1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
|
This is doc/gfortran.info, produced by makeinfo version 4.13 from
/home/jakub/gcc-4.6.4/gcc-4.6.4/gcc/fortran/gfortran.texi.
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2009, 2010, 2011 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Funding Free Software", the Front-Cover Texts
being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled "GNU
Free Documentation License".
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
INFO-DIR-SECTION Software development
START-INFO-DIR-ENTRY
* gfortran: (gfortran). The GNU Fortran Compiler.
END-INFO-DIR-ENTRY
This file documents the use and the internals of the GNU Fortran
compiler, (`gfortran').
Published by the Free Software Foundation 51 Franklin Street, Fifth
Floor Boston, MA 02110-1301 USA
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2008, 2009, 2010, 2011 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Funding Free Software", the Front-Cover Texts
being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled "GNU
Free Documentation License".
(a) The FSF's Front-Cover Text is:
A GNU Manual
(b) The FSF's Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise
funds for GNU development.
File: gfortran.info, Node: Top, Next: Introduction, Up: (dir)
Introduction
************
This manual documents the use of `gfortran', the GNU Fortran compiler.
You can find in this manual how to invoke `gfortran', as well as its
features and incompatibilities.
* Menu:
* Introduction::
Part I: Invoking GNU Fortran
* Invoking GNU Fortran:: Command options supported by `gfortran'.
* Runtime:: Influencing runtime behavior with environment variables.
Part II: Language Reference
* Fortran 2003 and 2008 status:: Fortran 2003 and 2008 features supported by GNU Fortran.
* Compiler Characteristics:: User-visible implementation details.
* Mixed-Language Programming:: Interoperability with C
* Extensions:: Language extensions implemented by GNU Fortran.
* Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
* Intrinsic Modules:: Intrinsic modules supported by GNU Fortran.
* Contributing:: How you can help.
* Copying:: GNU General Public License says
how you can copy and share GNU Fortran.
* GNU Free Documentation License::
How you can copy and share this manual.
* Funding:: How to help assure continued work for free software.
* Option Index:: Index of command line options
* Keyword Index:: Index of concepts
File: gfortran.info, Node: Introduction, Next: Invoking GNU Fortran, Prev: Top, Up: Top
1 Introduction
**************
The GNU Fortran compiler front end was designed initially as a free
replacement for, or alternative to, the unix `f95' command; `gfortran'
is the command you'll use to invoke the compiler.
* Menu:
* About GNU Fortran:: What you should know about the GNU Fortran compiler.
* GNU Fortran and GCC:: You can compile Fortran, C, or other programs.
* Preprocessing and conditional compilation:: The Fortran preprocessor
* GNU Fortran and G77:: Why we chose to start from scratch.
* Project Status:: Status of GNU Fortran, roadmap, proposed extensions.
* Standards:: Standards supported by GNU Fortran.
File: gfortran.info, Node: About GNU Fortran, Next: GNU Fortran and GCC, Up: Introduction
1.1 About GNU Fortran
=====================
The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
completely, parts of the Fortran 2003 and Fortran 2008 standards, and
several vendor extensions. The development goal is to provide the
following features:
* Read a user's program, stored in a file and containing
instructions written in Fortran 77, Fortran 90, Fortran 95,
Fortran 2003 or Fortran 2008. This file contains "source code".
* Translate the user's program into instructions a computer can
carry out more quickly than it takes to translate the instructions
in the first place. The result after compilation of a program is
"machine code", code designed to be efficiently translated and
processed by a machine such as your computer. Humans usually
aren't as good writing machine code as they are at writing Fortran
(or C++, Ada, or Java), because it is easy to make tiny mistakes
writing machine code.
* Provide the user with information about the reasons why the
compiler is unable to create a binary from the source code.
Usually this will be the case if the source code is flawed. The
Fortran 90 standard requires that the compiler can point out
mistakes to the user. An incorrect usage of the language causes
an "error message".
The compiler will also attempt to diagnose cases where the user's
program contains a correct usage of the language, but instructs
the computer to do something questionable. This kind of
diagnostics message is called a "warning message".
* Provide optional information about the translation passes from the
source code to machine code. This can help a user of the compiler
to find the cause of certain bugs which may not be obvious in the
source code, but may be more easily found at a lower level
compiler output. It also helps developers to find bugs in the
compiler itself.
* Provide information in the generated machine code that can make it
easier to find bugs in the program (using a debugging tool, called
a "debugger", such as the GNU Debugger `gdb').
* Locate and gather machine code already generated to perform
actions requested by statements in the user's program. This
machine code is organized into "modules" and is located and
"linked" to the user program.
The GNU Fortran compiler consists of several components:
* A version of the `gcc' command (which also might be installed as
the system's `cc' command) that also understands and accepts
Fortran source code. The `gcc' command is the "driver" program for
all the languages in the GNU Compiler Collection (GCC); With `gcc',
you can compile the source code of any language for which a front
end is available in GCC.
* The `gfortran' command itself, which also might be installed as the
system's `f95' command. `gfortran' is just another driver program,
but specifically for the Fortran compiler only. The difference
with `gcc' is that `gfortran' will automatically link the correct
libraries to your program.
* A collection of run-time libraries. These libraries contain the
machine code needed to support capabilities of the Fortran
language that are not directly provided by the machine code
generated by the `gfortran' compilation phase, such as intrinsic
functions and subroutines, and routines for interaction with files
and the operating system.
* The Fortran compiler itself, (`f951'). This is the GNU Fortran
parser and code generator, linked to and interfaced with the GCC
backend library. `f951' "translates" the source code to assembler
code. You would typically not use this program directly; instead,
the `gcc' or `gfortran' driver programs will call it for you.
File: gfortran.info, Node: GNU Fortran and GCC, Next: Preprocessing and conditional compilation, Prev: About GNU Fortran, Up: Introduction
1.2 GNU Fortran and GCC
=======================
GNU Fortran is a part of GCC, the "GNU Compiler Collection". GCC
consists of a collection of front ends for various languages, which
translate the source code into a language-independent form called
"GENERIC". This is then processed by a common middle end which
provides optimization, and then passed to one of a collection of back
ends which generate code for different computer architectures and
operating systems.
Functionally, this is implemented with a driver program (`gcc')
which provides the command-line interface for the compiler. It calls
the relevant compiler front-end program (e.g., `f951' for Fortran) for
each file in the source code, and then calls the assembler and linker
as appropriate to produce the compiled output. In a copy of GCC which
has been compiled with Fortran language support enabled, `gcc' will
recognize files with `.f', `.for', `.ftn', `.f90', `.f95', `.f03' and
`.f08' extensions as Fortran source code, and compile it accordingly.
A `gfortran' driver program is also provided, which is identical to
`gcc' except that it automatically links the Fortran runtime libraries
into the compiled program.
Source files with `.f', `.for', `.fpp', `.ftn', `.F', `.FOR',
`.FPP', and `.FTN' extensions are treated as fixed form. Source files
with `.f90', `.f95', `.f03', `.f08', `.F90', `.F95', `.F03' and `.F08'
extensions are treated as free form. The capitalized versions of
either form are run through preprocessing. Source files with the lower
case `.fpp' extension are also run through preprocessing.
This manual specifically documents the Fortran front end, which
handles the programming language's syntax and semantics. The aspects
of GCC which relate to the optimization passes and the back-end code
generation are documented in the GCC manual; see *note Introduction:
(gcc)Top. The two manuals together provide a complete reference for
the GNU Fortran compiler.
File: gfortran.info, Node: Preprocessing and conditional compilation, Next: GNU Fortran and G77, Prev: GNU Fortran and GCC, Up: Introduction
1.3 Preprocessing and conditional compilation
=============================================
Many Fortran compilers including GNU Fortran allow passing the source
code through a C preprocessor (CPP; sometimes also called the Fortran
preprocessor, FPP) to allow for conditional compilation. In the case
of GNU Fortran, this is the GNU C Preprocessor in the traditional mode.
On systems with case-preserving file names, the preprocessor is
automatically invoked if the filename extension is `.F', `.FOR',
`.FTN', `.fpp', `.FPP', `.F90', `.F95', `.F03' or `.F08'. To manually
invoke the preprocessor on any file, use `-cpp', to disable
preprocessing on files where the preprocessor is run automatically, use
`-nocpp'.
If a preprocessed file includes another file with the Fortran
`INCLUDE' statement, the included file is not preprocessed. To
preprocess included files, use the equivalent preprocessor statement
`#include'.
If GNU Fortran invokes the preprocessor, `__GFORTRAN__' is defined
and `__GNUC__', `__GNUC_MINOR__' and `__GNUC_PATCHLEVEL__' can be used
to determine the version of the compiler. See *note Overview:
(cpp)Top. for details.
While CPP is the de-facto standard for preprocessing Fortran code,
Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
Conditional Compilation, which is not widely used and not directly
supported by the GNU Fortran compiler. You can use the program coco to
preprocess such files (`http://www.daniellnagle.com/coco.html').
File: gfortran.info, Node: GNU Fortran and G77, Next: Project Status, Prev: Preprocessing and conditional compilation, Up: Introduction
1.4 GNU Fortran and G77
=======================
The GNU Fortran compiler is the successor to `g77', the Fortran 77
front end included in GCC prior to version 4. It is an entirely new
program that has been designed to provide Fortran 95 support and
extensibility for future Fortran language standards, as well as
providing backwards compatibility for Fortran 77 and nearly all of the
GNU language extensions supported by `g77'.
File: gfortran.info, Node: Project Status, Next: Standards, Prev: GNU Fortran and G77, Up: Introduction
1.5 Project Status
==================
As soon as `gfortran' can parse all of the statements correctly,
it will be in the "larva" state. When we generate code, the
"puppa" state. When `gfortran' is done, we'll see if it will be a
beautiful butterfly, or just a big bug....
-Andy Vaught, April 2000
The start of the GNU Fortran 95 project was announced on the GCC
homepage in March 18, 2000 (even though Andy had already been working
on it for a while, of course).
The GNU Fortran compiler is able to compile nearly all
standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
including a number of standard and non-standard extensions, and can be
used on real-world programs. In particular, the supported extensions
include OpenMP, Cray-style pointers, and several Fortran 2003 and
Fortran 2008 features, including TR 15581. However, it is still under
development and has a few remaining rough edges.
At present, the GNU Fortran compiler passes the NIST Fortran 77 Test
Suite (http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html), and
produces acceptable results on the LAPACK Test Suite
(http://www.netlib.org/lapack/faq.html#1.21). It also provides
respectable performance on the Polyhedron Fortran compiler benchmarks
(http://www.polyhedron.com/pb05.html) and the Livermore Fortran Kernels
test
(http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html). It
has been used to compile a number of large real-world programs,
including the HIRLAM weather-forecasting code
(http://mysite.verizon.net/serveall/moene.pdf) and the Tonto quantum
chemistry package (http://www.theochem.uwa.edu.au/tonto/); see
`http://gcc.gnu.org/wiki/GfortranApps' for an extended list.
Among other things, the GNU Fortran compiler is intended as a
replacement for G77. At this point, nearly all programs that could be
compiled with G77 can be compiled with GNU Fortran, although there are
a few minor known regressions.
The primary work remaining to be done on GNU Fortran falls into three
categories: bug fixing (primarily regarding the treatment of invalid
code and providing useful error messages), improving the compiler
optimizations and the performance of compiled code, and extending the
compiler to support future standards--in particular, Fortran 2003 and
Fortran 2008.
File: gfortran.info, Node: Standards, Prev: Project Status, Up: Introduction
1.6 Standards
=============
* Menu:
* Varying Length Character Strings::
The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95).
As such, it can also compile essentially all standard-compliant Fortran
90 and Fortran 77 programs. It also supports the ISO/IEC TR-15581
enhancements to allocatable arrays.
In the future, the GNU Fortran compiler will also support ISO/IEC
1539-1:2004 (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008) and
future Fortran standards. Partial support of the Fortran 2003 and
Fortran 2008 standard is already provided; the current status of the
support is reported in the *note Fortran 2003 status:: and *note
Fortran 2008 status:: sections of the documentation.
Additionally, the GNU Fortran compilers supports the OpenMP
specification (version 3.0,
`http://openmp.org/wp/openmp-specifications/').
File: gfortran.info, Node: Varying Length Character Strings, Up: Standards
1.6.1 Varying Length Character Strings
--------------------------------------
The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
varying length character strings. While GNU Fortran currently does not
support such strings directly, there exist two Fortran implementations
for them, which work with GNU Fortran. They can be found at
`http://www.fortran.com/iso_varying_string.f95' and at
`ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/'.
File: gfortran.info, Node: Invoking GNU Fortran, Next: Runtime, Prev: Introduction, Up: Top
2 GNU Fortran Command Options
*****************************
The `gfortran' command supports all the options supported by the `gcc'
command. Only options specific to GNU Fortran are documented here.
*Note GCC Command Options: (gcc)Invoking GCC, for information on the
non-Fortran-specific aspects of the `gcc' command (and, therefore, the
`gfortran' command).
All GCC and GNU Fortran options are accepted both by `gfortran' and
by `gcc' (as well as any other drivers built at the same time, such as
`g++'), since adding GNU Fortran to the GCC distribution enables
acceptance of GNU Fortran options by all of the relevant drivers.
In some cases, options have positive and negative forms; the
negative form of `-ffoo' would be `-fno-foo'. This manual documents
only one of these two forms, whichever one is not the default.
* Menu:
* Option Summary:: Brief list of all `gfortran' options,
without explanations.
* Fortran Dialect Options:: Controlling the variant of Fortran language
compiled.
* Preprocessing Options:: Enable and customize preprocessing.
* Error and Warning Options:: How picky should the compiler be?
* Debugging Options:: Symbol tables, measurements, and debugging dumps.
* Directory Options:: Where to find module files
* Link Options :: Influencing the linking step
* Runtime Options:: Influencing runtime behavior
* Code Gen Options:: Specifying conventions for function calls, data layout
and register usage.
* Environment Variables:: Environment variables that affect `gfortran'.
File: gfortran.info, Node: Option Summary, Next: Fortran Dialect Options, Up: Invoking GNU Fortran
2.1 Option summary
==================
Here is a summary of all the options specific to GNU Fortran, grouped
by type. Explanations are in the following sections.
_Fortran Language Options_
*Note Options controlling Fortran dialect: Fortran Dialect Options.
-fall-intrinsics -ffree-form -fno-fixed-form
-fdollar-ok -fimplicit-none -fmax-identifier-length
-std=STD -fd-lines-as-code -fd-lines-as-comments
-ffixed-line-length-N -ffixed-line-length-none
-ffree-line-length-N -ffree-line-length-none
-fdefault-double-8 -fdefault-integer-8 -fdefault-real-8
-fcray-pointer -fopenmp -fno-range-check -fbackslash -fmodule-private
_Preprocessing Options_
*Note Enable and customize preprocessing: Preprocessing Options.
-cpp -dD -dI -dM -dN -dU -fworking-directory
-imultilib DIR -iprefix FILE -isysroot DIR
-iquote -isystem DIR -nocpp -nostdinc -undef
-AQUESTION=ANSWER -A-QUESTION[=ANSWER]
-C -CC -DMACRO[=DEFN] -UMACRO -H -P
_Error and Warning Options_
*Note Options to request or suppress errors and warnings: Error
and Warning Options.
-fmax-errors=N
-fsyntax-only -pedantic -pedantic-errors
-Wall -Waliasing -Wampersand -Warray-bounds -Wcharacter-truncation
-Wconversion -Wimplicit-interface -Wimplicit-procedure -Wline-truncation
-Wintrinsics-std -Wsurprising -Wno-tabs -Wunderflow -Wunused-parameter
-Wintrinsic-shadow -Wno-align-commons
_Debugging Options_
*Note Options for debugging your program or GNU Fortran: Debugging
Options.
-fdump-fortran-original -fdump-fortran-optimized
-ffpe-trap=LIST -fdump-core -fbacktrace -fdump-parse-tree
_Directory Options_
*Note Options for directory search: Directory Options.
-IDIR -JDIR -fintrinsic-modules-path DIR
_Link Options_
*Note Options for influencing the linking step: Link Options.
-static-libgfortran
_Runtime Options_
*Note Options for influencing runtime behavior: Runtime Options.
-fconvert=CONVERSION -fno-range-check
-frecord-marker=LENGTH -fmax-subrecord-length=LENGTH
-fsign-zero
_Code Generation Options_
*Note Options for code generation conventions: Code Gen Options.
-fno-automatic -ff2c -fno-underscoring
-fno-whole-file -fsecond-underscore
-fbounds-check -fcheck-array-temporaries -fmax-array-constructor =N
-fcheck=<ALL|ARRAY-TEMPS|BOUNDS|DO|MEM|POINTER|RECURSION>
-fcoarray=<NONE|SINGLE> -fmax-stack-var-size=N
-fpack-derived -frepack-arrays -fshort-enums -fexternal-blas
-fblas-matmul-limit=N -frecursive -finit-local-zero
-finit-integer=N -finit-real=<ZERO|INF|-INF|NAN|SNAN>
-finit-logical=<TRUE|FALSE> -finit-character=N
-fno-align-commons -fno-protect-parens -frealloc-lhs
* Menu:
* Fortran Dialect Options:: Controlling the variant of Fortran language
compiled.
* Preprocessing Options:: Enable and customize preprocessing.
* Error and Warning Options:: How picky should the compiler be?
* Debugging Options:: Symbol tables, measurements, and debugging dumps.
* Directory Options:: Where to find module files
* Link Options :: Influencing the linking step
* Runtime Options:: Influencing runtime behavior
* Code Gen Options:: Specifying conventions for function calls, data layout
and register usage.
File: gfortran.info, Node: Fortran Dialect Options, Next: Preprocessing Options, Prev: Option Summary, Up: Invoking GNU Fortran
2.2 Options controlling Fortran dialect
=======================================
The following options control the details of the Fortran dialect
accepted by the compiler:
`-ffree-form'
`-ffixed-form'
Specify the layout used by the source file. The free form layout
was introduced in Fortran 90. Fixed form was traditionally used in
older Fortran programs. When neither option is specified, the
source form is determined by the file extension.
`-fall-intrinsics'
This option causes all intrinsic procedures (including the
GNU-specific extensions) to be accepted. This can be useful with
`-std=f95' to force standard-compliance but get access to the full
range of intrinsics available with `gfortran'. As a consequence,
`-Wintrinsics-std' will be ignored and no user-defined procedure
with the same name as any intrinsic will be called except when it
is explicitly declared `EXTERNAL'.
`-fd-lines-as-code'
`-fd-lines-as-comments'
Enable special treatment for lines beginning with `d' or `D' in
fixed form sources. If the `-fd-lines-as-code' option is given
they are treated as if the first column contained a blank. If the
`-fd-lines-as-comments' option is given, they are treated as
comment lines.
`-fdefault-double-8'
Set the `DOUBLE PRECISION' type to an 8 byte wide type. If
`-fdefault-real-8' is given, `DOUBLE PRECISION' would instead be
promoted to 16 bytes if possible, and `-fdefault-double-8' can be
used to prevent this. The kind of real constants like `1.d0' will
not be changed by `-fdefault-real-8' though, so also
`-fdefault-double-8' does not affect it.
`-fdefault-integer-8'
Set the default integer and logical types to an 8 byte wide type.
Do nothing if this is already the default. This option also
affects the kind of integer constants like `42'.
`-fdefault-real-8'
Set the default real type to an 8 byte wide type. Do nothing if
this is already the default. This option also affects the kind of
non-double real constants like `1.0', and does promote the default
width of `DOUBLE PRECISION' to 16 bytes if possible, unless
`-fdefault-double-8' is given, too.
`-fdollar-ok'
Allow `$' as a valid non-first character in a symbol name. Symbols
that start with `$' are rejected since it is unclear which rules to
apply to implicit typing as different vendors implement different
rules. Using `$' in `IMPLICIT' statements is also rejected.
`-fbackslash'
Change the interpretation of backslashes in string literals from a
single backslash character to "C-style" escape characters. The
following combinations are expanded `\a', `\b', `\f', `\n', `\r',
`\t', `\v', `\\', and `\0' to the ASCII characters alert,
backspace, form feed, newline, carriage return, horizontal tab,
vertical tab, backslash, and NUL, respectively. Additionally,
`\x'NN, `\u'NNNN and `\U'NNNNNNNN (where each N is a hexadecimal
digit) are translated into the Unicode characters corresponding to
the specified code points. All other combinations of a character
preceded by \ are unexpanded.
`-fmodule-private'
Set the default accessibility of module entities to `PRIVATE'.
