (GET_MODE (x), XEXP ((x), 0)))
*total = COSTS_N_INSNS (num_words);
else
*total = COSTS_N_INSNS (2*num_words);
return true;
}
case FFS:
case CTZ:
*total = COSTS_N_INSNS (TARGET_NSA ? 5 : 50);
return true;
case CLZ:
*total = COSTS_N_INSNS (TARGET_NSA ? 1 : 50);
return true;
case NOT:
*total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 3 : 2);
return true;
case AND:
case IOR:
case XOR:
if (GET_MODE (x) == DImode)
*total = COSTS_N_INSNS (2);
else
*total = COSTS_N_INSNS (1);
return true;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
if (GET_MODE (x) == DImode)
*total = COSTS_N_INSNS (50);
else
*total = COSTS_N_INSNS (1);
return true;
case ABS:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == SFmode)
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
else if (xmode == DFmode)
*total = COSTS_N_INSNS (50);
else
*total = COSTS_N_INSNS (4);
return true;
}
case PLUS:
case MINUS:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == SFmode)
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
else if (xmode == DFmode || xmode == DImode)
*total = COSTS_N_INSNS (50);
else
*total = COSTS_N_INSNS (1);
return true;
}
case NEG:
*total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 4 : 2);
return true;
case MULT:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == SFmode)
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 4 : 50);
else if (xmode == DFmode)
*total = COSTS_N_INSNS (50);
else if (xmode == DImode)
*total = COSTS_N_INSNS (TARGET_MUL32_HIGH ? 10 : 50);
else if (TARGET_MUL32)
*total = COSTS_N_INSNS (4);
else if (TARGET_MAC16)
*total = COSTS_N_INSNS (16);
else if (TARGET_MUL16)
*total = COSTS_N_INSNS (12);
else
*total = COSTS_N_INSNS (50);
return true;
}
case DIV:
case MOD:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == SFmode)
{
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT_DIV ? 8 : 50);
return true;
}
else if (xmode == DFmode)
{
*total = COSTS_N_INSNS (50);
return true;
}
}
/* Fall through. */
case UDIV:
case UMOD:
{
enum machine_mode xmode = GET_MODE (x);
if (xmode == DImode)
*total = COSTS_N_INSNS (50);
else if (TARGET_DIV32)
*total = COSTS_N_INSNS (32);
else
*total = COSTS_N_INSNS (50);
return true;
}
case SQRT:
if (GET_MODE (x) == SFmode)
*total = COSTS_N_INSNS (TARGET_HARD_FLOAT_SQRT ? 8 : 50);
else
*total = COSTS_N_INSNS (50);
return true;
case SMIN:
case UMIN:
case SMAX:
case UMAX:
*total = COSTS_N_INSNS (TARGET_MINMAX ? 1 : 50);
return true;
case SIGN_EXTRACT:
case SIGN_EXTEND:
*total = COSTS_N_INSNS (TARGET_SEXT ? 1 : 2);
return true;
case ZERO_EXTRACT:
case ZERO_EXTEND:
*total = COSTS_N_INSNS (1);
return true;
default:
return false;
}
}
/* Worker function for TARGET_RETURN_IN_MEMORY. */
static bool
xtensa_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)
> 4 * UNITS_PER_WORD);
}
/* Worker function for TARGET_FUNCTION_VALUE. */
rtx
xtensa_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
bool outgoing)
{
return gen_rtx_REG ((INTEGRAL_TYPE_P (valtype)
&& TYPE_PRECISION (valtype) < BITS_PER_WORD)
? SImode : TYPE_MODE (valtype),
outgoing ? GP_OUTGOING_RETURN : GP_RETURN);
}
/* Worker function for TARGET_LIBCALL_VALUE. */
static rtx
xtensa_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
{
return gen_rtx_REG ((GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD)
? SImode : mode, GP_RETURN);
}
/* Worker function TARGET_FUNCTION_VALUE_REGNO_P. */
static bool
xtensa_function_value_regno_p (const unsigned int regno)