Use-associated entities will not be accessible unless they are
explicitly declared as `PUBLIC'.
`-ffixed-line-length-N'
Set column after which characters are ignored in typical fixed-form
lines in the source file, and through which spaces are assumed (as
if padded to that length) after the ends of short fixed-form lines.
Popular values for N include 72 (the standard and the default), 80
(card image), and 132 (corresponding to "extended-source" options
in some popular compilers). N may also be `none', meaning that
the entire line is meaningful and that continued character
constants never have implicit spaces appended to them to fill out
the line. `-ffixed-line-length-0' means the same thing as
`-ffixed-line-length-none'.
`-ffree-line-length-N'
Set column after which characters are ignored in typical free-form
lines in the source file. The default value is 132. N may be
`none', meaning that the entire line is meaningful.
`-ffree-line-length-0' means the same thing as
`-ffree-line-length-none'.
`-fmax-identifier-length=N'
Specify the maximum allowed identifier length. Typical values are
31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008).
`-fimplicit-none'
Specify that no implicit typing is allowed, unless overridden by
explicit `IMPLICIT' statements. This is the equivalent of adding
`implicit none' to the start of every procedure.
`-fcray-pointer'
Enable the Cray pointer extension, which provides C-like pointer
functionality.
`-fopenmp'
Enable the OpenMP extensions. This includes OpenMP `!$omp'
directives in free form and `c$omp', `*$omp' and `!$omp'
directives in fixed form, `!$' conditional compilation sentinels
in free form and `c$', `*$' and `!$' sentinels in fixed form, and
when linking arranges for the OpenMP runtime library to be linked
in. The option `-fopenmp' implies `-frecursive'.
`-fno-range-check'
Disable range checking on results of simplification of constant
expressions during compilation. For example, GNU Fortran will give
an error at compile time when simplifying `a = 1. / 0'. With this
option, no error will be given and `a' will be assigned the value
`+Infinity'. If an expression evaluates to a value outside of the
relevant range of [`-HUGE()':`HUGE()'], then the expression will
be replaced by `-Inf' or `+Inf' as appropriate. Similarly, `DATA
i/Z'FFFFFFFF'/' will result in an integer overflow on most
systems, but with `-fno-range-check' the value will "wrap around"
and `i' will be initialized to -1 instead.
`-std=STD'
Specify the standard to which the program is expected to conform,
which may be one of `f95', `f2003', `f2008', `gnu', or `legacy'.
The default value for STD is `gnu', which specifies a superset of
the Fortran 95 standard that includes all of the extensions
supported by GNU Fortran, although warnings will be given for
obsolete extensions not recommended for use in new code. The
`legacy' value is equivalent but without the warnings for obsolete
extensions, and may be useful for old non-standard programs. The
`f95', `f2003' and `f2008' values specify strict conformance to
the Fortran 95, Fortran 2003 and Fortran 2008 standards,
respectively; errors are given for all extensions beyond the
relevant language standard, and warnings are given for the Fortran
77 features that are permitted but obsolescent in later standards.
File: gfortran.info, Node: Preprocessing Options, Next: Error and Warning Options, Prev: Fortran Dialect Options, Up: Invoking GNU Fortran
2.3 Enable and customize preprocessing
======================================
Preprocessor related options. See section *note Preprocessing and
conditional compilation:: for more detailed information on
preprocessing in `gfortran'.
`-cpp'
`-nocpp'
Enable preprocessing. The preprocessor is automatically invoked if
the file extension is `.fpp', `.FPP', `.F', `.FOR', `.FTN',
`.F90', `.F95', `.F03' or `.F08'. Use this option to manually
enable preprocessing of any kind of Fortran file.
To disable preprocessing of files with any of the above listed
extensions, use the negative form: `-nocpp'.
The preprocessor is run in traditional mode. Any restrictions of
the file-format, especially the limits on line length, apply for
preprocessed output as well, so it might be advisable to use the
`-ffree-line-length-none' or `-ffixed-line-length-none' options.
`-dM'
Instead of the normal output, generate a list of `'#define''
directives for all the macros defined during the execution of the
preprocessor, including predefined macros. This gives you a way of
finding out what is predefined in your version of the preprocessor.
Assuming you have no file `foo.f90', the command
touch foo.f90; gfortran -cpp -E -dM foo.f90
will show all the predefined macros.
`-dD'
Like `-dM' except in two respects: it does not include the
predefined macros, and it outputs both the `#define' directives
and the result of preprocessing. Both kinds of output go to the
standard output file.
`-dN'
Like `-dD', but emit only the macro names, not their expansions.
`-dU'
Like `dD' except that only macros that are expanded, or whose
definedness is tested in preprocessor directives, are output; the
output is delayed until the use or test of the macro; and
`'#undef'' directives are also output for macros tested but
undefined at the time.
`-dI'
Output `'#include'' directives in addition to the result of
preprocessing.
`-fworking-directory'
Enable generation of linemarkers in the preprocessor output that
will let the compiler know the current working directory at the
time of preprocessing. When this option is enabled, the
preprocessor will emit, after the initial linemarker, a second
linemarker with the current working directory followed by two
slashes. GCC will use this directory, when it's present in the
preprocessed input, as the directory emitted as the current
working directory in some debugging information formats. This
option is implicitly enabled if debugging information is enabled,
but this can be inhibited with the negated form
`-fno-working-directory'. If the `-P' flag is present in the
command line, this option has no effect, since no `#line'
directives are emitted whatsoever.
`-idirafter DIR'
Search DIR for include files, but do it after all directories
specified with `-I' and the standard system directories have been
exhausted. DIR is treated as a system include directory. If dir
begins with `=', then the `=' will be replaced by the sysroot
prefix; see `--sysroot' and `-isysroot'.
`-imultilib DIR'
Use DIR as a subdirectory of the directory containing
target-specific C++ headers.
`-iprefix PREFIX'
Specify PREFIX as the prefix for subsequent `-iwithprefix'
options. If the PREFIX represents a directory, you should include
the final `'/''.
`-isysroot DIR'
This option is like the `--sysroot' option, but applies only to
header files. See the `--sysroot' option for more information.
`-iquote DIR'
Search DIR only for header files requested with `#include "file"';
they are not searched for `#include <file>', before all directories
specified by `-I' and before the standard system directories. If
DIR begins with `=', then the `=' will be replaced by the sysroot
prefix; see `--sysroot' and `-isysroot'.
`-isystem DIR'
Search DIR for header files, after all directories specified by
`-I' but before the standard system directories. Mark it as a
system directory, so that it gets the same special treatment as is
applied to the standard system directories. If DIR begins with
`=', then the `=' will be replaced by the sysroot prefix; see
`--sysroot' and `-isysroot'.
`-nostdinc'
Do not search the standard system directories for header files.
Only the directories you have specified with `-I' options (and the
directory of the current file, if appropriate) are searched.
`-undef'
Do not predefine any system-specific or GCC-specific macros. The
standard predefined macros remain defined.
`-APREDICATE=ANSWER'
Make an assertion with the predicate PREDICATE and answer ANSWER.
This form is preferred to the older form -A predicate(answer),
which is still supported, because it does not use shell special
characters.
`-A-PREDICATE=ANSWER'
Cancel an assertion with the predicate PREDICATE and answer ANSWER.
`-C'
Do not discard comments. All comments are passed through to the
output file, except for comments in processed directives, which
are deleted along with the directive.
You should be prepared for side effects when using `-C'; it causes
the preprocessor to treat comments as tokens in their own right.
For example, comments appearing at the start of what would be a
directive line have the effect of turning that line into an
ordinary source line, since the first token on the line is no
longer a `'#''.
Warning: this currently handles C-Style comments only. The
preprocessor does not yet recognize Fortran-style comments.
`-CC'
Do not discard comments, including during macro expansion. This is
like `-C', except that comments contained within macros are also
passed through to the output file where the macro is expanded.
In addition to the side-effects of the `-C' option, the `-CC'
option causes all C++-style comments inside a macro to be
converted to C-style comments. This is to prevent later use of
that macro from inadvertently commenting out the remainder of the
source line. The `-CC' option is generally used to support lint
comments.
Warning: this currently handles C- and C++-Style comments only. The
preprocessor does not yet recognize Fortran-style comments.
`-DNAME'
Predefine name as a macro, with definition `1'.
`-DNAME=DEFINITION'
The contents of DEFINITION are tokenized and processed as if they
appeared during translation phase three in a `'#define'' directive.
In particular, the definition will be truncated by embedded newline
characters.
If you are invoking the preprocessor from a shell or shell-like
program you may need to use the shell's quoting syntax to protect
characters such as spaces that have a meaning in the shell syntax.
If you wish to define a function-like macro on the command line,
write its argument list with surrounding parentheses before the
equals sign (if any). Parentheses are meaningful to most shells,
so you will need to quote the option. With sh and csh,
`-D'name(args...)=definition'' works.
`-D' and `-U' options are processed in the order they are given on
the command line. All -imacros file and -include file options are
processed after all -D and -U options.
`-H'
Print the name of each header file used, in addition to other
normal activities. Each name is indented to show how deep in the
`'#include'' stack it is.
`-P'
Inhibit generation of linemarkers in the output from the
preprocessor. This might be useful when running the preprocessor
on something that is not C code, and will be sent to a program
which might be confused by the linemarkers.
`-UNAME'
Cancel any previous definition of NAME, either built in or provided
with a `-D' option.
File: gfortran.info, Node: Error and Warning Options, Next: Debugging Options, Prev: Preprocessing Options, Up: Invoking GNU Fortran
2.4 Options to request or suppress errors and warnings
======================================================
Errors are diagnostic messages that report that the GNU Fortran compiler
cannot compile the relevant piece of source code. The compiler will
continue to process the program in an attempt to report further errors
to aid in debugging, but will not produce any compiled output.
Warnings are diagnostic messages that report constructions which are
not inherently erroneous but which are risky or suggest there is likely
to be a bug in the program. Unless `-Werror' is specified, they do not
prevent compilation of the program.
You can request many specific warnings with options beginning `-W',
for example `-Wimplicit' to request warnings on implicit declarations.
Each of these specific warning options also has a negative form
beginning `-Wno-' to turn off warnings; for example, `-Wno-implicit'.
This manual lists only one of the two forms, whichever is not the
default.
These options control the amount and kinds of errors and warnings
produced by GNU Fortran:
`-fmax-errors=N'
Limits the maximum number of error messages to N, at which point
GNU Fortran bails out rather than attempting to continue
processing the source code. If N is 0, there is no limit on the
number of error messages produced.
`-fsyntax-only'
Check the code for syntax errors, but don't actually compile it.
This will generate module files for each module present in the
code, but no other output file.
`-pedantic'
Issue warnings for uses of extensions to Fortran 95. `-pedantic'
also applies to C-language constructs where they occur in GNU
Fortran source files, such as use of `\e' in a character constant
within a directive like `#include'.
Valid Fortran 95 programs should compile properly with or without
this option. However, without this option, certain GNU extensions
and traditional Fortran features are supported as well. With this
option, many of them are rejected.
Some users try to use `-pedantic' to check programs for
conformance. They soon find that it does not do quite what they
want--it finds some nonstandard practices, but not all. However,
improvements to GNU Fortran in this area are welcome.
This should be used in conjunction with `-std=f95', `-std=f2003'
or `-std=f2008'.
`-pedantic-errors'
Like `-pedantic', except that errors are produced rather than
warnings.
`-Wall'
Enables commonly used warning options pertaining to usage that we
recommend avoiding and that we believe are easy to avoid. This
currently includes `-Waliasing', `-Wampersand', `-Wconversion',
`-Wsurprising', `-Wintrinsics-std', `-Wno-tabs',
`-Wintrinsic-shadow', `-Wline-truncation', `-Wreal-q-constant' and
`-Wunused'.
`-Waliasing'
Warn about possible aliasing of dummy arguments. Specifically, it
warns if the same actual argument is associated with a dummy
argument with `INTENT(IN)' and a dummy argument with `INTENT(OUT)'
in a call with an explicit interface.
The following example will trigger the warning.
interface
subroutine bar(a,b)
integer, intent(in) :: a
integer, intent(out) :: b
end subroutine
end interface
integer :: a
call bar(a,a)
`-Wampersand'
Warn about missing ampersand in continued character constants. The
warning is given with `-Wampersand', `-pedantic', `-std=f95',
`-std=f2003' and `-std=f2008'. Note: With no ampersand given in a
continued character constant, GNU Fortran assumes continuation at
the first non-comment, non-whitespace character after the ampersand
that initiated the continuation.
`-Warray-temporaries'
Warn about array temporaries generated by the compiler. The
information generated by this warning is sometimes useful in
optimization, in order to avoid such temporaries.
`-Wcharacter-truncation'
Warn when a character assignment will truncate the assigned string.
`-Wline-truncation'
Warn when a source code line will be truncated.
`-Wconversion'
Warn about implicit conversions that are likely to change the
value of the expression after conversion. Implied by `-Wall'.
`-Wconversion-extra'
Warn about implicit conversions between different types and kinds.
`-Wimplicit-interface'
Warn if a procedure is called without an explicit interface. Note
this only checks that an explicit interface is present. It does
not check that the declared interfaces are consistent across
program units.
`-Wimplicit-procedure'
Warn if a procedure is called that has neither an explicit
interface nor has been declared as `EXTERNAL'.
`-Wintrinsics-std'
Warn if `gfortran' finds a procedure named like an intrinsic not
available in the currently selected standard (with `-std') and
treats it as `EXTERNAL' procedure because of this.
`-fall-intrinsics' can be used to never trigger this behavior and
always link to the intrinsic regardless of the selected standard.
`-Wreal-q-constant'
Produce a warning if a real-literal-constant contains a `q'
exponent-letter.
`-Wsurprising'
Produce a warning when "suspicious" code constructs are
encountered. While technically legal these usually indicate that
an error has been made.
This currently produces a warning under the following
circumstances:
* An INTEGER SELECT construct has a CASE that can never be
matched as its lower value is greater than its upper value.
* A LOGICAL SELECT construct has three CASE statements.
* A TRANSFER specifies a source that is shorter than the
destination.
* The type of a function result is declared more than once with
the same type. If `-pedantic' or standard-conforming mode is
enabled, this is an error.
* A `CHARACTER' variable is declared with negative length.
`-Wtabs'
By default, tabs are accepted as whitespace, but tabs are not
members of the Fortran Character Set. For continuation lines, a
tab followed by a digit between 1 and 9 is supported. `-Wno-tabs'
will cause a warning to be issued if a tab is encountered. Note,
`-Wno-tabs' is active for `-pedantic', `-std=f95', `-std=f2003',
`-std=f2008' and `-Wall'.
`-Wunderflow'
Produce a warning when numerical constant expressions are
encountered, which yield an UNDERFLOW during compilation.
`-Wintrinsic-shadow'
Warn if a user-defined procedure or module procedure has the same
name as an intrinsic; in this case, an explicit interface or
`EXTERNAL' or `INTRINSIC' declaration might be needed to get calls
later resolved to the desired intrinsic/procedure.
`-Wunused-dummy-argument'
Warn about unused dummy arguments. This option is implied by
`-Wall'.
`-Wunused-parameter'
Contrary to `gcc''s meaning of `-Wunused-parameter', `gfortran''s
implementation of this option does not warn about unused dummy
arguments (see `-Wunused-dummy-argument'), but about unused
`PARAMETER' values. `-Wunused-parameter' is not included in
`-Wall' but is implied by `-Wall -Wextra'.
`-Walign-commons'
By default, `gfortran' warns about any occasion of variables being
padded for proper alignment inside a `COMMON' block. This warning
can be turned off via `-Wno-align-commons'. See also
`-falign-commons'.
`-Werror'
Turns all warnings into errors.
*Note Options to Request or Suppress Errors and Warnings:
(gcc)Warning Options, for information on more options offered by the
GBE shared by `gfortran', `gcc' and other GNU compilers.
Some of these have no effect when compiling programs written in
Fortran.
File: gfortran.info, Node: Debugging Options, Next: Directory Options, Prev: Error and Warning Options, Up: Invoking GNU Fortran
2.5 Options for debugging your program or GNU Fortran
=====================================================
GNU Fortran has various special options that are used for debugging
either your program or the GNU Fortran compiler.
`-fdump-fortran-original'
Output the internal parse tree after translating the source program
into internal representation. Only really useful for debugging the
GNU Fortran compiler itself.
`-fdump-optimized-tree'
Output the parse tree after front-end optimization. Only really
useful for debugging the GNU Fortran compiler itself.
Output the internal parse tree after translating the source program
into internal representation. Only really useful for debugging the
GNU Fortran compiler itself. This option is deprecated; use
`-fdump-fortran-original' instead.
`-ffpe-trap=LIST'
Specify a list of IEEE exceptions when a Floating Point Exception
(FPE) should be raised. On most systems, this will result in a
SIGFPE signal being sent and the program being interrupted,
producing a core file useful for debugging. LIST is a (possibly
empty) comma-separated list of the following IEEE exceptions:
`invalid' (invalid floating point operation, such as
`SQRT(-1.0)'), `zero' (division by zero), `overflow' (overflow in
a floating point operation), `underflow' (underflow in a floating
point operation), `precision' (loss of precision during operation)
and `denormal' (operation produced a denormal value).
Some of the routines in the Fortran runtime library, like
`CPU_TIME', are likely to trigger floating point exceptions when
`ffpe-trap=precision' is used. For this reason, the use of
`ffpe-trap=precision' is not recommended.
`-fbacktrace'
Specify that, when a runtime error is encountered or a deadly
signal is emitted (segmentation fault, illegal instruction, bus
error or floating-point exception), the Fortran runtime library
should output a backtrace of the error. This option only has
influence for compilation of the Fortran main program.
`-fdump-core'
Request that a core-dump file is written to disk when a runtime
error is encountered on systems that support core dumps. This
option is only effective for the compilation of the Fortran main
program.
*Note Options for Debugging Your Program or GCC: (gcc)Debugging
Options, for more information on debugging options.
File: gfortran.info, Node: Directory Options, Next: Link Options, Prev: Debugging Options, Up: Invoking GNU Fortran
2.6 Options for directory search
================================
These options affect how GNU Fortran searches for files specified by
the `INCLUDE' directive and where it searches for previously compiled
modules.
It also affects the search paths used by `cpp' when used to
preprocess Fortran source.
`-IDIR'
These affect interpretation of the `INCLUDE' directive (as well as
of the `#include' directive of the `cpp' preprocessor).
Also note that the general behavior of `-I' and `INCLUDE' is
pretty much the same as of `-I' with `#include' in the `cpp'
preprocessor, with regard to looking for `header.gcc' files and
other such things.
This path is also used to search for `.mod' files when previously
compiled modules are required by a `USE' statement.
*Note Options for Directory Search: (gcc)Directory Options, for
information on the `-I' option.
`-JDIR'
This option specifies where to put `.mod' files for compiled
modules. It is also added to the list of directories to searched
by an `USE' statement.
The default is the current directory.
`-fintrinsic-modules-path DIR'
This option specifies the location of pre-compiled intrinsic
modules, if they are not in the default location expected by the
compiler.
File: gfortran.info, Node: Link Options, Next: Runtime Options, Prev: Directory Options, Up: Invoking GNU Fortran
2.7 Influencing the linking step
================================
These options come into play when the compiler links object files into
an executable output file. They are meaningless if the compiler is not
doing a link step.
`-static-libgfortran'
On systems that provide `libgfortran' as a shared and a static
library, this option forces the use of the static version. If no
shared version of `libgfortran' was built when the compiler was
configured, this option has no effect.
File: gfortran.info, Node: Runtime Options, Next: Code Gen Options, Prev: Link Options, Up: Invoking GNU Fortran
2.8 Influencing runtime behavior
================================
These options affect the runtime behavior of programs compiled with GNU
Fortran.
`-fconvert=CONVERSION'
Specify the representation of data for unformatted files. Valid
values for conversion are: `native', the default; `swap', swap
between big- and little-endian; `big-endian', use big-endian
representation for unformatted files; `little-endian', use
little-endian representation for unformatted files.
_This option has an effect only when used in the main program.
The `CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment
variable override the default specified by `-fconvert'._
`-fno-range-check'
Disable range checking of input values during integer `READ'
operations. For example, GNU Fortran will give an error if an
input value is outside of the relevant range of
[`-HUGE()':`HUGE()']. In other words, with `INTEGER (kind=4) :: i'
, attempting to read -2147483648 will give an error unless
`-fno-range-check' is given.
`-frecord-marker=LENGTH'
Specify the length of record markers for unformatted files. Valid
values for LENGTH are 4 and 8. Default is 4. _This is different
from previous versions of `gfortran'_, which specified a default
record marker length of 8 on most systems. If you want to read or
write files compatible with earlier versions of `gfortran', use
`-frecord-marker=8'.
`-fmax-subrecord-length=LENGTH'
Specify the maximum length for a subrecord. The maximum permitted
value for length is 2147483639, which is also the default. Only
really useful for use by the gfortran testsuite.
`-fsign-zero'
When enabled, floating point numbers of value zero with the sign
bit set are written as negative number in formatted output and
treated as negative in the `SIGN' intrinsic. `fno-sign-zero' does
not print the negative sign of zero values and regards zero as
positive number in the `SIGN' intrinsic for compatibility with F77.
Default behavior is to show the negative sign.
File: gfortran.info, Node: Code Gen Options, Next: Environment Variables, Prev: Runtime Options, Up: Invoking GNU Fortran
2.9 Options for code generation conventions
===========================================
These machine-independent options control the interface conventions
used in code generation.
Most of them have both positive and negative forms; the negative form
of `-ffoo' would be `-fno-foo'. In the table below, only one of the
forms is listed--the one which is not the default. You can figure out
the other form by either removing `no-' or adding it.
`-fno-automatic'
Treat each program unit (except those marked as RECURSIVE) as if
the `SAVE' statement were specified for every local variable and
array referenced in it. Does not affect common blocks. (Some
Fortran compilers provide this option under the name `-static' or
`-save'.) The default, which is `-fautomatic', uses the stack for
local variables smaller than the value given by
`-fmax-stack-var-size'. Use the option `-frecursive' to use no
static memory.
`-ff2c'
Generate code designed to be compatible with code generated by
`g77' and `f2c'.
The calling conventions used by `g77' (originally implemented in
`f2c') require functions that return type default `REAL' to
actually return the C type `double', and functions that return
type `COMPLEX' to return the values via an extra argument in the
calling sequence that points to where to store the return value.
Under the default GNU calling conventions, such functions simply
return their results as they would in GNU C--default `REAL'
functions return the C type `float', and `COMPLEX' functions
return the GNU C type `complex'. Additionally, this option
implies the `-fsecond-underscore' option, unless
`-fno-second-underscore' is explicitly requested.
This does not affect the generation of code that interfaces with
the `libgfortran' library.
_Caution:_ It is not a good idea to mix Fortran code compiled with
`-ff2c' with code compiled with the default `-fno-f2c' calling
conventions as, calling `COMPLEX' or default `REAL' functions
between program parts which were compiled with different calling
conventions will break at execution time.
_Caution:_ This will break code which passes intrinsic functions
of type default `REAL' or `COMPLEX' as actual arguments, as the
library implementations use the `-fno-f2c' calling conventions.
`-fno-underscoring'
Do not transform names of entities specified in the Fortran source
file by appending underscores to them.
With `-funderscoring' in effect, GNU Fortran appends one
underscore to external names with no underscores. This is done to
ensure compatibility with code produced by many UNIX Fortran
compilers.
_Caution_: The default behavior of GNU Fortran is incompatible
with `f2c' and `g77', please use the `-ff2c' option if you want
object files compiled with GNU Fortran to be compatible with
object code created with these tools.
Use of `-fno-underscoring' is not recommended unless you are
experimenting with issues such as integration of GNU Fortran into
existing system environments (vis-a`-vis existing libraries, tools,
and so on).
For example, with `-funderscoring', and assuming other defaults
like `-fcase-lower' and that `j()' and `max_count()' are external
functions while `my_var' and `lvar' are local variables, a
statement like
I = J() + MAX_COUNT (MY_VAR, LVAR)
is implemented as something akin to:
i = j_() + max_count__(&my_var__, &lvar);
With `-fno-underscoring', the same statement is implemented as:
i = j() + max_count(&my_var, &lvar);
Use of `-fno-underscoring' allows direct specification of
user-defined names while debugging and when interfacing GNU Fortran
code with other languages.
Note that just because the names match does _not_ mean that the
interface implemented by GNU Fortran for an external name matches
the interface implemented by some other language for that same
name. That is, getting code produced by GNU Fortran to link to
code produced by some other compiler using this or any other
method can be only a small part of the overall solution--getting
the code generated by both compilers to agree on issues other than
naming can require significant effort, and, unlike naming
disagreements, linkers normally cannot detect disagreements in
these other areas.
Also, note that with `-fno-underscoring', the lack of appended
underscores introduces the very real possibility that a
user-defined external name will conflict with a name in a system
library, which could make finding unresolved-reference bugs quite
difficult in some cases--they might occur at program run time, and
show up only as buggy behavior at run time.
In future versions of GNU Fortran we hope to improve naming and
linking issues so that debugging always involves using the names
as they appear in the source, even if the names as seen by the
linker are mangled to prevent accidental linking between
procedures with incompatible interfaces.
`-fno-whole-file'
This flag causes the compiler to resolve and translate each
procedure in a file separately.
By default, the whole file is parsed and placed in a single
front-end tree. During resolution, in addition to all the usual
checks and fixups, references to external procedures that are in
the same file effect resolution of that procedure, if not already
done, and a check of the interfaces. The dependences are resolved
by changing the order in which the file is translated into the
backend tree. Thus, a procedure that is referenced is translated
before the reference and the duplication of backend tree
declarations eliminated.
The `-fno-whole-file' option is deprecated and may lead to wrong
code.
`-fsecond-underscore'
By default, GNU Fortran appends an underscore to external names.
If this option is used GNU Fortran appends two underscores to
names with underscores and one underscore to external names with
no underscores. GNU Fortran also appends two underscores to
internal names with underscores to avoid naming collisions with
external names.
This option has no effect if `-fno-underscoring' is in effect. It
is implied by the `-ff2c' option.
Otherwise, with this option, an external name such as `MAX_COUNT'
is implemented as a reference to the link-time external symbol
`max_count__', instead of `max_count_'. This is required for
compatibility with `g77' and `f2c', and is implied by use of the
`-ff2c' option.
`-fcoarray=<KEYWORD>'
`none'
Disable coarray support; using coarray declarations and
image-control statements will produce a compile-time error.
(Default)
`single'
Single-image mode, i.e. `num_images()' is always one.
`-fcheck=<KEYWORD>'
Enable the generation of run-time checks; the argument shall be a
comma-delimited list of the following keywords.
`all'
Enable all run-time test of `-fcheck'.
`array-temps'
Warns at run time when for passing an actual argument a
temporary array had to be generated. The information
generated by this warning is sometimes useful in
optimization, in order to avoid such temporaries.
Note: The warning is only printed once per location.
`bounds'
Enable generation of run-time checks for array subscripts and
against the declared minimum and maximum values. It also
checks array indices for assumed and deferred shape arrays
against the actual allocated bounds and ensures that all
string lengths are equal for character array constructors
without an explicit typespec.
Some checks require that `-fcheck=bounds' is set for the
compilation of the main program.
Note: In the future this may also include other forms of
checking, e.g., checking substring references.
`do'
Enable generation of run-time checks for invalid modification
of loop iteration variables.
`mem'
Enable generation of run-time checks for memory allocation.
Note: This option does not affect explicit allocations using
the `ALLOCATE' statement, which will be always checked.
`pointer'
Enable generation of run-time checks for pointers and
allocatables.
`recursion'
Enable generation of run-time checks for recursively called
subroutines and functions which are not marked as recursive.
See also `-frecursive'. Note: This check does not work for
OpenMP programs and is disabled if used together with
`-frecursive' and `-fopenmp'.
`-fbounds-check'
Deprecated alias for `-fcheck=bounds'.
`-fcheck-array-temporaries'
Deprecated alias for `-fcheck=array-temps'.
`-fmax-array-constructor=N'
This option can be used to increase the upper limit permitted in
array constructors. The code below requires this option to expand
the array at compile time.
program test
implicit none
integer j
integer, parameter :: n = 100000
integer, parameter :: i(n) = (/ (2*j, j = 1, n) /)
print '(10(I0,1X))', i
end program test
_Caution: This option can lead to long compile times and
excessively large object files._
The default value for N is 65535.
`-fmax-stack-var-size=N'
This option specifies the size in bytes of the largest array that
will be put on the stack; if the size is exceeded static memory is
used (except in procedures marked as RECURSIVE). Use the option
`-frecursive' to allow for recursive procedures which do not have
a RECURSIVE attribute or for parallel programs. Use
`-fno-automatic' to never use the stack.
This option currently only affects local arrays declared with
constant bounds, and may not apply to all character variables.
Future versions of GNU Fortran may improve this behavior.
The default value for N is 32768.
`-fpack-derived'
This option tells GNU Fortran to pack derived type members as
closely as possible. Code compiled with this option is likely to
be incompatible with code compiled without this option, and may
execute slower.
`-frepack-arrays'
In some circumstances GNU Fortran may pass assumed shape array
sections via a descriptor describing a noncontiguous area of
memory. This option adds code to the function prologue to repack
the data into a contiguous block at runtime.
This should result in faster accesses to the array. However it
can introduce significant overhead to the function call,
especially when the passed data is noncontiguous.
`-fshort-enums'
This option is provided for interoperability with C code that was
compiled with the `-fshort-enums' option. It will make GNU
Fortran choose the smallest `INTEGER' kind a given enumerator set
will fit in, and give all its enumerators this kind.
`-fexternal-blas'
This option will make `gfortran' generate calls to BLAS functions
for some matrix operations like `MATMUL', instead of using our own
algorithms, if the size of the matrices involved is larger than a
given limit (see `-fblas-matmul-limit'). This may be profitable
if an optimized vendor BLAS library is available. The BLAS
library will have to be specified at link time.
`-fblas-matmul-limit=N'
Only significant when `-fexternal-blas' is in effect. Matrix
multiplication of matrices with size larger than (or equal to) N
will be performed by calls to BLAS functions, while others will be
handled by `gfortran' internal algorithms. If the matrices
involved are not square, the size comparison is performed using the
geometric mean of the dimensions of the argument and result
matrices.
The default value for N is 30.
`-frecursive'
Allow indirect recursion by forcing all local arrays to be
allocated on the stack. This flag cannot be used together with
`-fmax-stack-var-size=' or `-fno-automatic'.
`-finit-local-zero'
`-finit-integer=N'
`-finit-real=<ZERO|INF|-INF|NAN|SNAN>'
`-finit-logical=<TRUE|FALSE>'
`-finit-character=N'
The `-finit-local-zero' option instructs the compiler to
initialize local `INTEGER', `REAL', and `COMPLEX' variables to
zero, `LOGICAL' variables to false, and `CHARACTER' variables to a
string of null bytes. Finer-grained initialization options are
provided by the `-finit-integer=N',
`-finit-real=<ZERO|INF|-INF|NAN|SNAN>' (which also initializes the
real and imaginary parts of local `COMPLEX' variables),
`-finit-logical=<TRUE|FALSE>', and `-finit-character=N' (where N
is an ASCII character value) options. These options do not
initialize
* allocatable arrays
* components of derived type variables
* variables that appear in an `EQUIVALENCE' statement.
(These limitations may be removed in future releases).
Note that the `-finit-real=nan' option initializes `REAL' and
`COMPLEX' variables with a quiet NaN. For a signalling NaN use
`-finit-real=snan'; note, however, that compile-time optimizations
may convert them into quiet NaN and that trapping needs to be
enabled (e.g. via `-ffpe-trap').
`-falign-commons'
By default, `gfortran' enforces proper alignment of all variables
in a `COMMON' block by padding them as needed. On certain
platforms this is mandatory, on others it increases performance.
If a `COMMON' block is not declared with consistent data types
everywhere, this padding can cause trouble, and
`-fno-align-commons' can be used to disable automatic alignment.
The same form of this option should be used for all files that
share a `COMMON' block. To avoid potential alignment issues in
`COMMON' blocks, it is recommended to order objects from largest
to smallest.
`-fno-protect-parens'
By default the parentheses in expression are honored for all
optimization levels such that the compiler does not do any
re-association. Using `-fno-protect-parens' allows the compiler to
reorder `REAL' and `COMPLEX' expressions to produce faster code.
Note that for the re-association optimization `-fno-signed-zeros'
and `-fno-trapping-math' need to be in effect.
`-frealloc-lhs'
An allocatable left-hand side of an intrinsic assignment is
automatically (re)allocated if it is either unallocated or has a
different shape. The option is enabled by default except when
`-std=f95' is given.
*Note Options for Code Generation Conventions: (gcc)Code Gen
Options, for information on more options offered by the GBE shared by
`gfortran', `gcc', and other GNU compilers.
File: gfortran.info, Node: Environment Variables, Prev: Code Gen Options, Up: Invoking GNU Fortran
2.10 Environment variables affecting `gfortran'
===============================================
The `gfortran' compiler currently does not make use of any environment
variables to control its operation above and beyond those that affect
the operation of `gcc'.
*Note Environment Variables Affecting GCC: (gcc)Environment
Variables, for information on environment variables.
*Note Runtime::, for environment variables that affect the run-time
behavior of programs compiled with GNU Fortran.
File: gfortran.info, Node: Runtime, Next: Fortran 2003 and 2008 status, Prev: Invoking GNU Fortran, Up: Top
3 Runtime: Influencing runtime behavior with environment variables
*******************************************************************
The behavior of the `gfortran' can be influenced by environment
variables.
Malformed environment variables are silently ignored.
* Menu:
* GFORTRAN_STDIN_UNIT:: Unit number for standard input
* GFORTRAN_STDOUT_UNIT:: Unit number for standard output
* GFORTRAN_STDERR_UNIT:: Unit number for standard error
* GFORTRAN_USE_STDERR:: Send library output to standard error
* GFORTRAN_TMPDIR:: Directory for scratch files
* GFORTRAN_UNBUFFERED_ALL:: Don't buffer I/O for all units.
* GFORTRAN_UNBUFFERED_PRECONNECTED:: Don't buffer I/O for preconnected units.
* GFORTRAN_SHOW_LOCUS:: Show location for runtime errors
* GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
* GFORTRAN_DEFAULT_RECL:: Default record length for new files
* GFORTRAN_LIST_SEPARATOR:: Separator for list output
* GFORTRAN_CONVERT_UNIT:: Set endianness for unformatted I/O
* GFORTRAN_ERROR_DUMPCORE:: Dump core on run-time errors
* GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
File: gfortran.info, Node: GFORTRAN_STDIN_UNIT, Next: GFORTRAN_STDOUT_UNIT, Up: Runtime
3.1 `GFORTRAN_STDIN_UNIT'--Unit number for standard input
=========================================================
This environment variable can be used to select the unit number
preconnected to standard input. This must be a positive integer. The
default value is 5.
File: gfortran.info, Node: GFORTRAN_STDOUT_UNIT, Next: GFORTRAN_STDERR_UNIT, Prev: GFORTRAN_STDIN_UNIT, Up: Runtime
3.2 `GFORTRAN_STDOUT_UNIT'--Unit number for standard output
===========================================================
This environment variable can be used to select the unit number
preconnected to standard output. This must be a positive integer. The
default value is 6.
File: gfortran.info, Node: GFORTRAN_STDERR_UNIT, Next: GFORTRAN_USE_STDERR, Prev: GFORTRAN_STDOUT_UNIT, Up: Runtime
3.3 `GFORTRAN_STDERR_UNIT'--Unit number for standard error
==========================================================
This environment variable can be used to select the unit number
preconnected to standard error. This must be a positive integer. The
default value is 0.
File: gfortran.info, Node: GFORTRAN_USE_STDERR, Next: GFORTRAN_TMPDIR, Prev: GFORTRAN_STDERR_UNIT, Up: Runtime
3.4 `GFORTRAN_USE_STDERR'--Send library output to standard error
================================================================
This environment variable controls where library output is sent. If
the first letter is `y', `Y' or `1', standard error is used. If the
first letter is `n', `N' or `0', standard output is used.
File: gfortran.info, Node: GFORTRAN_TMPDIR, Next: GFORTRAN_UNBUFFERED_ALL, Prev: GFORTRAN_USE_STDERR, Up: Runtime
3.5 `GFORTRAN_TMPDIR'--Directory for scratch files
==================================================
This environment variable controls where scratch files are created. If
this environment variable is missing, GNU Fortran searches for the
environment variable `TMP', then `TEMP'. If these are missing, the
default is `/tmp'.
File: gfortran.info, Node: GFORTRAN_UNBUFFERED_ALL, Next: GFORTRAN_UNBUFFERED_PRECONNECTED, Prev: GFORTRAN_TMPDIR, Up: Runtime
3.6 `GFORTRAN_UNBUFFERED_ALL'--Don't buffer I/O on all units
============================================================
This environment variable controls whether all I/O is unbuffered. If
the first letter is `y', `Y' or `1', all I/O is unbuffered. This will
slow down small sequential reads and writes. If the first letter is
`n', `N' or `0', I/O is buffered. This is the default.
File: gfortran.info, Node: GFORTRAN_UNBUFFERED_PRECONNECTED, Next: GFORTRAN_SHOW_LOCUS, Prev: GFORTRAN_UNBUFFERED_ALL, Up: Runtime
3.7 `GFORTRAN_UNBUFFERED_PRECONNECTED'--Don't buffer I/O on preconnected units
==============================================================================
The environment variable named `GFORTRAN_UNBUFFERED_PRECONNECTED'
controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is
unbuffered. If the first letter is `y', `Y' or `1', I/O is unbuffered.
This will slow down small sequential reads and writes. If the first
letter is `n', `N' or `0', I/O is buffered. This is the default.
File: gfortran.info, Node: GFORTRAN_SHOW_LOCUS, Next: GFORTRAN_OPTIONAL_PLUS, Prev: GFORTRAN_UNBUFFERED_PRECONNECTED, Up: Runtime
3.8 `GFORTRAN_SHOW_LOCUS'--Show location for runtime errors
===========================================================
If the first letter is `y', `Y' or `1', filename and line numbers for
runtime errors are printed. If the first letter is `n', `N' or `0',
don't print filename and line numbers for runtime errors. The default
is to print the location.
File: gfortran.info, Node: GFORTRAN_OPTIONAL_PLUS, Next: GFORTRAN_DEFAULT_RECL, Prev: GFORTRAN_SHOW_LOCUS, Up: Runtime
3.9 `GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted
=============================================================
If the first letter is `y', `Y' or `1', a plus sign is printed where
permitted by the Fortran standard. If the first letter is `n', `N' or
`0', a plus sign is not printed in most cases. Default is not to print
plus signs.
File: gfortran.info, Node: GFORTRAN_DEFAULT_RECL, Next: GFORTRAN_LIST_SEPARATOR, Prev: GFORTRAN_OPTIONAL_PLUS, Up: Runtime
3.10 `GFORTRAN_DEFAULT_RECL'--Default record length for new files
=================================================================
This environment variable specifies the default record length, in
bytes, for files which are opened without a `RECL' tag in the `OPEN'
statement. This must be a positive integer. The default value is
1073741824 bytes (1 GB).
File: gfortran.info, Node: GFORTRAN_LIST_SEPARATOR, Next: GFORTRAN_CONVERT_UNIT, Prev: GFORTRAN_DEFAULT_RECL, Up: Runtime
3.11 `GFORTRAN_LIST_SEPARATOR'--Separator for list output
=========================================================
This environment variable specifies the separator when writing
list-directed output. It may contain any number of spaces and at most
one comma. If you specify this on the command line, be sure to quote
spaces, as in
$ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out
when `a.out' is the compiled Fortran program that you want to run.
Default is a single space.
File: gfortran.info, Node: GFORTRAN_CONVERT_UNIT, Next: GFORTRAN_ERROR_DUMPCORE, Prev: GFORTRAN_LIST_SEPARATOR, Up: Runtime
3.12 `GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O
================================================================
By setting the `GFORTRAN_CONVERT_UNIT' variable, it is possible to
change the representation of data for unformatted files. The syntax
for the `GFORTRAN_CONVERT_UNIT' variable is:
GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
exception: mode ':' unit_list | unit_list ;
unit_list: unit_spec | unit_list unit_spec ;
unit_spec: INTEGER | INTEGER '-' INTEGER ;
The variable consists of an optional default mode, followed by a
list of optional exceptions, which are separated by semicolons from the
preceding default and each other. Each exception consists of a format
and a comma-separated list of units. Valid values for the modes are
the same as for the `CONVERT' specifier:
`NATIVE' Use the native format. This is the default.
`SWAP' Swap between little- and big-endian.
`LITTLE_ENDIAN' Use the little-endian format for unformatted files.