{
return (regno == GP_RETURN);
}
/* The static chain is passed in memory. Provide rtx giving 'mem'
expressions that denote where they are stored. */
static rtx
xtensa_static_chain (const_tree ARG_UNUSED (fndecl), bool incoming_p)
{
rtx base = incoming_p ? arg_pointer_rtx : stack_pointer_rtx;
return gen_frame_mem (Pmode, plus_constant (base, -5 * UNITS_PER_WORD));
}
/* TRAMPOLINE_TEMPLATE: For Xtensa, the trampoline must perform an ENTRY
instruction with a minimal stack frame in order to get some free
registers. Once the actual call target is known, the proper stack frame
size is extracted from the ENTRY instruction at the target and the
current frame is adjusted to match. The trampoline then transfers
control to the instruction following the ENTRY at the target. Note:
this assumes that the target begins with an ENTRY instruction. */
static void
xtensa_asm_trampoline_template (FILE *stream)
{
bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);
fprintf (stream, "\t.begin no-transform\n");
fprintf (stream, "\tentry\tsp, %d\n", MIN_FRAME_SIZE);
if (use_call0)
{
/* Save the return address. */
fprintf (stream, "\tmov\ta10, a0\n");
/* Use a CALL0 instruction to skip past the constants and in the
process get the PC into A0. This allows PC-relative access to
the constants without relying on L32R. */
fprintf (stream, "\tcall0\t.Lskipconsts\n");
}
else
fprintf (stream, "\tj\t.Lskipconsts\n");
fprintf (stream, "\t.align\t4\n");
fprintf (stream, ".Lchainval:%s0\n", integer_asm_op (4, TRUE));
fprintf (stream, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE));
fprintf (stream, ".Lskipconsts:\n");
/* Load the static chain and function address from the trampoline. */
if (use_call0)
{
fprintf (stream, "\taddi\ta0, a0, 3\n");
fprintf (stream, "\tl32i\ta9, a0, 0\n");
fprintf (stream, "\tl32i\ta8, a0, 4\n");
}
else
{
fprintf (stream, "\tl32r\ta9, .Lchainval\n");
fprintf (stream, "\tl32r\ta8, .Lfnaddr\n");
}
/* Store the static chain. */
fprintf (stream, "\ts32i\ta9, sp, %d\n", MIN_FRAME_SIZE - 20);
/* Set the proper stack pointer value. */
fprintf (stream, "\tl32i\ta9, a8, 0\n");
fprintf (stream, "\textui\ta9, a9, %d, 12\n",
TARGET_BIG_ENDIAN ? 8 : 12);
fprintf (stream, "\tslli\ta9, a9, 3\n");
fprintf (stream, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE);
fprintf (stream, "\tsub\ta9, sp, a9\n");
fprintf (stream, "\tmovsp\tsp, a9\n");
if (use_call0)
/* Restore the return address. */
fprintf (stream, "\tmov\ta0, a10\n");
/* Jump to the instruction following the ENTRY. */
fprintf (stream, "\taddi\ta8, a8, 3\n");
fprintf (stream, "\tjx\ta8\n");
/* Pad size to a multiple of TRAMPOLINE_ALIGNMENT. */
if (use_call0)
fprintf (stream, "\t.byte\t0\n");
else
fprintf (stream, "\tnop\n");
fprintf (stream, "\t.end no-transform\n");
}
static void
xtensa_trampoline_init (rtx m_tramp, tree fndecl, rtx chain)
{
rtx func = XEXP (DECL_RTL (fndecl), 0);
bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);
int chain_off = use_call0 ? 12 : 8;
int func_off = use_call0 ? 16 : 12;
emit_block_move (m_tramp, assemble_trampoline_template (),
GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
emit_move_insn (adjust_address (m_tramp, SImode, chain_off), chain);
emit_move_insn (adjust_address (m_tramp, SImode, func_off), func);
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"),
LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode);
}
#include "gt-xtensa.h"
|