`BIG_ENDIAN' Use the big-endian format for unformatted files.
A missing mode for an exception is taken to mean `BIG_ENDIAN'.
Examples of values for `GFORTRAN_CONVERT_UNIT' are:
`'big_endian'' Do all unformatted I/O in big_endian mode.
`'little_endian;native:10-20,25'' Do all unformatted I/O in
little_endian mode, except for units 10 to 20 and 25, which are in
native format.
`'10-20'' Units 10 to 20 are big-endian, the rest is native.
Setting the environment variables should be done on the command line
or via the `export' command for `sh'-compatible shells and via `setenv'
for `csh'-compatible shells.
Example for `sh':
$ gfortran foo.f90
$ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
Example code for `csh':
% gfortran foo.f90
% setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
% ./a.out
Using anything but the native representation for unformatted data
carries a significant speed overhead. If speed in this area matters to
you, it is best if you use this only for data that needs to be portable.
*Note CONVERT specifier::, for an alternative way to specify the
data representation for unformatted files. *Note Runtime Options::, for
setting a default data representation for the whole program. The
`CONVERT' specifier overrides the `-fconvert' compile options.
_Note that the values specified via the GFORTRAN_CONVERT_UNIT
environment variable will override the CONVERT specifier in the open
statement_. This is to give control over data formats to users who do
not have the source code of their program available.
File: gfortran.info, Node: GFORTRAN_ERROR_DUMPCORE, Next: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_CONVERT_UNIT, Up: Runtime
3.13 `GFORTRAN_ERROR_DUMPCORE'--Dump core on run-time errors
============================================================
If the `GFORTRAN_ERROR_DUMPCORE' variable is set to `y', `Y' or `1'
(only the first letter is relevant) then library run-time errors cause
core dumps. To disable the core dumps, set the variable to `n', `N',
`0'. Default is not to core dump unless the `-fdump-core' compile
option was used.
File: gfortran.info, Node: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_ERROR_DUMPCORE, Up: Runtime
3.14 `GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors
==================================================================
If the `GFORTRAN_ERROR_BACKTRACE' variable is set to `y', `Y' or `1'
(only the first letter is relevant) then a backtrace is printed when a
run-time error occurs. To disable the backtracing, set the variable to
`n', `N', `0'. Default is not to print a backtrace unless the
`-fbacktrace' compile option was used.
File: gfortran.info, Node: Fortran 2003 and 2008 status, Next: Compiler Characteristics, Prev: Runtime, Up: Top
4 Fortran 2003 and 2008 Status
******************************
* Menu:
* Fortran 2003 status::
* Fortran 2008 status::
File: gfortran.info, Node: Fortran 2003 status, Next: Fortran 2008 status, Up: Fortran 2003 and 2008 status
4.1 Fortran 2003 status
=======================
GNU Fortran supports several Fortran 2003 features; an incomplete list
can be found below. See also the wiki page
(http://gcc.gnu.org/wiki/Fortran2003) about Fortran 2003.
* Procedure pointers including procedure-pointer components with
`PASS' attribute.
* Procedures which are bound to a derived type (type-bound
procedures) including `PASS', `PROCEDURE' and `GENERIC', and
operators bound to a type.
* Abstract interfaces and and type extension with the possibility to
override type-bound procedures or to have deferred binding.
* Polymorphic entities ("`CLASS'") for derived types - including
`SAME_TYPE_AS', `EXTENDS_TYPE_OF' and `SELECT TYPE'. Note that
the support for array-valued polymorphic entities is incomplete
and unlimited polymophism is currently not supported.
* The `ASSOCIATE' construct.
* Interoperability with C including enumerations,
* In structure constructors the components with default values may be
omitted.
* Extensions to the `ALLOCATE' statement, allowing for a
type-specification with type parameter and for allocation and
initialization from a `SOURCE=' expression; `ALLOCATE' and
`DEALLOCATE' optionally return an error message string via
`ERRMSG='.
* Reallocation on assignment: If an intrinsic assignment is used, an
allocatable variable on the left-hand side is automatically
allocated (if unallocated) or reallocated (if the shape is
different). Currently, scalar deferred character length left-hand
sides are correctly handled but arrays are not yet fully
implemented.
* Transferring of allocations via `MOVE_ALLOC'.
* The `PRIVATE' and `PUBLIC' attributes may be given individually to
derived-type components.
* In pointer assignments, the lower bound may be specified and the
remapping of elements is supported.
* For pointers an `INTENT' may be specified which affect the
association status not the value of the pointer target.
* Intrinsics `command_argument_count', `get_command',
`get_command_argument', and `get_environment_variable'.
* Support for unicode characters (ISO 10646) and UTF-8, including
the `SELECTED_CHAR_KIND' and `NEW_LINE' intrinsic functions.
* Support for binary, octal and hexadecimal (BOZ) constants in the
intrinsic functions `INT', `REAL', `CMPLX' and `DBLE'.
* Support for namelist variables with allocatable and pointer
attribute and nonconstant length type parameter.
* Array constructors using square brackets. That is, `[...]' rather
than `(/.../)'. Type-specification for array constructors like
`(/ some-type :: ... /)'.
* Extensions to the specification and initialization expressions,
including the support for intrinsics with real and complex
arguments.
* Support for the asynchronous input/output syntax; however, the
data transfer is currently always synchronously performed.
* `FLUSH' statement.
* `IOMSG=' specifier for I/O statements.
* Support for the declaration of enumeration constants via the
`ENUM' and `ENUMERATOR' statements. Interoperability with `gcc'
is guaranteed also for the case where the `-fshort-enums' command
line option is given.
* TR 15581:
* `ALLOCATABLE' dummy arguments.
* `ALLOCATABLE' function results
* `ALLOCATABLE' components of derived types
* The `OPEN' statement supports the `ACCESS='STREAM'' specifier,
allowing I/O without any record structure.
* Namelist input/output for internal files.
* Further I/O extensions: Rounding during formatted output, using of
a decimal comma instead of a decimal point, setting whether a plus
sign should appear for positive numbers.
* The `PROTECTED' statement and attribute.
* The `VALUE' statement and attribute.
* The `VOLATILE' statement and attribute.
* The `IMPORT' statement, allowing to import host-associated derived
types.
* The intrinsic modules `ISO_FORTRAN_ENVIRONMENT' is supported,
which contains parameters of the I/O units, storage sizes.
Additionally, procedures for C interoperability are available in
the `ISO_C_BINDING' module.
* `USE' statement with `INTRINSIC' and `NON_INTRINSIC' attribute;
supported intrinsic modules: `ISO_FORTRAN_ENV', `ISO_C_BINDING',
`OMP_LIB' and `OMP_LIB_KINDS'.
* Renaming of operators in the `USE' statement.
File: gfortran.info, Node: Fortran 2008 status, Prev: Fortran 2003 status, Up: Fortran 2003 and 2008 status
4.2 Fortran 2008 status
=======================
The latest version of the Fortran standard is ISO/IEC 1539-1:2010,
informally known as Fortran 2008. The official version is available
from International Organization for Standardization (ISO) or its
national member organizations. The the final draft (FDIS) can be
downloaded free of charge from
`http://www.nag.co.uk/sc22wg5/links.html'. Fortran is developed by the
Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1
of the International Organization for Standardization and the
International Electrotechnical Commission (IEC). This group is known as
WG5 (http://www.nag.co.uk/sc22wg5/).
The GNU Fortran supports several of the new features of Fortran
2008; the wiki (http://gcc.gnu.org/wiki/Fortran2008Status) has some
information about the current Fortran 2008 implementation status. In
particular, the following is implemented.
* The `-std=f2008' option and support for the file extensions `.f08'
and `.F08'.
* The `OPEN' statement now supports the `NEWUNIT=' option, which
returns a unique file unit, thus preventing inadvertent use of the
same unit in different parts of the program.
* The `g0' format descriptor and unlimited format items.
* The mathematical intrinsics `ASINH', `ACOSH', `ATANH', `ERF',
`ERFC', `GAMMA', `LOG_GAMMA', `BESSEL_J0', `BESSEL_J1',
`BESSEL_JN', `BESSEL_Y0', `BESSEL_Y1', `BESSEL_YN', `HYPOT',
`NORM2', and `ERFC_SCALED'.
* Using complex arguments with `TAN', `SINH', `COSH', `TANH',
`ASIN', `ACOS', and `ATAN' is now possible; `ATAN'(Y,X) is now an
alias for `ATAN2'(Y,X).
* Support of the `PARITY' intrinsic functions.
* The following bit intrinsics: `LEADZ' and `TRAILZ' for counting
the number of leading and trailing zero bits, `POPCNT' and
`POPPAR' for counting the number of one bits and returning the
parity; `BGE', `BGT', `BLE', and `BLT' for bitwise comparisons;
`DSHIFTL' and `DSHIFTR' for combined left and right shifts,
`MASKL' and `MASKR' for simple left and right justified masks,
`MERGE_BITS' for a bitwise merge using a mask, `SHIFTA', `SHIFTL'
and `SHIFTR' for shift operations, and the transformational bit
intrinsics `IALL', `IANY' and `IPARITY'.
* Support of the `EXECUTE_COMMAND_LINE' intrinsic subroutine.
* Support for the `STORAGE_SIZE' intrinsic inquiry function.
* The `INT{8,16,32}' and `REAL{32,64,128}' kind type parameters and
the array-valued named constants `INTEGER_KINDS', `LOGICAL_KINDS',
`REAL_KINDS' and `CHARACTER_KINDS' of the intrinsic module
`ISO_FORTRAN_ENV'.
* The module procedures `C_SIZEOF' of the intrinsic module
`ISO_C_BINDINGS' and `COMPILER_VERSION' and `COMPILER_OPTIONS' of
`ISO_FORTRAN_ENV'.
* Experimental coarray support (for one image only), use the
`-fcoarray=single' flag to enable it.
* The `BLOCK' construct is supported.
* The `STOP' and the new `ERROR STOP' statements now support all
constant expressions.
* Support for the `CONTIGUOUS' attribute.
* Support for `ALLOCATE' with `MOLD'.
* Support for the `IMPURE' attribute for procedures, which allows
for `ELEMENTAL' procedures without the restrictions of `PURE'.
* Null pointers (including `NULL()') and not-allocated variables can
be used as actual argument to optional non-pointer, non-allocatable
dummy arguments, denoting an absent argument.
* Non-pointer variables with `TARGET' attribute can be used as
actual argument to `POINTER' dummies with `INTENT(IN)'.
* Pointers including procedure pointers and those in a derived type
(pointer components) can now be initialized by a target instead of
only by `NULL'.
* The `EXIT' statement (with construct-name) can be now be used to
leave not only the `DO' but also the `ASSOCIATE', `BLOCK', `IF',
`SELECT CASE' and `SELECT TYPE' constructs.
* Internal procedures can now be used as actual argument.
* Minor features: obsolesce diagnostics for `ENTRY' with
`-std=f2008'; a line may start with a semicolon; for internal and
module procedures `END' can be used instead of `END SUBROUTINE'
and `END FUNCTION'; `SELECTED_REAL_KIND' now also takes a `RADIX'
argument; intrinsic types are supported for
`TYPE'(INTRINSIC-TYPE-SPEC); multiple type-bound procedures can be
declared in a single `PROCEDURE' statement; implied-shape arrays
are supported for named constants (`PARAMETER').
File: gfortran.info, Node: Compiler Characteristics, Next: Mixed-Language Programming, Prev: Fortran 2003 and 2008 status, Up: Top
5 Compiler Characteristics
**************************
This chapter describes certain characteristics of the GNU Fortran
compiler, that are not specified by the Fortran standard, but which
might in some way or another become visible to the programmer.
* Menu:
* KIND Type Parameters::
* Internal representation of LOGICAL variables::
* Thread-safety of the runtime library::
File: gfortran.info, Node: KIND Type Parameters, Next: Internal representation of LOGICAL variables, Up: Compiler Characteristics
5.1 KIND Type Parameters
========================
The `KIND' type parameters supported by GNU Fortran for the primitive
data types are:
`INTEGER'
1, 2, 4, 8*, 16*, default: 4 (1)
`LOGICAL'
1, 2, 4, 8*, 16*, default: 4 (1)
`REAL'
4, 8, 10*, 16*, default: 4 (2)
`COMPLEX'
4, 8, 10*, 16*, default: 4 (2)
`CHARACTER'
1, 4, default: 1
* = not available on all systems
(1) Unless -fdefault-integer-8 is used
(2) Unless -fdefault-real-8 is used
The `KIND' value matches the storage size in bytes, except for
`COMPLEX' where the storage size is twice as much (or both real and
imaginary part are a real value of the given size). It is recommended
to use the `SELECTED_CHAR_KIND', `SELECTED_INT_KIND' and
`SELECTED_REAL_KIND' intrinsics or the `INT8', `INT16', `INT32',
`INT64', `REAL32', `REAL64', and `REAL128' parameters of the
`ISO_FORTRAN_ENV' module instead of the concrete values. The available
kind parameters can be found in the constant arrays `CHARACTER_KINDS',
`INTEGER_KINDS', `LOGICAL_KINDS' and `REAL_KINDS' in the
`ISO_FORTRAN_ENV' module (see *note ISO_FORTRAN_ENV::).
File: gfortran.info, Node: Internal representation of LOGICAL variables, Next: Thread-safety of the runtime library, Prev: KIND Type Parameters, Up: Compiler Characteristics
5.2 Internal representation of LOGICAL variables
================================================
The Fortran standard does not specify how variables of `LOGICAL' type
are represented, beyond requiring that `LOGICAL' variables of default
kind have the same storage size as default `INTEGER' and `REAL'
variables. The GNU Fortran internal representation is as follows.
A `LOGICAL(KIND=N)' variable is represented as an `INTEGER(KIND=N)'
variable, however, with only two permissible values: `1' for `.TRUE.'
and `0' for `.FALSE.'. Any other integer value results in undefined
behavior.
Note that for mixed-language programming using the `ISO_C_BINDING'
feature, there is a `C_BOOL' kind that can be used to create
`LOGICAL(KIND=C_BOOL)' variables which are interoperable with the C99
_Bool type. The C99 _Bool type has an internal representation
described in the C99 standard, which is identical to the above
description, i.e. with 1 for true and 0 for false being the only
permissible values. Thus the internal representation of `LOGICAL'
variables in GNU Fortran is identical to C99 _Bool, except for a
possible difference in storage size depending on the kind.
File: gfortran.info, Node: Thread-safety of the runtime library, Prev: Internal representation of LOGICAL variables, Up: Compiler Characteristics
5.3 Thread-safety of the runtime library
========================================
GNU Fortran can be used in programs with multiple threads, e.g. by
using OpenMP, by calling OS thread handling functions via the
`ISO_C_BINDING' facility, or by GNU Fortran compiled library code being
called from a multi-threaded program.
The GNU Fortran runtime library, (`libgfortran'), supports being
called concurrently from multiple threads with the following exceptions.
During library initialization, the C `getenv' function is used,
which need not be thread-safe. Similarly, the `getenv' function is
used to implement the `GET_ENVIRONMENT_VARIABLE' and `GETENV'
intrinsics. It is the responsibility of the user to ensure that the
environment is not being updated concurrently when any of these actions
are taking place.
The `EXECUTE_COMMAND_LINE' and `SYSTEM' intrinsics are implemented
with the `system' function, which need not be thread-safe. It is the
responsibility of the user to ensure that `system' is not called
concurrently.
Finally, for platforms not supporting thread-safe POSIX functions,
further functionality might not be thread-safe. For details, please
consult the documentation for your operating system.
File: gfortran.info, Node: Extensions, Next: Intrinsic Procedures, Prev: Mixed-Language Programming, Up: Top
6 Extensions
************
The two sections below detail the extensions to standard Fortran that
are implemented in GNU Fortran, as well as some of the popular or
historically important extensions that are not (or not yet) implemented.
For the latter case, we explain the alternatives available to GNU
Fortran users, including replacement by standard-conforming code or GNU
extensions.
* Menu:
* Extensions implemented in GNU Fortran::
* Extensions not implemented in GNU Fortran::
File: gfortran.info, Node: Extensions implemented in GNU Fortran, Next: Extensions not implemented in GNU Fortran, Up: Extensions
6.1 Extensions implemented in GNU Fortran
=========================================
GNU Fortran implements a number of extensions over standard Fortran.
This chapter contains information on their syntax and meaning. There
are currently two categories of GNU Fortran extensions, those that
provide functionality beyond that provided by any standard, and those
that are supported by GNU Fortran purely for backward compatibility
with legacy compilers. By default, `-std=gnu' allows the compiler to
accept both types of extensions, but to warn about the use of the
latter. Specifying either `-std=f95', `-std=f2003' or `-std=f2008'
disables both types of extensions, and `-std=legacy' allows both
without warning.
* Menu:
* Old-style kind specifications::
* Old-style variable initialization::
* Extensions to namelist::
* X format descriptor without count field::
* Commas in FORMAT specifications::
* Missing period in FORMAT specifications::
* I/O item lists::
* BOZ literal constants::
* `Q' exponent-letter::
* Real array indices::
* Unary operators::
* Implicitly convert LOGICAL and INTEGER values::
* Hollerith constants support::
* Cray pointers::
* CONVERT specifier::
* OpenMP::
* Argument list functions::
File: gfortran.info, Node: Old-style kind specifications, Next: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
6.1.1 Old-style kind specifications
-----------------------------------
GNU Fortran allows old-style kind specifications in declarations. These
look like:
TYPESPEC*size x,y,z
where `TYPESPEC' is a basic type (`INTEGER', `REAL', etc.), and
where `size' is a byte count corresponding to the storage size of a
valid kind for that type. (For `COMPLEX' variables, `size' is the
total size of the real and imaginary parts.) The statement then
declares `x', `y' and `z' to be of type `TYPESPEC' with the appropriate
kind. This is equivalent to the standard-conforming declaration
TYPESPEC(k) x,y,z
where `k' is the kind parameter suitable for the intended precision.
As kind parameters are implementation-dependent, use the `KIND',
`SELECTED_INT_KIND' and `SELECTED_REAL_KIND' intrinsics to retrieve the
correct value, for instance `REAL*8 x' can be replaced by:
INTEGER, PARAMETER :: dbl = KIND(1.0d0)
REAL(KIND=dbl) :: x
File: gfortran.info, Node: Old-style variable initialization, Next: Extensions to namelist, Prev: Old-style kind specifications, Up: Extensions implemented in GNU Fortran
6.1.2 Old-style variable initialization
---------------------------------------
GNU Fortran allows old-style initialization of variables of the form:
INTEGER i/1/,j/2/
REAL x(2,2) /3*0.,1./
The syntax for the initializers is as for the `DATA' statement, but
unlike in a `DATA' statement, an initializer only applies to the
variable immediately preceding the initialization. In other words,
something like `INTEGER I,J/2,3/' is not valid. This style of
initialization is only allowed in declarations without double colons
(`::'); the double colons were introduced in Fortran 90, which also
introduced a standard syntax for initializing variables in type
declarations.
Examples of standard-conforming code equivalent to the above example
are:
! Fortran 90
INTEGER :: i = 1, j = 2
REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
! Fortran 77
INTEGER i, j
REAL x(2,2)
DATA i/1/, j/2/, x/3*0.,1./
Note that variables which are explicitly initialized in declarations
or in `DATA' statements automatically acquire the `SAVE' attribute.
File: gfortran.info, Node: Extensions to namelist, Next: X format descriptor without count field, Prev: Old-style variable initialization, Up: Extensions implemented in GNU Fortran
6.1.3 Extensions to namelist
----------------------------
GNU Fortran fully supports the Fortran 95 standard for namelist I/O
including array qualifiers, substrings and fully qualified derived
types. The output from a namelist write is compatible with namelist
read. The output has all names in upper case and indentation to column
1 after the namelist name. Two extensions are permitted:
Old-style use of `$' instead of `&'
$MYNML
X(:)%Y(2) = 1.0 2.0 3.0
CH(1:4) = "abcd"
$END
It should be noted that the default terminator is `/' rather than
`&END'.
Querying of the namelist when inputting from stdin. After at least
one space, entering `?' sends to stdout the namelist name and the names
of the variables in the namelist:
?
&mynml
x
x%y
ch
&end
Entering `=?' outputs the namelist to stdout, as if `WRITE(*,NML =
mynml)' had been called:
=?
&MYNML
X(1)%Y= 0.000000 , 1.000000 , 0.000000 ,
X(2)%Y= 0.000000 , 2.000000 , 0.000000 ,
X(3)%Y= 0.000000 , 3.000000 , 0.000000 ,
CH=abcd, /
To aid this dialog, when input is from stdin, errors send their
messages to stderr and execution continues, even if `IOSTAT' is set.
`PRINT' namelist is permitted. This causes an error if `-std=f95'
is used.
PROGRAM test_print
REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
NAMELIST /mynml/ x
PRINT mynml
END PROGRAM test_print
Expanded namelist reads are permitted. This causes an error if
`-std=f95' is used. In the following example, the first element of the
array will be given the value 0.00 and the two succeeding elements will
be given the values 1.00 and 2.00.
&MYNML
X(1,1) = 0.00 , 1.00 , 2.00
/
File: gfortran.info, Node: X format descriptor without count field, Next: Commas in FORMAT specifications, Prev: Extensions to namelist, Up: Extensions implemented in GNU Fortran
6.1.4 `X' format descriptor without count field
-----------------------------------------------
To support legacy codes, GNU Fortran permits the count field of the `X'
edit descriptor in `FORMAT' statements to be omitted. When omitted,
the count is implicitly assumed to be one.
PRINT 10, 2, 3
10 FORMAT (I1, X, I1)
File: gfortran.info, Node: Commas in FORMAT specifications, Next: Missing period in FORMAT specifications, Prev: X format descriptor without count field, Up: Extensions implemented in GNU Fortran
6.1.5 Commas in `FORMAT' specifications
---------------------------------------
To support legacy codes, GNU Fortran allows the comma separator to be
omitted immediately before and after character string edit descriptors
in `FORMAT' statements.
PRINT 10, 2, 3
10 FORMAT ('FOO='I1' BAR='I2)
File: gfortran.info, Node: Missing period in FORMAT specifications, Next: I/O item lists, Prev: Commas in FORMAT specifications, Up: Extensions implemented in GNU Fortran
6.1.6 Missing period in `FORMAT' specifications
-----------------------------------------------
To support legacy codes, GNU Fortran allows missing periods in format
specifications if and only if `-std=legacy' is given on the command
line. This is considered non-conforming code and is discouraged.
REAL :: value
READ(*,10) value
10 FORMAT ('F4')
File: gfortran.info, Node: I/O item lists, Next: BOZ literal constants, Prev: Missing period in FORMAT specifications, Up: Extensions implemented in GNU Fortran
6.1.7 I/O item lists
--------------------
To support legacy codes, GNU Fortran allows the input item list of the
`READ' statement, and the output item lists of the `WRITE' and `PRINT'
statements, to start with a comma.
File: gfortran.info, Node: `Q' exponent-letter, Next: Real array indices, Prev: BOZ literal constants, Up: Extensions implemented in GNU Fortran
6.1.8 `Q' exponent-letter
-------------------------
GNU Fortran accepts real literal constants with an exponent-letter of
`Q', for example, `1.23Q45'. The constant is interpreted as a
`REAL(16)' entity on targets that suppports this type. If the target
does not support `REAL(16)' but has a `REAL(10)' type, then the
real-literal-constant will be interpreted as a `REAL(10)' entity. In
the absence of `REAL(16)' and `REAL(10)', an error will occur.
File: gfortran.info, Node: BOZ literal constants, Next: `Q' exponent-letter, Prev: I/O item lists, Up: Extensions implemented in GNU Fortran
6.1.9 BOZ literal constants
---------------------------
Besides decimal constants, Fortran also supports binary (`b'), octal
(`o') and hexadecimal (`z') integer constants. The syntax is: `prefix
quote digits quote', were the prefix is either `b', `o' or `z', quote
is either `'' or `"' and the digits are for binary `0' or `1', for
octal between `0' and `7', and for hexadecimal between `0' and `F'.
(Example: `b'01011101''.)
Up to Fortran 95, BOZ literals were only allowed to initialize
integer variables in DATA statements. Since Fortran 2003 BOZ literals
are also allowed as argument of `REAL', `DBLE', `INT' and `CMPLX'; the
result is the same as if the integer BOZ literal had been converted by
`TRANSFER' to, respectively, `real', `double precision', `integer' or
`complex'. As GNU Fortran extension the intrinsic procedures `FLOAT',
`DFLOAT', `COMPLEX' and `DCMPLX' are treated alike.
As an extension, GNU Fortran allows hexadecimal BOZ literal
constants to be specified using the `X' prefix, in addition to the
standard `Z' prefix. The BOZ literal can also be specified by adding a
suffix to the string, for example, `Z'ABC'' and `'ABC'Z' are equivalent.
Furthermore, GNU Fortran allows using BOZ literal constants outside
DATA statements and the four intrinsic functions allowed by Fortran
2003. In DATA statements, in direct assignments, where the right-hand
side only contains a BOZ literal constant, and for old-style
initializers of the form `integer i /o'0173'/', the constant is
transferred as if `TRANSFER' had been used; for `COMPLEX' numbers, only
the real part is initialized unless `CMPLX' is used. In all other
cases, the BOZ literal constant is converted to an `INTEGER' value with
the largest decimal representation. This value is then converted
numerically to the type and kind of the variable in question. (For
instance, `real :: r = b'0000001' + 1' initializes `r' with `2.0'.) As
different compilers implement the extension differently, one should be
careful when doing bitwise initialization of non-integer variables.
Note that initializing an `INTEGER' variable with a statement such
as `DATA i/Z'FFFFFFFF'/' will give an integer overflow error rather
than the desired result of -1 when `i' is a 32-bit integer on a system
that supports 64-bit integers. The `-fno-range-check' option can be
used as a workaround for legacy code that initializes integers in this
manner.
File: gfortran.info, Node: Real array indices, Next: Unary operators, Prev: `Q' exponent-letter, Up: Extensions implemented in GNU Fortran
6.1.10 Real array indices
-------------------------
As an extension, GNU Fortran allows the use of `REAL' expressions or
variables as array indices.
File: gfortran.info, Node: Unary operators, Next: Implicitly convert LOGICAL and INTEGER values, Prev: Real array indices, Up: Extensions implemented in GNU Fortran
6.1.11 Unary operators
----------------------
As an extension, GNU Fortran allows unary plus and unary minus operators
to appear as the second operand of binary arithmetic operators without
the need for parenthesis.
X = Y * -Z
File: gfortran.info, Node: Implicitly convert LOGICAL and INTEGER values, Next: Hollerith constants support, Prev: Unary operators, Up: Extensions implemented in GNU Fortran
6.1.12 Implicitly convert `LOGICAL' and `INTEGER' values
--------------------------------------------------------
As an extension for backwards compatibility with other compilers, GNU
Fortran allows the implicit conversion of `LOGICAL' values to `INTEGER'
values and vice versa. When converting from a `LOGICAL' to an
`INTEGER', `.FALSE.' is interpreted as zero, and `.TRUE.' is
interpreted as one. When converting from `INTEGER' to `LOGICAL', the
value zero is interpreted as `.FALSE.' and any nonzero value is
interpreted as `.TRUE.'.
LOGICAL :: l
l = 1
INTEGER :: i
i = .TRUE.
However, there is no implicit conversion of `INTEGER' values in
`if'-statements, nor of `LOGICAL' or `INTEGER' values in I/O operations.
File: gfortran.info, Node: Hollerith constants support, Next: Cray pointers, Prev: Implicitly convert LOGICAL and INTEGER values, Up: Extensions implemented in GNU Fortran
6.1.13 Hollerith constants support
----------------------------------
GNU Fortran supports Hollerith constants in assignments, function
arguments, and `DATA' and `ASSIGN' statements. A Hollerith constant is
written as a string of characters preceded by an integer constant
indicating the character count, and the letter `H' or `h', and stored
in bytewise fashion in a numeric (`INTEGER', `REAL', or `complex') or
`LOGICAL' variable. The constant will be padded or truncated to fit
the size of the variable in which it is stored.
Examples of valid uses of Hollerith constants:
complex*16 x(2)
data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
x(1) = 16HABCDEFGHIJKLMNOP
call foo (4h abc)
Invalid Hollerith constants examples:
integer*4 a
a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
a = 0H ! At least one character is needed.
In general, Hollerith constants were used to provide a rudimentary
facility for handling character strings in early Fortran compilers,
prior to the introduction of `CHARACTER' variables in Fortran 77; in
those cases, the standard-compliant equivalent is to convert the
program to use proper character strings. On occasion, there may be a
case where the intent is specifically to initialize a numeric variable
with a given byte sequence. In these cases, the same result can be
obtained by using the `TRANSFER' statement, as in this example.
INTEGER(KIND=4) :: a
a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd
File: gfortran.info, Node: Cray pointers, Next: CONVERT specifier, Prev: Hollerith constants support, Up: Extensions implemented in GNU Fortran
6.1.14 Cray pointers
--------------------
Cray pointers are part of a non-standard extension that provides a
C-like pointer in Fortran. This is accomplished through a pair of
variables: an integer "pointer" that holds a memory address, and a
"pointee" that is used to dereference the pointer.
Pointer/pointee pairs are declared in statements of the form:
pointer ( <pointer> , <pointee> )
or,
pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
The pointer is an integer that is intended to hold a memory address.
The pointee may be an array or scalar. A pointee can be an assumed
size array--that is, the last dimension may be left unspecified by
using a `*' in place of a value--but a pointee cannot be an assumed
shape array. No space is allocated for the pointee.
The pointee may have its type declared before or after the pointer
statement, and its array specification (if any) may be declared before,
during, or after the pointer statement. The pointer may be declared as
an integer prior to the pointer statement. However, some machines have
default integer sizes that are different than the size of a pointer,
and so the following code is not portable:
integer ipt
pointer (ipt, iarr)
If a pointer is declared with a kind that is too small, the compiler
will issue a warning; the resulting binary will probably not work
correctly, because the memory addresses stored in the pointers may be
truncated. It is safer to omit the first line of the above example; if
explicit declaration of ipt's type is omitted, then the compiler will
ensure that ipt is an integer variable large enough to hold a pointer.
Pointer arithmetic is valid with Cray pointers, but it is not the
same as C pointer arithmetic. Cray pointers are just ordinary
integers, so the user is responsible for determining how many bytes to
add to a pointer in order to increment it. Consider the following
example:
real target(10)
real pointee(10)
pointer (ipt, pointee)
ipt = loc (target)
ipt = ipt + 1
The last statement does not set `ipt' to the address of `target(1)',
as it would in C pointer arithmetic. Adding `1' to `ipt' just adds one
byte to the address stored in `ipt'.
Any expression involving the pointee will be translated to use the
value stored in the pointer as the base address.
To get the address of elements, this extension provides an intrinsic
function `LOC()'. The `LOC()' function is equivalent to the `&'
operator in C, except the address is cast to an integer type:
real ar(10)
pointer(ipt, arpte(10))
real arpte
ipt = loc(ar) ! Makes arpte is an alias for ar
arpte(1) = 1.0 ! Sets ar(1) to 1.0
The pointer can also be set by a call to the `MALLOC' intrinsic (see
*note MALLOC::).
Cray pointees often are used to alias an existing variable. For
example:
integer target(10)
integer iarr(10)
pointer (ipt, iarr)
ipt = loc(target)
As long as `ipt' remains unchanged, `iarr' is now an alias for
`target'. The optimizer, however, will not detect this aliasing, so it
is unsafe to use `iarr' and `target' simultaneously. Using a pointee
in any way that violates the Fortran aliasing rules or assumptions is
illegal. It is the user's responsibility to avoid doing this; the
compiler works under the assumption that no such aliasing occurs.
Cray pointers will work correctly when there is no aliasing (i.e.,
when they are used to access a dynamically allocated block of memory),
and also in any routine where a pointee is used, but any variable with
which it shares storage is not used. Code that violates these rules
may not run as the user intends. This is not a bug in the optimizer;
any code that violates the aliasing rules is illegal. (Note that this
is not unique to GNU Fortran; any Fortran compiler that supports Cray
pointers will "incorrectly" optimize code with illegal aliasing.)
There are a number of restrictions on the attributes that can be
applied to Cray pointers and pointees. Pointees may not have the
`ALLOCATABLE', `INTENT', `OPTIONAL', `DUMMY', `TARGET', `INTRINSIC', or
`POINTER' attributes. Pointers may not have the `DIMENSION',
`POINTER', `TARGET', `ALLOCATABLE', `EXTERNAL', or `INTRINSIC'
attributes, nor may they be function results. Pointees may not occur
in more than one pointer statement. A pointee cannot be a pointer.
Pointees cannot occur in equivalence, common, or data statements.
A Cray pointer may also point to a function or a subroutine. For
example, the following excerpt is valid:
implicit none
external sub
pointer (subptr,subpte)
external subpte
subptr = loc(sub)
call subpte()
[...]
subroutine sub
[...]
end subroutine sub
A pointer may be modified during the course of a program, and this
will change the location to which the pointee refers. However, when
pointees are passed as arguments, they are treated as ordinary
variables in the invoked function. Subsequent changes to the pointer
will not change the base address of the array that was passed.
File: gfortran.info, Node: CONVERT specifier, Next: OpenMP, Prev: Cray pointers, Up: Extensions implemented in GNU Fortran
6.1.15 `CONVERT' specifier
--------------------------
GNU Fortran allows the conversion of unformatted data between little-
and big-endian representation to facilitate moving of data between
different systems. The conversion can be indicated with the `CONVERT'
specifier on the `OPEN' statement. *Note GFORTRAN_CONVERT_UNIT::, for
an alternative way of specifying the data format via an environment
variable.
Valid values for `CONVERT' are:
`CONVERT='NATIVE'' Use the native format. This is the default.
`CONVERT='SWAP'' Swap between little- and big-endian.
`CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for
unformatted files.
`CONVERT='BIG_ENDIAN'' Use the big-endian representation for
unformatted files.
Using the option could look like this:
open(file='big.dat',form='unformatted',access='sequential', &
convert='big_endian')
The value of the conversion can be queried by using
`INQUIRE(CONVERT=ch)'. The values returned are `'BIG_ENDIAN'' and
`'LITTLE_ENDIAN''.
`CONVERT' works between big- and little-endian for `INTEGER' values
of all supported kinds and for `REAL' on IEEE systems of kinds 4 and 8.
Conversion between different "extended double" types on different
architectures such as m68k and x86_64, which GNU Fortran supports as
`REAL(KIND=10)' and `REAL(KIND=16)', will probably not work.
_Note that the values specified via the GFORTRAN_CONVERT_UNIT
environment variable will override the CONVERT specifier in the open
statement_. This is to give control over data formats to users who do
not have the source code of their program available.
Using anything but the native representation for unformatted data
carries a significant speed overhead. If speed in this area matters to
you, it is best if you use this only for data that needs to be portable.
File: gfortran.info, Node: OpenMP, Next: Argument list functions, Prev: CONVERT specifier, Up: Extensions implemented in GNU Fortran
6.1.16 OpenMP
-------------
OpenMP (Open Multi-Processing) is an application programming interface
(API) that supports multi-platform shared memory multiprocessing
programming in C/C++ and Fortran on many architectures, including Unix
and Microsoft Windows platforms. It consists of a set of compiler
directives, library routines, and environment variables that influence
run-time behavior.
GNU Fortran strives to be compatible to the OpenMP Application
Program Interface v3.0 (http://www.openmp.org/mp-documents/spec30.pdf).
To enable the processing of the OpenMP directive `!$omp' in
free-form source code; the `c$omp', `*$omp' and `!$omp' directives in
fixed form; the `!$' conditional compilation sentinels in free form;
and the `c$', `*$' and `!$' sentinels in fixed form, `gfortran' needs
to be invoked with the `-fopenmp'. This also arranges for automatic
linking of the GNU OpenMP runtime library *note libgomp: (libgomp)Top.
The OpenMP Fortran runtime library routines are provided both in a
form of a Fortran 90 module named `omp_lib' and in a form of a Fortran
`include' file named `omp_lib.h'.
An example of a parallelized loop taken from Appendix A.1 of the
OpenMP Application Program Interface v2.5:
SUBROUTINE A1(N, A, B)
INTEGER I, N
REAL B(N), A(N)
!$OMP PARALLEL DO !I is private by default
DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
!$OMP END PARALLEL DO
END SUBROUTINE A1
Please note:
* `-fopenmp' implies `-frecursive', i.e., all local arrays will be
allocated on the stack. When porting existing code to OpenMP,
this may lead to surprising results, especially to segmentation
faults if the stacksize is limited.
* On glibc-based systems, OpenMP enabled applications cannot be
statically linked due to limitations of the underlying
pthreads-implementation. It might be possible to get a working
solution if `-Wl,--whole-archive -lpthread -Wl,--no-whole-archive'
is added to the command line. However, this is not supported by
`gcc' and thus not recommended.
File: gfortran.info, Node: Argument list functions, Prev: OpenMP, Up: Extensions implemented in GNU Fortran
6.1.17 Argument list functions `%VAL', `%REF' and `%LOC'
--------------------------------------------------------
GNU Fortran supports argument list functions `%VAL', `%REF' and `%LOC'
statements, for backward compatibility with g77. It is recommended
that these should be used only for code that is accessing facilities
outside of GNU Fortran, such as operating system or windowing
facilities. It is best to constrain such uses to isolated portions of
a program-portions that deal specifically and exclusively with
low-level, system-dependent facilities. Such portions might well
provide a portable interface for use by the program as a whole, but are
themselves not portable, and should be thoroughly tested each time they
are rebuilt using a new compiler or version of a compiler.
`%VAL' passes a scalar argument by value, `%REF' passes it by
reference and `%LOC' passes its memory location. Since gfortran
already passes scalar arguments by reference, `%REF' is in effect a
do-nothing. `%LOC' has the same effect as a Fortran pointer.
An example of passing an argument by value to a C subroutine foo.:
C
C prototype void foo_ (float x);
C
external foo
real*4 x
x = 3.14159
call foo (%VAL (x))
end
For details refer to the g77 manual
`http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top'.
Also, `c_by_val.f' and its partner `c_by_val.c' of the GNU Fortran
testsuite are worth a look.
File: gfortran.info, Node: Extensions not implemented in GNU Fortran, Prev: Extensions implemented in GNU Fortran, Up: Extensions
6.2 Extensions not implemented in GNU Fortran
=============================================
The long history of the Fortran language, its wide use and broad
userbase, the large number of different compiler vendors and the lack of
some features crucial to users in the first standards have lead to the
existence of a number of important extensions to the language. While
some of the most useful or popular extensions are supported by the GNU
Fortran compiler, not all existing extensions are supported. This
section aims at listing these extensions and offering advice on how
best make code that uses them running with the GNU Fortran compiler.
* Menu:
* STRUCTURE and RECORD::
* ENCODE and DECODE statements::
* Variable FORMAT expressions::
* Alternate complex function syntax::
File: gfortran.info, Node: STRUCTURE and RECORD, Next: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran
6.2.1 `STRUCTURE' and `RECORD'
------------------------------
Structures are user-defined aggregate data types; this functionality was
standardized in Fortran 90 with an different syntax, under the name of
"derived types". Here is an example of code using the non portable
structure syntax:
! Declaring a structure named ``item'' and containing three fields:
! an integer ID, an description string and a floating-point price.
STRUCTURE /item/
INTEGER id
CHARACTER(LEN=200) description
REAL price
END STRUCTURE
! Define two variables, an single record of type ``item''
! named ``pear'', and an array of items named ``store_catalog''
RECORD /item/ pear, store_catalog(100)
! We can directly access the fields of both variables
pear.id = 92316
pear.description = "juicy D'Anjou pear"
pear.price = 0.15
store_catalog(7).id = 7831
store_catalog(7).description = "milk bottle"
store_catalog(7).price = 1.2
! We can also manipulate the whole structure
store_catalog(12) = pear
print *, store_catalog(12)
This code can easily be rewritten in the Fortran 90 syntax as following:
! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
! ``TYPE name ... END TYPE''
TYPE item
INTEGER id
CHARACTER(LEN=200) description
REAL price
END TYPE
! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
TYPE(item) pear, store_catalog(100)
! Instead of using a dot (.) to access fields of a record, the
! standard syntax uses a percent sign (%)
pear%id = 92316
pear%description = "juicy D'Anjou pear"
pear%price = 0.15
store_catalog(7)%id = 7831
store_catalog(7)%description = "milk bottle"
store_catalog(7)%price = 1.2
! Assignments of a whole variable don't change
store_catalog(12) = pear
print *, store_catalog(12)
File: gfortran.info, Node: ENCODE and DECODE statements, Next: Variable FORMAT expressions, Prev: STRUCTURE and RECORD, Up: Extensions not implemented in GNU Fortran
6.2.2 `ENCODE' and `DECODE' statements
--------------------------------------
GNU Fortran doesn't support the `ENCODE' and `DECODE' statements.
These statements are best replaced by `READ' and `WRITE' statements
involving internal files (`CHARACTER' variables and arrays), which have
been part of the Fortran standard since Fortran 77. For example,
replace a code fragment like
INTEGER*1 LINE(80)
REAL A, B, C
c ... Code that sets LINE
DECODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, 3(F10.5))
with the following:
CHARACTER(LEN=80) LINE
REAL A, B, C
c ... Code that sets LINE
READ (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, 3(F10.5))
Similarly, replace a code fragment like
INTEGER*1 LINE(80)
REAL A, B, C
c ... Code that sets A, B and C
ENCODE (80, 9000, LINE) A, B, C
9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
with the following:
CHARACTER(LEN=80) LINE
REAL A, B, C
c ... Code that sets A, B and C
WRITE (UNIT=LINE, FMT=9000) A, B, C
9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
File: gfortran.info, Node: Variable FORMAT expressions, Next: Alternate complex function syntax, Prev: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran
6.2.3 Variable `FORMAT' expressions
-----------------------------------
A variable `FORMAT' expression is format statement which includes angle
brackets enclosing a Fortran expression: `FORMAT(I<N>)'. GNU Fortran
does not support this legacy extension. The effect of variable format
expressions can be reproduced by using the more powerful (and standard)
combination of internal output and string formats. For example,
replace a code fragment like this:
WRITE(6,20) INT1
20 FORMAT(I<N+1>)
with the following:
c Variable declaration
CHARACTER(LEN=20) FMT
c
c Other code here...
c
WRITE(FMT,'("(I", I0, ")")') N+1
WRITE(6,FMT) INT1
or with:
c Variable declaration
CHARACTER(LEN=20) FMT
c
c Other code here...
c
WRITE(FMT,*) N+1
WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
File: gfortran.info, Node: Alternate complex function syntax, Prev: Variable FORMAT expressions, Up: Extensions not implemented in GNU Fortran
6.2.4 Alternate complex function syntax
---------------------------------------
Some Fortran compilers, including `g77', let the user declare complex
functions with the syntax `COMPLEX FUNCTION name*16()', as well as
`COMPLEX*16 FUNCTION name()'. Both are non-standard, legacy
extensions. `gfortran' accepts the latter form, which is more common,
but not the former.
File: gfortran.info, Node: Mixed-Language Programming, Next: Extensions, Prev: Compiler Characteristics, Up: Top
7 Mixed-Language Programming
****************************
* Menu:
* Interoperability with C::
* GNU Fortran Compiler Directives::
* Non-Fortran Main Program::
This chapter is about mixed-language interoperability, but also
applies if one links Fortran code compiled by different compilers. In
most cases, use of the C Binding features of the Fortran 2003 standard
is sufficient, and their use is highly recommended.
File: gfortran.info, Node: Interoperability with C, Next: GNU Fortran Compiler Directives, Up: Mixed-Language Programming
7.1 Interoperability with C
===========================
* Menu:
* Intrinsic Types::
* Derived Types and struct::
* Interoperable Global Variables::
* Interoperable Subroutines and Functions::
* Working with Pointers::
* Further Interoperability of Fortran with C::
Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized
way to generate procedure and derived-type declarations and global
variables which are interoperable with C (ISO/IEC 9899:1999). The
`bind(C)' attribute has been added to inform the compiler that a symbol
shall be interoperable with C; also, some constraints are added. Note,
however, that not all C features have a Fortran equivalent or vice
versa. For instance, neither C's unsigned integers nor C's functions
with variable number of arguments have an equivalent in Fortran.
Note that array dimensions are reversely ordered in C and that
arrays in C always start with index 0 while in Fortran they start by
default with 1. Thus, an array declaration `A(n,m)' in Fortran matches
`A[m][n]' in C and accessing the element `A(i,j)' matches
`A[j-1][i-1]'. The element following `A(i,j)' (C: `A[j-1][i-1]';
assuming i < n) in memory is `A(i+1,j)' (C: `A[j-1][i]').
File: gfortran.info, Node: Intrinsic Types, Next: Derived Types and struct, Up: Interoperability with C
7.1.1 Intrinsic Types
---------------------
In order to ensure that exactly the same variable type and kind is used
in C and Fortran, the named constants shall be used which are defined
in the `ISO_C_BINDING' intrinsic module. That module contains named
constants for kind parameters and character named constants for the
escape sequences in C. For a list of the constants, see *note
ISO_C_BINDING::.
File: gfortran.info, Node: Derived Types and struct, Next: Interoperable Global Variables, Prev: Intrinsic Types, Up: Interoperability with C
7.1.2 Derived Types and struct
------------------------------
For compatibility of derived types with `struct', one needs to use the
`BIND(C)' attribute in the type declaration. For instance, the
following type declaration
USE ISO_C_BINDING
TYPE, BIND(C) :: myType
INTEGER(C_INT) :: i1, i2
INTEGER(C_SIGNED_CHAR) :: i3
REAL(C_DOUBLE) :: d1
COMPLEX(C_FLOAT_COMPLEX) :: c1
CHARACTER(KIND=C_CHAR) :: str(5)
END TYPE
matches the following `struct' declaration in C
struct {
int i1, i2;
/* Note: "char" might be signed or unsigned. */
signed char i3;
double d1;
float _Complex c1;
char str[5];
} myType;
Derived types with the C binding attribute shall not have the
`sequence' attribute, type parameters, the `extends' attribute, nor
type-bound procedures. Every component must be of interoperable type
and kind and may not have the `pointer' or `allocatable' attribute.
The names of the variables are irrelevant for interoperability.
As there exist no direct Fortran equivalents, neither unions nor
structs with bit field or variable-length array members are
interoperable.
File: gfortran.info, Node: Interoperable Global Variables, Next: Interoperable Subroutines and Functions, Prev: Derived Types and struct, Up: Interoperability with C
7.1.3 Interoperable Global Variables
------------------------------------
Variables can be made accessible from C using the C binding attribute,
optionally together with specifying a binding name. Those variables
have to be declared in the declaration part of a `MODULE', be of
interoperable type, and have neither the `pointer' nor the
`allocatable' attribute.
MODULE m
USE myType_module
USE ISO_C_BINDING
integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
type(myType), bind(C) :: tp
END MODULE
Here, `_MyProject_flags' is the case-sensitive name of the variable
as seen from C programs while `global_flag' is the case-insensitive
name as seen from Fortran. If no binding name is specified, as for TP,
the C binding name is the (lowercase) Fortran binding name. If a
binding name is specified, only a single variable may be after the
double colon. Note of warning: You cannot use a global variable to
access ERRNO of the C library as the C standard allows it to be a
macro. Use the `IERRNO' intrinsic (GNU extension) instead.
File: gfortran.info, Node: Interoperable Subroutines and Functions, Next: Working with Pointers, Prev: Interoperable Global Variables, Up: Interoperability with C
7.1.4 Interoperable Subroutines and Functions
---------------------------------------------
Subroutines and functions have to have the `BIND(C)' attribute to be
compatible with C. The dummy argument declaration is relatively
straightforward. However, one needs to be careful because C uses
call-by-value by default while Fortran behaves usually similar to
call-by-reference. Furthermore, strings and pointers are handled
differently. Note that only explicit size and assumed-size arrays are
supported but not assumed-shape or allocatable arrays.
To pass a variable by value, use the `VALUE' attribute. Thus the
following C prototype
`int func(int i, int *j)'
matches the Fortran declaration
integer(c_int) function func(i,j)
use iso_c_binding, only: c_int
integer(c_int), VALUE :: i
integer(c_int) :: j
Note that pointer arguments also frequently need the `VALUE'
attribute, see *note Working with Pointers::.
Strings are handled quite differently in C and Fortran. In C a
string is a `NUL'-terminated array of characters while in Fortran each
string has a length associated with it and is thus not terminated (by
e.g. `NUL'). For example, if one wants to use the following C
function,
#include <stdio.h>
void print_C(char *string) /* equivalent: char string[] */
{
printf("%s\n", string);
}
to print "Hello World" from Fortran, one can call it using
use iso_c_binding, only: C_CHAR, C_NULL_CHAR
interface
subroutine print_c(string) bind(C, name="print_C")
use iso_c_binding, only: c_char
character(kind=c_char) :: string(*)
end subroutine print_c
end interface
call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
As the example shows, one needs to ensure that the string is `NUL'
terminated. Additionally, the dummy argument STRING of `print_C' is a
length-one assumed-size array; using `character(len=*)' is not allowed.
The example above uses `c_char_"Hello World"' to ensure the string
literal has the right type; typically the default character kind and
`c_char' are the same and thus `"Hello World"' is equivalent. However,
the standard does not guarantee this.
The use of strings is now further illustrated using the C library
function `strncpy', whose prototype is
char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
The function `strncpy' copies at most N characters from string S2 to
S1 and returns S1. In the following example, we ignore the return
value:
use iso_c_binding
implicit none
character(len=30) :: str,str2
interface
! Ignore the return value of strncpy -> subroutine
! "restrict" is always assumed if we do not pass a pointer
subroutine strncpy(dest, src, n) bind(C)
import
character(kind=c_char), intent(out) :: dest(*)
character(kind=c_char), intent(in) :: src(*)
integer(c_size_t), value, intent(in) :: n
end subroutine strncpy
end interface
str = repeat('X',30) ! Initialize whole string with 'X'
call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
len(c_char_"Hello World",kind=c_size_t))
print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
end
The intrinsic procedures are described in *note Intrinsic
Procedures::.
File: gfortran.info, Node: Working with Pointers, Next: Further Interoperability of Fortran with C, Prev: Interoperable Subroutines and Functions, Up: Interoperability with C
7.1.5 Working with Pointers
---------------------------
C pointers are represented in Fortran via the special opaque derived
type `type(c_ptr)' (with private components). Thus one needs to use
intrinsic conversion procedures to convert from or to C pointers. For
example,
use iso_c_binding
type(c_ptr) :: cptr1, cptr2
integer, target :: array(7), scalar
integer, pointer :: pa(:), ps
cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
! array is contiguous if required by the C
! procedure
cptr2 = c_loc(scalar)
call c_f_pointer(cptr2, ps)
call c_f_pointer(cptr2, pa, shape=[7])
When converting C to Fortran arrays, the one-dimensional `SHAPE'
argument has to be passed.
If a pointer is a dummy-argument of an interoperable procedure, it
usually has to be declared using the `VALUE' attribute. `void*'
matches `TYPE(C_PTR), VALUE', while `TYPE(C_PTR)' alone matches
`void**'.
Procedure pointers are handled analogously to pointers; the C type is
`TYPE(C_FUNPTR)' and the intrinsic conversion procedures are
`C_F_PROCPOINTER' and `C_FUNLOC'.
Let's consider two examples of actually passing a procedure pointer
from C to Fortran and vice versa. Note that these examples are also
very similar to passing ordinary pointers between both languages.
First, consider this code in C:
/* Procedure implemented in Fortran. */
void get_values (void (*)(double));
/* Call-back routine we want called from Fortran. */
void
print_it (double x)
{
printf ("Number is %f.\n", x);
}
/* Call Fortran routine and pass call-back to it. */
void
foobar ()
{
get_values (&print_it);
}
A matching implementation for `get_values' in Fortran, that correctly
receives the procedure pointer from C and is able to call it, is given
in the following `MODULE':
MODULE m
IMPLICIT NONE
! Define interface of call-back routine.
ABSTRACT INTERFACE
SUBROUTINE callback (x)
USE, INTRINSIC :: ISO_C_BINDING
REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
END SUBROUTINE callback
END INTERFACE
CONTAINS
! Define C-bound procedure.
SUBROUTINE get_values (cproc) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
PROCEDURE(callback), POINTER :: proc
! Convert C to Fortran procedure pointer.
CALL C_F_PROCPOINTER (cproc, proc)
! Call it.
CALL proc (1.0_C_DOUBLE)
CALL proc (-42.0_C_DOUBLE)
CALL proc (18.12_C_DOUBLE)
END SUBROUTINE get_values
END MODULE m
Next, we want to call a C routine that expects a procedure pointer
argument and pass it a Fortran procedure (which clearly must be
interoperable!). Again, the C function may be:
int
call_it (int (*func)(int), int arg)
{
return func (arg);
}
It can be used as in the following Fortran code:
MODULE m
USE, INTRINSIC :: ISO_C_BINDING
IMPLICIT NONE
! Define interface of C function.
INTERFACE
INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
USE, INTRINSIC :: ISO_C_BINDING
TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
END FUNCTION call_it
END INTERFACE
CONTAINS
! Define procedure passed to C function.
! It must be interoperable!
INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
double_it = arg + arg
END FUNCTION double_it
! Call C function.
SUBROUTINE foobar ()
TYPE(C_FUNPTR) :: cproc
INTEGER(KIND=C_INT) :: i
! Get C procedure pointer.
cproc = C_FUNLOC (double_it)
! Use it.
DO i = 1_C_INT, 10_C_INT
PRINT *, call_it (cproc, i)
END DO
END SUBROUTINE foobar
END MODULE m
File: gfortran.info, Node: Further Interoperability of Fortran with C, Prev: Working with Pointers, Up: Interoperability with C
7.1.6 Further Interoperability of Fortran with C
------------------------------------------------
Assumed-shape and allocatable arrays are passed using an array
descriptor (dope vector). The internal structure of the array
descriptor used by GNU Fortran is not yet documented and will change.
There will also be a Technical Report (TR 29113) which standardizes an
interoperable array descriptor. Until then, you can use the Chasm
Language Interoperability Tools,
`http://chasm-interop.sourceforge.net/', which provide an interface to
GNU Fortran's array descriptor.
The technical report 29113 will presumably also include support for
C-interoperable `OPTIONAL' and for assumed-rank and assumed-type dummy
arguments. However, the TR has neither been approved nor implemented
in GNU Fortran; therefore, these features are not yet available.
File: gfortran.info, Node: GNU Fortran Compiler Directives, Next: Non-Fortran Main Program, Prev: Interoperability with C, Up: Mixed-Language Programming
7.2 GNU Fortran Compiler Directives
===================================
The Fortran standard standard describes how a conforming program shall
behave; however, the exact implementation is not standardized. In order
to allow the user to choose specific implementation details, compiler
directives can be used to set attributes of variables and procedures
which are not part of the standard. Whether a given attribute is
supported and its exact effects depend on both the operating system and
on the processor; see *note C Extensions: (gcc)Top. for details.
For procedures and procedure pointers, the following attributes can
be used to change the calling convention:
* `CDECL' - standard C calling convention
* `STDCALL' - convention where the called procedure pops the stack
* `FASTCALL' - part of the arguments are passed via registers
instead using the stack
Besides changing the calling convention, the attributes also
influence the decoration of the symbol name, e.g., by a leading
underscore or by a trailing at-sign followed by the number of bytes on
the stack. When assigning a procedure to a procedure pointer, both
should use the same calling convention.
On some systems, procedures and global variables (module variables
and `COMMON' blocks) need special handling to be accessible when they
are in a shared library. The following attributes are available:
* `DLLEXPORT' - provide a global pointer to a pointer in the DLL
* `DLLIMPORT' - reference the function or variable using a global
pointer
The attributes are specified using the syntax
`!GCC$ ATTRIBUTES' ATTRIBUTE-LIST `::' VARIABLE-LIST
where in free-form source code only whitespace is allowed before
`!GCC$' and in fixed-form source code `!GCC$', `cGCC$' or `*GCC$' shall
start in the first column.
For procedures, the compiler directives shall be placed into the body
of the procedure; for variables and procedure pointers, they shall be in
the same declaration part as the variable or procedure pointer.
File: gfortran.info, Node: Non-Fortran Main Program, Prev: GNU Fortran Compiler Directives, Up: Mixed-Language Programming
7.3 Non-Fortran Main Program
============================
* Menu:
* _gfortran_set_args:: Save command-line arguments
* _gfortran_set_options:: Set library option flags
* _gfortran_set_convert:: Set endian conversion
* _gfortran_set_record_marker:: Set length of record markers
* _gfortran_set_max_subrecord_length:: Set subrecord length
* _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
Even if you are doing mixed-language programming, it is very likely
that you do not need to know or use the information in this section.
Since it is about the internal structure of GNU Fortran, it may also
change in GCC minor releases.
When you compile a `PROGRAM' with GNU Fortran, a function with the
name `main' (in the symbol table of the object file) is generated,
which initializes the libgfortran library and then calls the actual
program which uses the name `MAIN__', for historic reasons. If you
link GNU Fortran compiled procedures to, e.g., a C or C++ program or to
a Fortran program compiled by a different compiler, the libgfortran
library is not initialized and thus a few intrinsic procedures do not
work properly, e.g. those for obtaining the command-line arguments.
Therefore, if your `PROGRAM' is not compiled with GNU Fortran and
the GNU Fortran compiled procedures require intrinsics relying on the
library initialization, you need to initialize the library yourself.
Using the default options, gfortran calls `_gfortran_set_args' and
`_gfortran_set_options'. The initialization of the former is needed if
the called procedures access the command line (and for backtracing);
the latter sets some flags based on the standard chosen or to enable
backtracing. In typical programs, it is not necessary to call any
initialization function.
If your `PROGRAM' is compiled with GNU Fortran, you shall not call
any of the following functions. The libgfortran initialization
functions are shown in C syntax but using C bindings they are also
accessible from Fortran.
File: gfortran.info, Node: _gfortran_set_args, Next: _gfortran_set_options, Up: Non-Fortran Main Program
7.3.1 `_gfortran_set_args' -- Save command-line arguments
---------------------------------------------------------
_Description_:
`_gfortran_set_args' saves the command-line arguments; this
initialization is required if any of the command-line intrinsics
is called. Additionally, it shall be called if backtracing is
enabled (see `_gfortran_set_options').
_Syntax_:
`void _gfortran_set_args (int argc, char *argv[])'
_Arguments_:
ARGC number of command line argument strings
ARGV the command-line argument strings; argv[0] is
the pathname of the executable itself.
_Example_:
int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
return 0;
}
File: gfortran.info, Node: _gfortran_set_options, Next: _gfortran_set_convert, Prev: _gfortran_set_args, Up: Non-Fortran Main Program
7.3.2 `_gfortran_set_options' -- Set library option flags
---------------------------------------------------------
_Description_:
`_gfortran_set_options' sets several flags related to the Fortran
standard to be used, whether backtracing or core dumps should be
enabled and whether range checks should be performed. The syntax
allows for upward compatibility since the number of passed flags
is specified; for non-passed flags, the default value is used.
See also *note Code Gen Options::. Please note that not all flags
are actually used.
_Syntax_:
`void _gfortran_set_options (int num, int options[])'
_Arguments_:
NUM number of options passed
ARGV The list of flag values
_option flag list_:
OPTION[0] Allowed standard; can give run-time errors if
e.g. an input-output edit descriptor is
invalid in a given standard. Possible values
are (bitwise or-ed) `GFC_STD_F77' (1),
`GFC_STD_F95_OBS' (2), `GFC_STD_F95_DEL' (4),
`GFC_STD_F95' (8), `GFC_STD_F2003' (16),
`GFC_STD_GNU' (32), `GFC_STD_LEGACY' (64),
`GFC_STD_F2008' (128), and `GFC_STD_F2008_OBS'
(256). Default: `GFC_STD_F95_OBS |
GFC_STD_F95_DEL | GFC_STD_F95 | GFC_STD_F2003
| GFC_STD_F2008 | GFC_STD_F2008_OBS |
GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY'.
OPTION[1] Standard-warning flag; prints a warning to
standard error. Default: `GFC_STD_F95_DEL |
GFC_STD_LEGACY'.
OPTION[2] If non zero, enable pedantic checking.
Default: off.
OPTION[3] If non zero, enable core dumps on run-time
errors. Default: off.
OPTION[4] If non zero, enable backtracing on run-time
errors. Default: off. Note: Installs a
signal handler and requires command-line
initialization using `_gfortran_set_args'.
OPTION[5] If non zero, supports signed zeros. Default:
enabled.
OPTION[6] Enables run-time checking. Possible values
are (bitwise or-ed): GFC_RTCHECK_BOUNDS (1),
GFC_RTCHECK_ARRAY_TEMPS (2),
GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO
(16), GFC_RTCHECK_POINTER (32). Default:
disabled.
OPTION[7] If non zero, range checking is enabled.
Default: enabled. See -frange-check (*note
Code Gen Options::).
_Example_:
/* Use gfortran 4.5 default options. */
static int options[] = {68, 255, 0, 0, 0, 1, 0, 1};
_gfortran_set_options (8, &options);
File: gfortran.info, Node: _gfortran_set_convert, Next: _gfortran_set_record_marker, Prev: _gfortran_set_options, Up: Non-Fortran Main Program
7.3.3 `_gfortran_set_convert' -- Set endian conversion
------------------------------------------------------
_Description_:
`_gfortran_set_convert' set the representation of data for
unformatted files.
_Syntax_:
`void _gfortran_set_convert (int conv)'
_Arguments_:
CONV Endian conversion, possible values:
GFC_CONVERT_NATIVE (0, default),
GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG (2),
GFC_CONVERT_LITTLE (3).
_Example_:
int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_convert (1);
return 0;
}
File: gfortran.info, Node: _gfortran_set_record_marker, Next: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_convert, Up: Non-Fortran Main Program
7.3.4 `_gfortran_set_record_marker' -- Set length of record markers
-------------------------------------------------------------------
_Description_:
`_gfortran_set_record_marker' sets the length of record markers
for unformatted files.
_Syntax_:
`void _gfortran_set_record_marker (int val)'
_Arguments_:
VAL Length of the record marker; valid values are
4 and 8. Default is 4.
_Example_:
int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_record_marker (8);
return 0;
}
File: gfortran.info, Node: _gfortran_set_fpe, Prev: _gfortran_set_max_subrecord_length, Up: Non-Fortran Main Program
7.3.5 `_gfortran_set_fpe' -- Set when a Floating Point Exception should be raised
---------------------------------------------------------------------------------
_Description_:
`_gfortran_set_fpe' sets the IEEE exceptions for which a Floating
Point Exception (FPE) should be raised. On most systems, this
will result in a SIGFPE signal being sent and the program being
interrupted.
_Syntax_:
`void _gfortran_set_fpe (int val)'
_Arguments_:
OPTION[0] IEEE exceptions. Possible values are (bitwise
or-ed) zero (0, default) no trapping,
`GFC_FPE_INVALID' (1), `GFC_FPE_DENORMAL' (2),
`GFC_FPE_ZERO' (4), `GFC_FPE_OVERFLOW' (8),
`GFC_FPE_UNDERFLOW' (16), and
`GFC_FPE_PRECISION' (32).
_Example_:
int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
/* FPE for invalid operations such as SQRT(-1.0). */
_gfortran_set_fpe (1);
return 0;
}
File: gfortran.info, Node: _gfortran_set_max_subrecord_length, Next: _gfortran_set_fpe, Prev: _gfortran_set_record_marker, Up: Non-Fortran Main Program
7.3.6 `_gfortran_set_max_subrecord_length' -- Set subrecord length
------------------------------------------------------------------
_Description_:
`_gfortran_set_max_subrecord_length' set the maximum length for a
subrecord. This option only makes sense for testing and debugging
of unformatted I/O.
_Syntax_:
`void _gfortran_set_max_subrecord_length (int val)'
_Arguments_:
VAL the maximum length for a subrecord; the
maximum permitted value is 2147483639, which
is also the default.
_Example_:
int main (int argc, char *argv[])
{
/* Initialize libgfortran. */
_gfortran_set_args (argc, argv);
_gfortran_set_max_subrecord_length (8);
return 0;
}
File: gfortran.info, Node: Intrinsic Procedures, Next: Intrinsic Modules, Prev: Extensions, Up: Top
8 Intrinsic Procedures
**********************
* Menu:
* Introduction: Introduction to Intrinsics
* `ABORT': ABORT, Abort the program
* `ABS': ABS, Absolute value
* `ACCESS': ACCESS, Checks file access modes
* `ACHAR': ACHAR, Character in ASCII collating sequence
* `ACOS': ACOS, Arccosine function
* `ACOSH': ACOSH, Inverse hyperbolic cosine function
* `ADJUSTL': ADJUSTL, Left adjust a string
* `ADJUSTR': ADJUSTR, Right adjust a string
* `AIMAG': AIMAG, Imaginary part of complex number
* `AINT': AINT, Truncate to a whole number
* `ALARM': ALARM, Set an alarm clock
* `ALL': ALL, Determine if all values are true
* `ALLOCATED': ALLOCATED, Status of allocatable entity
* `AND': AND, Bitwise logical AND
* `ANINT': ANINT, Nearest whole number
* `ANY': ANY, Determine if any values are true
* `ASIN': ASIN, Arcsine function
* `ASINH': ASINH, Inverse hyperbolic sine function
* `ASSOCIATED': ASSOCIATED, Status of a pointer or pointer/target pair
* `ATAN': ATAN, Arctangent function
* `ATAN2': ATAN2, Arctangent function
* `ATANH': ATANH, Inverse hyperbolic tangent function
* `BESSEL_J0': BESSEL_J0, Bessel function of the first kind of order 0
* `BESSEL_J1': BESSEL_J1, Bessel function of the first kind of order 1
* `BESSEL_JN': BESSEL_JN, Bessel function of the first kind
* `BESSEL_Y0': BESSEL_Y0, Bessel function of the second kind of order 0
* `BESSEL_Y1': BESSEL_Y1, Bessel function of the second kind of order 1
* `BESSEL_YN': BESSEL_YN, Bessel function of the second kind
* `BGE': BGE, Bitwise greater than or equal to
* `BGT': BGT, Bitwise greater than
* `BIT_SIZE': BIT_SIZE, Bit size inquiry function
* `BLE': BLE, Bitwise less than or equal to
* `BLT': BLT, Bitwise less than
* `BTEST': BTEST, Bit test function
* `C_ASSOCIATED': C_ASSOCIATED, Status of a C pointer
* `C_F_POINTER': C_F_POINTER, Convert C into Fortran pointer
* `C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer
* `C_FUNLOC': C_FUNLOC, Obtain the C address of a procedure
* `C_LOC': C_LOC, Obtain the C address of an object
* `C_SIZEOF': C_SIZEOF, Size in bytes of an expression
* `CEILING': CEILING, Integer ceiling function
* `CHAR': CHAR, Integer-to-character conversion function
* `CHDIR': CHDIR, Change working directory
* `CHMOD': CHMOD, Change access permissions of files
* `CMPLX': CMPLX, Complex conversion function
* `COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments
* `COMPLEX': COMPLEX, Complex conversion function
* `COMPILER_VERSION': COMPILER_VERSION, Compiler version string
* `COMPILER_OPTIONS': COMPILER_OPTIONS, Options passed to the compiler
* `CONJG': CONJG, Complex conjugate function
* `COS': COS, Cosine function
* `COSH': COSH, Hyperbolic cosine function
* `COUNT': COUNT, Count occurrences of TRUE in an array
* `CPU_TIME': CPU_TIME, CPU time subroutine
* `CSHIFT': CSHIFT, Circular shift elements of an array
* `CTIME': CTIME, Subroutine (or function) to convert a time into a string
* `DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine
* `DBLE': DBLE, Double precision conversion function
* `DCMPLX': DCMPLX, Double complex conversion function
* `DIGITS': DIGITS, Significant digits function
* `DIM': DIM, Positive difference
* `DOT_PRODUCT': DOT_PRODUCT, Dot product function
* `DPROD': DPROD, Double product function
* `DREAL': DREAL, Double real part function
* `DSHIFTL': DSHIFTL, Combined left shift
* `DSHIFTR': DSHIFTR, Combined right shift
* `DTIME': DTIME, Execution time subroutine (or function)
* `EOSHIFT': EOSHIFT, End-off shift elements of an array
* `EPSILON': EPSILON, Epsilon function
* `ERF': ERF, Error function
* `ERFC': ERFC, Complementary error function
* `ERFC_SCALED': ERFC_SCALED, Exponentially-scaled complementary error function
* `ETIME': ETIME, Execution time subroutine (or function)
* `EXECUTE_COMMAND_LINE': EXECUTE_COMMAND_LINE, Execute a shell command
* `EXIT': EXIT, Exit the program with status.
* `EXP': EXP, Exponential function
* `EXPONENT': EXPONENT, Exponent function
* `EXTENDS_TYPE_OF': EXTENDS_TYPE_OF, Query dynamic type for extension
* `FDATE': FDATE, Subroutine (or function) to get the current time as a string
* `FGET': FGET, Read a single character in stream mode from stdin
* `FGETC': FGETC, Read a single character in stream mode
* `FLOOR': FLOOR, Integer floor function
* `FLUSH': FLUSH, Flush I/O unit(s)
* `FNUM': FNUM, File number function
* `FPUT': FPUT, Write a single character in stream mode to stdout
* `FPUTC': FPUTC, Write a single character in stream mode
* `FRACTION': FRACTION, Fractional part of the model representation
* `FREE': FREE, Memory de-allocation subroutine
* `FSEEK': FSEEK, Low level file positioning subroutine
* `FSTAT': FSTAT, Get file status
* `FTELL': FTELL, Current stream position
* `GAMMA': GAMMA, Gamma function
* `GERROR': GERROR, Get last system error message
* `GETARG': GETARG, Get command line arguments
* `GET_COMMAND': GET_COMMAND, Get the entire command line
* `GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments
* `GETCWD': GETCWD, Get current working directory
* `GETENV': GETENV, Get an environmental variable
* `GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable
* `GETGID': GETGID, Group ID function
* `GETLOG': GETLOG, Get login name
* `GETPID': GETPID, Process ID function
* `GETUID': GETUID, User ID function
* `GMTIME': GMTIME, Convert time to GMT info
* `HOSTNM': HOSTNM, Get system host name
* `HUGE': HUGE, Largest number of a kind
* `HYPOT': HYPOT, Euclidean distance function
* `IACHAR': IACHAR, Code in ASCII collating sequence
* `IALL': IALL, Bitwise AND of array elements
* `IAND': IAND, Bitwise logical and
* `IANY': IANY, Bitwise OR of array elements
* `IARGC': IARGC, Get the number of command line arguments
* `IBCLR': IBCLR, Clear bit
* `IBITS': IBITS, Bit extraction
* `IBSET': IBSET, Set bit
* `ICHAR': ICHAR, Character-to-integer conversion function
* `IDATE': IDATE, Current local time (day/month/year)
* `IEOR': IEOR, Bitwise logical exclusive or
* `IERRNO': IERRNO, Function to get the last system error number
* `IMAGE_INDEX': IMAGE_INDEX, Cosubscript to image index conversion
* `INDEX': INDEX intrinsic, Position of a substring within a string
* `INT': INT, Convert to integer type
* `INT2': INT2, Convert to 16-bit integer type
* `INT8': INT8, Convert to 64-bit integer type
* `IOR': IOR, Bitwise logical or
* `IPARITY': IPARITY, Bitwise XOR of array elements
* `IRAND': IRAND, Integer pseudo-random number
* `IS_IOSTAT_END': IS_IOSTAT_END, Test for end-of-file value
* `IS_IOSTAT_EOR': IS_IOSTAT_EOR, Test for end-of-record value
* `ISATTY': ISATTY, Whether a unit is a terminal device
* `ISHFT': ISHFT, Shift bits
* `ISHFTC': ISHFTC, Shift bits circularly
* `ISNAN': ISNAN, Tests for a NaN
* `ITIME': ITIME, Current local time (hour/minutes/seconds)
* `KILL': KILL, Send a signal to a process
* `KIND': KIND, Kind of an entity
* `LBOUND': LBOUND, Lower dimension bounds of an array
* `LCOBOUND': LCOBOUND, Lower codimension bounds of an array
* `LEADZ': LEADZ, Number of leading zero bits of an integer
* `LEN': LEN, Length of a character entity
* `LEN_TRIM': LEN_TRIM, Length of a character entity without trailing blank characters
* `LGE': LGE, Lexical greater than or equal
* `LGT': LGT, Lexical greater than
* `LINK': LINK, Create a hard link
* `LLE': LLE, Lexical less than or equal
* `LLT': LLT, Lexical less than
* `LNBLNK': LNBLNK, Index of the last non-blank character in a string
* `LOC': LOC, Returns the address of a variable
* `LOG': LOG, Logarithm function
* `LOG10': LOG10, Base 10 logarithm function
* `LOG_GAMMA': LOG_GAMMA, Logarithm of the Gamma function
* `LOGICAL': LOGICAL, Convert to logical type
* `LONG': LONG, Convert to integer type
* `LSHIFT': LSHIFT, Left shift bits
* `LSTAT': LSTAT, Get file status
* `LTIME': LTIME, Convert time to local time info
* `MALLOC': MALLOC, Dynamic memory allocation function
* `MASKL': MASKL, Left justified mask
* `MASKR': MASKR, Right justified mask
* `MATMUL': MATMUL, matrix multiplication
* `MAX': MAX, Maximum value of an argument list
* `MAXEXPONENT': MAXEXPONENT, Maximum exponent of a real kind
* `MAXLOC': MAXLOC, Location of the maximum value within an array
* `MAXVAL': MAXVAL, Maximum value of an array
* `MCLOCK': MCLOCK, Time function
* `MCLOCK8': MCLOCK8, Time function (64-bit)
* `MERGE': MERGE, Merge arrays
* `MERGE_BITS': MERGE_BITS, Merge of bits under mask
* `MIN': MIN, Minimum value of an argument list
* `MINEXPONENT': MINEXPONENT, Minimum exponent of a real kind
* `MINLOC': MINLOC, Location of the minimum value within an array
* `MINVAL': MINVAL, Minimum value of an array
* `MOD': MOD, Remainder function
* `MODULO': MODULO, Modulo function
* `MOVE_ALLOC': MOVE_ALLOC, Move allocation from one object to another
* `MVBITS': MVBITS, Move bits from one integer to another
* `NEAREST': NEAREST, Nearest representable number
* `NEW_LINE': NEW_LINE, New line character
* `NINT': NINT, Nearest whole number
* `NORM2': NORM2, Euclidean vector norm
* `NOT': NOT, Logical negation
* `NULL': NULL, Function that returns an disassociated pointer
* `NUM_IMAGES': NUM_IMAGES, Number of images
* `OR': OR, Bitwise logical OR
* `PACK': PACK, Pack an array into an array of rank one
* `PARITY': PARITY, Reduction with exclusive OR
* `PERROR': PERROR, Print system error message
* `POPCNT': POPCNT, Number of bits set
* `POPPAR': POPPAR, Parity of the number of bits set
* `PRECISION': PRECISION, Decimal precision of a real kind
* `PRESENT': PRESENT, Determine whether an optional dummy argument is specified
* `PRODUCT': PRODUCT, Product of array elements
* `RADIX': RADIX, Base of a data model
* `RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number
* `RANDOM_SEED': RANDOM_SEED, Initialize a pseudo-random number sequence
* `RAND': RAND, Real pseudo-random number
* `RANGE': RANGE, Decimal exponent range
* `RAN': RAN, Real pseudo-random number
* `REAL': REAL, Convert to real type
* `RENAME': RENAME, Rename a file
* `REPEAT': REPEAT, Repeated string concatenation
* `RESHAPE': RESHAPE, Function to reshape an array
* `RRSPACING': RRSPACING, Reciprocal of the relative spacing
* `RSHIFT': RSHIFT, Right shift bits
* `SAME_TYPE_AS': SAME_TYPE_AS, Query dynamic types for equality
* `SCALE': SCALE, Scale a real value
* `SCAN': SCAN, Scan a string for the presence of a set of characters
* `SECNDS': SECNDS, Time function
* `SECOND': SECOND, CPU time function
* `SELECTED_CHAR_KIND': SELECTED_CHAR_KIND, Choose character kind
* `SELECTED_INT_KIND': SELECTED_INT_KIND, Choose integer kind
* `SELECTED_REAL_KIND': SELECTED_REAL_KIND, Choose real kind
* `SET_EXPONENT': SET_EXPONENT, Set the exponent of the model
* `SHAPE': SHAPE, Determine the shape of an array
* `SHIFTA': SHIFTA, Right shift with fill
* `SHIFTL': SHIFTL, Left shift
* `SHIFTR': SHIFTR, Right shift
* `SIGN': SIGN, Sign copying function
* `SIGNAL': SIGNAL, Signal handling subroutine (or function)
* `SIN': SIN, Sine function
* `SINH': SINH, Hyperbolic sine function
* `SIZE': SIZE, Function to determine the size of an array
* `SIZEOF': SIZEOF, Determine the size in bytes of an expression
* `SLEEP': SLEEP, Sleep for the specified number of seconds
* `SPACING': SPACING, Smallest distance between two numbers of a given type
* `SPREAD': SPREAD, Add a dimension to an array
* `SQRT': SQRT, Square-root function
* `SRAND': SRAND, Reinitialize the random number generator
* `STAT': STAT, Get file status
* `STORAGE_SIZE': STORAGE_SIZE, Storage size in bits
* `SUM': SUM, Sum of array elements
* `SYMLNK': SYMLNK, Create a symbolic link
* `SYSTEM': SYSTEM, Execute a shell command
* `SYSTEM_CLOCK': SYSTEM_CLOCK, Time function
* `TAN': TAN, Tangent function
* `TANH': TANH, Hyperbolic tangent function
* `THIS_IMAGE': THIS_IMAGE, Cosubscript index of this image
* `TIME': TIME, Time function
* `TIME8': TIME8, Time function (64-bit)
* `TINY': TINY, Smallest positive number of a real kind
* `TRAILZ': TRAILZ, Number of trailing zero bits of an integer
* `TRANSFER': TRANSFER, Transfer bit patterns
* `TRANSPOSE': TRANSPOSE, Transpose an array of rank two
* `TRIM': TRIM, Remove trailing blank characters of a string
* `TTYNAM': TTYNAM, Get the name of a terminal device.
* `UBOUND': UBOUND, Upper dimension bounds of an array
* `UCOBOUND': UCOBOUND, Upper codimension bounds of an array
* `UMASK': UMASK, Set the file creation mask
* `UNLINK': UNLINK, Remove a file from the file system
* `UNPACK': UNPACK, Unpack an array of rank one into an array
* `VERIFY': VERIFY, Scan a string for the absence of a set of characters
* `XOR': XOR, Bitwise logical exclusive or
File: gfortran.info, Node: Introduction to Intrinsics, Next: ABORT, Up: Intrinsic Procedures
8.1 Introduction to intrinsic procedures
========================================
The intrinsic procedures provided by GNU Fortran include all of the
intrinsic procedures required by the Fortran 95 standard, a set of
intrinsic procedures for backwards compatibility with G77, and a
selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
standards. Any conflict between a description here and a description in
either the Fortran 95 standard, the Fortran 2003 standard or the Fortran
2008 standard is unintentional, and the standard(s) should be considered
authoritative.
The enumeration of the `KIND' type parameter is processor defined in
the Fortran 95 standard. GNU Fortran defines the default integer type
and default real type by `INTEGER(KIND=4)' and `REAL(KIND=4)',
respectively. The standard mandates that both data types shall have
another kind, which have more precision. On typical target
architectures supported by `gfortran', this kind type parameter is
`KIND=8'. Hence, `REAL(KIND=8)' and `DOUBLE PRECISION' are equivalent.
In the description of generic intrinsic procedures, the kind type
parameter will be specified by `KIND=*', and in the description of
specific names for an intrinsic procedure the kind type parameter will
be explicitly given (e.g., `REAL(KIND=4)' or `REAL(KIND=8)'). Finally,
for brevity the optional `KIND=' syntax will be omitted.
Many of the intrinsic procedures take one or more optional arguments.
This document follows the convention used in the Fortran 95 standard,
and denotes such arguments by square brackets.
GNU Fortran offers the `-std=f95' and `-std=gnu' options, which can
be used to restrict the set of intrinsic procedures to a given
standard. By default, `gfortran' sets the `-std=gnu' option, and so
all intrinsic procedures described here are accepted. There is one
caveat. For a select group of intrinsic procedures, `g77' implemented
both a function and a subroutine. Both classes have been implemented
in `gfortran' for backwards compatibility with `g77'. It is noted here
that these functions and subroutines cannot be intermixed in a given
subprogram. In the descriptions that follow, the applicable standard
for each intrinsic procedure is noted.
File: gfortran.info, Node: ABORT, Next: ABS, Prev: Introduction to Intrinsics, Up: Intrinsic Procedures
8.2 `ABORT' -- Abort the program
================================
_Description_:
`ABORT' causes immediate termination of the program. On operating
systems that support a core dump, `ABORT' will produce a core dump
even if the option `-fno-dump-core' is in effect, which is
suitable for debugging purposes.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL ABORT'
_Return value_:
Does not return.
_Example_:
program test_abort
integer :: i = 1, j = 2
if (i /= j) call abort
end program test_abort
_See also_:
*note EXIT::, *note KILL::
File: gfortran.info, Node: ABS, Next: ACCESS, Prev: ABORT, Up: Intrinsic Procedures
8.3 `ABS' -- Absolute value
===========================
_Description_:
`ABS(A)' computes the absolute value of `A'.
_Standard_:
Fortran 77 and later, has overloads that are GNU extensions
_Class_:
Elemental function
_Syntax_:
`RESULT = ABS(A)'
_Arguments_:
A The type of the argument shall be an `INTEGER',
`REAL', or `COMPLEX'.
_Return value_:
The return value is of the same type and kind as the argument
except the return value is `REAL' for a `COMPLEX' argument.
_Example_:
program test_abs
integer :: i = -1
real :: x = -1.e0
complex :: z = (-1.e0,0.e0)
i = abs(i)
x = abs(x)
x = abs(z)
end program test_abs
_Specific names_:
Name Argument Return type Standard
`ABS(A)' `REAL(4) A' `REAL(4)' Fortran 77 and
later
`CABS(A)' `COMPLEX(4) `REAL(4)' Fortran 77 and
A' later
`DABS(A)' `REAL(8) A' `REAL(8)' Fortran 77 and
later
`IABS(A)' `INTEGER(4) `INTEGER(4)' Fortran 77 and
A' later
`ZABS(A)' `COMPLEX(8) `COMPLEX(8)' GNU extension
A'
`CDABS(A)' `COMPLEX(8) `COMPLEX(8)' GNU extension
A'
File: gfortran.info, Node: ACCESS, Next: ACHAR, Prev: ABS, Up: Intrinsic Procedures
8.4 `ACCESS' -- Checks file access modes
========================================
_Description_:
`ACCESS(NAME, MODE)' checks whether the file NAME exists, is
readable, writable or executable. Except for the executable check,
`ACCESS' can be replaced by Fortran 95's `INQUIRE'.
_Standard_:
GNU extension
_Class_:
Inquiry function
_Syntax_:
`RESULT = ACCESS(NAME, MODE)'
_Arguments_:
NAME Scalar `CHARACTER' of default kind with the
file name. Tailing blank are ignored unless
the character `achar(0)' is present, then all
characters up to and excluding `achar(0)' are
used as file name.
MODE Scalar `CHARACTER' of default kind with the
file access mode, may be any concatenation of
`"r"' (readable), `"w"' (writable) and `"x"'
(executable), or `" "' to check for existence.
_Return value_:
Returns a scalar `INTEGER', which is `0' if the file is accessible
in the given mode; otherwise or if an invalid argument has been
given for `MODE' the value `1' is returned.
_Example_:
program access_test
implicit none
character(len=*), parameter :: file = 'test.dat'
character(len=*), parameter :: file2 = 'test.dat '//achar(0)
if(access(file,' ') == 0) print *, trim(file),' is exists'
if(access(file,'r') == 0) print *, trim(file),' is readable'
if(access(file,'w') == 0) print *, trim(file),' is writable'
if(access(file,'x') == 0) print *, trim(file),' is executable'
if(access(file2,'rwx') == 0) &
print *, trim(file2),' is readable, writable and executable'
end program access_test
_Specific names_:
_See also_:
File: gfortran.info, Node: ACHAR, Next: ACOS, Prev: ACCESS, Up: Intrinsic Procedures
8.5 `ACHAR' -- Character in ASCII collating sequence
====================================================
_Description_:
`ACHAR(I)' returns the character located at position `I' in the
ASCII collating sequence.
_Standard_:
Fortran 77 and later, with KIND argument Fortran 2003 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ACHAR(I [, KIND])'
_Arguments_:
I The type shall be `INTEGER'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `CHARACTER' with a length of one. If
the KIND argument is present, the return value is of the specified
kind and of the default kind otherwise.
_Example_:
program test_achar
character c
c = achar(32)
end program test_achar
_Note_:
See *note ICHAR:: for a discussion of converting between numerical
values and formatted string representations.
_See also_:
*note CHAR::, *note IACHAR::, *note ICHAR::
File: gfortran.info, Node: ACOS, Next: ACOSH, Prev: ACHAR, Up: Intrinsic Procedures
8.6 `ACOS' -- Arccosine function
================================
_Description_:
`ACOS(X)' computes the arccosine of X (inverse of `COS(X)').
_Standard_:
Fortran 77 and later, for a complex argument Fortran 2008 or later
_Class_:
Elemental function
_Syntax_:
`RESULT = ACOS(X)'
_Arguments_:
X The type shall either be `REAL' with a
magnitude that is less than or equal to one -
or the type shall be `COMPLEX'.
_Return value_:
The return value is of the same type and kind as X. The real part
of the result is in radians and lies in the range 0 \leq \Re
\acos(x) \leq \pi.
_Example_:
program test_acos
real(8) :: x = 0.866_8
x = acos(x)
end program test_acos
_Specific names_:
Name Argument Return type Standard
`ACOS(X)' `REAL(4) X' `REAL(4)' Fortran 77 and
later
`DACOS(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
later
_See also_:
Inverse function: *note COS::
File: gfortran.info, Node: ACOSH, Next: ADJUSTL, Prev: ACOS, Up: Intrinsic Procedures
8.7 `ACOSH' -- Inverse hyperbolic cosine function
=================================================
_Description_:
`ACOSH(X)' computes the inverse hyperbolic cosine of X.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ACOSH(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value has the same type and kind as X. If X is complex,
the imaginary part of the result is in radians and lies between 0
\leq \Im \acosh(x) \leq \pi.
_Example_:
PROGRAM test_acosh
REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
WRITE (*,*) ACOSH(x)
END PROGRAM
_Specific names_:
Name Argument Return type Standard
`DACOSH(X)' `REAL(8) X' `REAL(8)' GNU extension
_See also_:
Inverse function: *note COSH::
File: gfortran.info, Node: ADJUSTL, Next: ADJUSTR, Prev: ACOSH, Up: Intrinsic Procedures
8.8 `ADJUSTL' -- Left adjust a string
=====================================
_Description_:
`ADJUSTL(STRING)' will left adjust a string by removing leading
spaces. Spaces are inserted at the end of the string as needed.
_Standard_:
Fortran 90 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ADJUSTL(STRING)'
_Arguments_:
STRING The type shall be `CHARACTER'.
_Return value_:
The return value is of type `CHARACTER' and of the same kind as
STRING where leading spaces are removed and the same number of
spaces are inserted on the end of STRING.
_Example_:
program test_adjustl
character(len=20) :: str = ' gfortran'
str = adjustl(str)
print *, str
end program test_adjustl
_See also_:
*note ADJUSTR::, *note TRIM::
File: gfortran.info, Node: ADJUSTR, Next: AIMAG, Prev: ADJUSTL, Up: Intrinsic Procedures
8.9 `ADJUSTR' -- Right adjust a string
======================================
_Description_:
`ADJUSTR(STRING)' will right adjust a string by removing trailing
spaces. Spaces are inserted at the start of the string as needed.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ADJUSTR(STRING)'
_Arguments_:
STR The type shall be `CHARACTER'.
_Return value_:
The return value is of type `CHARACTER' and of the same kind as
STRING where trailing spaces are removed and the same number of
spaces are inserted at the start of STRING.
_Example_:
program test_adjustr
character(len=20) :: str = 'gfortran'
str = adjustr(str)
print *, str
end program test_adjustr
_See also_:
*note ADJUSTL::, *note TRIM::
File: gfortran.info, Node: AIMAG, Next: AINT, Prev: ADJUSTR, Up: Intrinsic Procedures
8.10 `AIMAG' -- Imaginary part of complex number
================================================
_Description_:
`AIMAG(Z)' yields the imaginary part of complex argument `Z'. The
`IMAG(Z)' and `IMAGPART(Z)' intrinsic functions are provided for
compatibility with `g77', and their use in new code is strongly
discouraged.
_Standard_:
Fortran 77 and later, has overloads that are GNU extensions
_Class_:
Elemental function
_Syntax_:
`RESULT = AIMAG(Z)'
_Arguments_:
Z The type of the argument shall be `COMPLEX'.
_Return value_:
The return value is of type `REAL' with the kind type parameter of
the argument.
_Example_:
program test_aimag
complex(4) z4
complex(8) z8
z4 = cmplx(1.e0_4, 0.e0_4)
z8 = cmplx(0.e0_8, 1.e0_8)
print *, aimag(z4), dimag(z8)
end program test_aimag
_Specific names_:
Name Argument Return type Standard
`AIMAG(Z)' `COMPLEX Z' `REAL' GNU extension
`DIMAG(Z)' `COMPLEX(8) `REAL(8)' GNU extension
Z'
`IMAG(Z)' `COMPLEX Z' `REAL' GNU extension
`IMAGPART(Z)' `COMPLEX Z' `REAL' GNU extension
File: gfortran.info, Node: AINT, Next: ALARM, Prev: AIMAG, Up: Intrinsic Procedures
8.11 `AINT' -- Truncate to a whole number
=========================================
_Description_:
`AINT(A [, KIND])' truncates its argument to a whole number.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = AINT(A [, KIND])'
_Arguments_:
A The type of the argument shall be `REAL'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `REAL' with the kind type parameter of
the argument if the optional KIND is absent; otherwise, the kind
type parameter will be given by KIND. If the magnitude of X is
less than one, `AINT(X)' returns zero. If the magnitude is equal
to or greater than one then it returns the largest whole number
that does not exceed its magnitude. The sign is the same as the
sign of X.
_Example_:
program test_aint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, aint(x4), dint(x8)
x8 = aint(x4,8)
end program test_aint
_Specific names_:
Name Argument Return type Standard
`AINT(A)' `REAL(4) A' `REAL(4)' Fortran 77 and
later
`DINT(A)' `REAL(8) A' `REAL(8)' Fortran 77 and
later
File: gfortran.info, Node: ALARM, Next: ALL, Prev: AINT, Up: Intrinsic Procedures
8.12 `ALARM' -- Execute a routine after a given delay
=====================================================
_Description_:
`ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine
HANDLER to be executed after a delay of SECONDS by using
`alarm(2)' to set up a signal and `signal(2)' to catch it. If
STATUS is supplied, it will be returned with the number of seconds
remaining until any previously scheduled alarm was due to be
delivered, or zero if there was no previously scheduled alarm.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL ALARM(SECONDS, HANDLER [, STATUS])'
_Arguments_:
SECONDS The type of the argument shall be a scalar
`INTEGER'. It is `INTENT(IN)'.
HANDLER Signal handler (`INTEGER FUNCTION' or
`SUBROUTINE') or dummy/global `INTEGER'
scalar. The scalar values may be either
`SIG_IGN=1' to ignore the alarm generated or
`SIG_DFL=0' to set the default action. It is
`INTENT(IN)'.
STATUS (Optional) STATUS shall be a scalar variable
of the default `INTEGER' kind. It is
`INTENT(OUT)'.
_Example_:
program test_alarm
external handler_print
integer i
call alarm (3, handler_print, i)
print *, i
call sleep(10)
end program test_alarm
This will cause the external routine HANDLER_PRINT to be called
after 3 seconds.
File: gfortran.info, Node: ALL, Next: ALLOCATED, Prev: ALARM, Up: Intrinsic Procedures
8.13 `ALL' -- All values in MASK along DIM are true
===================================================
_Description_:
`ALL(MASK [, DIM])' determines if all the values are true in MASK
in the array along dimension DIM.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = ALL(MASK [, DIM])'
_Arguments_:
MASK The type of the argument shall be `LOGICAL' and
it shall not be scalar.
DIM (Optional) DIM shall be a scalar integer with
a value that lies between one and the rank of
MASK.
_Return value_:
`ALL(MASK)' returns a scalar value of type `LOGICAL' where the
kind type parameter is the same as the kind type parameter of
MASK. If DIM is present, then `ALL(MASK, DIM)' returns an array
with the rank of MASK minus 1. The shape is determined from the
shape of MASK where the DIM dimension is elided.
(A)
`ALL(MASK)' is true if all elements of MASK are true. It
also is true if MASK has zero size; otherwise, it is false.
(B)
If the rank of MASK is one, then `ALL(MASK,DIM)' is equivalent
to `ALL(MASK)'. If the rank is greater than one, then
`ALL(MASK,DIM)' is determined by applying `ALL' to the array
sections.
_Example_:
program test_all
logical l
l = all((/.true., .true., .true./))
print *, l
call section
contains
subroutine section
integer a(2,3), b(2,3)
a = 1
b = 1
b(2,2) = 2
print *, all(a .eq. b, 1)
print *, all(a .eq. b, 2)
end subroutine section
end program test_all
File: gfortran.info, Node: ALLOCATED, Next: AND, Prev: ALL, Up: Intrinsic Procedures
8.14 `ALLOCATED' -- Status of an allocatable entity
===================================================
_Description_:
`ALLOCATED(ARRAY)' and `ALLOCATED(SCALAR)' check the allocation
status of ARRAY and SCALAR, respectively.
_Standard_:
Fortran 95 and later. Note, the `SCALAR=' keyword and allocatable
scalar entities are available in Fortran 2003 and later.
_Class_:
Inquiry function
_Syntax_:
`RESULT = ALLOCATED(ARRAY)'
`RESULT = ALLOCATED(SCALAR)'
_Arguments_:
ARRAY The argument shall be an `ALLOCATABLE' array.
SCALAR The argument shall be an `ALLOCATABLE' scalar.
_Return value_:
The return value is a scalar `LOGICAL' with the default logical
kind type parameter. If the argument is allocated, then the
result is `.TRUE.'; otherwise, it returns `.FALSE.'
_Example_:
program test_allocated
integer :: i = 4
real(4), allocatable :: x(:)
if (.not. allocated(x)) allocate(x(i))
end program test_allocated
File: gfortran.info, Node: AND, Next: ANINT, Prev: ALLOCATED, Up: Intrinsic Procedures
8.15 `AND' -- Bitwise logical AND
=================================
_Description_:
Bitwise logical `AND'.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. For integer arguments, programmers should consider
the use of the *note IAND:: intrinsic defined by the Fortran
standard.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = AND(I, J)'
_Arguments_:
I The type shall be either a scalar `INTEGER'
type or a scalar `LOGICAL' type.
J The type shall be the same as the type of I.
_Return value_:
The return type is either a scalar `INTEGER' or a scalar
`LOGICAL'. If the kind type parameters differ, then the smaller
kind type is implicitly converted to larger kind, and the return
has the larger kind.
_Example_:
PROGRAM test_and
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z'F' /, b / Z'3' /
WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
WRITE (*,*) AND(a, b)
END PROGRAM
_See also_:
Fortran 95 elemental function: *note IAND::
File: gfortran.info, Node: ANINT, Next: ANY, Prev: AND, Up: Intrinsic Procedures
8.16 `ANINT' -- Nearest whole number
====================================
_Description_:
`ANINT(A [, KIND])' rounds its argument to the nearest whole
number.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ANINT(A [, KIND])'
_Arguments_:
A The type of the argument shall be `REAL'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type real with the kind type parameter of
the argument if the optional KIND is absent; otherwise, the kind
type parameter will be given by KIND. If A is greater than zero,
`ANINT(A)' returns `AINT(X+0.5)'. If A is less than or equal to
zero then it returns `AINT(X-0.5)'.
_Example_:
program test_anint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, anint(x4), dnint(x8)
x8 = anint(x4,8)
end program test_anint
_Specific names_:
Name Argument Return type Standard
`AINT(A)' `REAL(4) A' `REAL(4)' Fortran 77 and
later
`DNINT(A)' `REAL(8) A' `REAL(8)' Fortran 77 and
later
File: gfortran.info, Node: ANY, Next: ASIN, Prev: ANINT, Up: Intrinsic Procedures
8.17 `ANY' -- Any value in MASK along DIM is true
=================================================
_Description_:
`ANY(MASK [, DIM])' determines if any of the values in the logical
array MASK along dimension DIM are `.TRUE.'.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = ANY(MASK [, DIM])'
_Arguments_:
MASK The type of the argument shall be `LOGICAL' and
it shall not be scalar.
DIM (Optional) DIM shall be a scalar integer with
a value that lies between one and the rank of
MASK.
_Return value_:
`ANY(MASK)' returns a scalar value of type `LOGICAL' where the
kind type parameter is the same as the kind type parameter of
MASK. If DIM is present, then `ANY(MASK, DIM)' returns an array
with the rank of MASK minus 1. The shape is determined from the
shape of MASK where the DIM dimension is elided.
(A)
`ANY(MASK)' is true if any element of MASK is true;
otherwise, it is false. It also is false if MASK has zero
size.
(B)
If the rank of MASK is one, then `ANY(MASK,DIM)' is equivalent
to `ANY(MASK)'. If the rank is greater than one, then
`ANY(MASK,DIM)' is determined by applying `ANY' to the array
sections.
_Example_:
program test_any
logical l
l = any((/.true., .true., .true./))
print *, l
call section
contains
subroutine section
integer a(2,3), b(2,3)
a = 1
b = 1
b(2,2) = 2
print *, any(a .eq. b, 1)
print *, any(a .eq. b, 2)
end subroutine section
end program test_any
File: gfortran.info, Node: ASIN, Next: ASINH, Prev: ANY, Up: Intrinsic Procedures
8.18 `ASIN' -- Arcsine function
===============================
_Description_:
`ASIN(X)' computes the arcsine of its X (inverse of `SIN(X)').
_Standard_:
Fortran 77 and later, for a complex argument Fortran 2008 or later
_Class_:
Elemental function
_Syntax_:
`RESULT = ASIN(X)'
_Arguments_:
X The type shall be either `REAL' and a
magnitude that is less than or equal to one -
or be `COMPLEX'.
_Return value_:
The return value is of the same type and kind as X. The real part
of the result is in radians and lies in the range -\pi/2 \leq \Re
\asin(x) \leq \pi/2.
_Example_:
program test_asin
real(8) :: x = 0.866_8
x = asin(x)
end program test_asin
_Specific names_:
Name Argument Return type Standard
`ASIN(X)' `REAL(4) X' `REAL(4)' Fortran 77 and
later
`DASIN(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
later
_See also_:
Inverse function: *note SIN::
File: gfortran.info, Node: ASINH, Next: ASSOCIATED, Prev: ASIN, Up: Intrinsic Procedures
8.19 `ASINH' -- Inverse hyperbolic sine function
================================================
_Description_:
`ASINH(X)' computes the inverse hyperbolic sine of X.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ASINH(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value is of the same type and kind as X. If X is
complex, the imaginary part of the result is in radians and lies
between -\pi/2 \leq \Im \asinh(x) \leq \pi/2.
_Example_:
PROGRAM test_asinh
REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ASINH(x)
END PROGRAM
_Specific names_:
Name Argument Return type Standard
`DASINH(X)' `REAL(8) X' `REAL(8)' GNU extension.
_See also_:
Inverse function: *note SINH::
File: gfortran.info, Node: ASSOCIATED, Next: ATAN, Prev: ASINH, Up: Intrinsic Procedures
8.20 `ASSOCIATED' -- Status of a pointer or pointer/target pair
===============================================================
_Description_:
`ASSOCIATED(POINTER [, TARGET])' determines the status of the
pointer POINTER or if POINTER is associated with the target TARGET.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = ASSOCIATED(POINTER [, TARGET])'
_Arguments_:
POINTER POINTER shall have the `POINTER' attribute and
it can be of any type.
TARGET (Optional) TARGET shall be a pointer or a
target. It must have the same type, kind type
parameter, and array rank as POINTER.
The association status of neither POINTER nor TARGET shall be
undefined.
_Return value_:
`ASSOCIATED(POINTER)' returns a scalar value of type `LOGICAL(4)'.
There are several cases:
(A) When the optional TARGET is not present then
`ASSOCIATED(POINTER)' is true if POINTER is associated with a
target; otherwise, it returns false.
(B) If TARGET is present and a scalar target, the result is true if
TARGET is not a zero-sized storage sequence and the target
associated with POINTER occupies the same storage units. If
POINTER is disassociated, the result is false.
(C) If TARGET is present and an array target, the result is true if
TARGET and POINTER have the same shape, are not zero-sized
arrays, are arrays whose elements are not zero-sized storage
sequences, and TARGET and POINTER occupy the same storage
units in array element order. As in case(B), the result is
false, if POINTER is disassociated.
(D) If TARGET is present and an scalar pointer, the result is true
if TARGET is associated with POINTER, the target associated
with TARGET are not zero-sized storage sequences and occupy
the same storage units. The result is false, if either
TARGET or POINTER is disassociated.
(E) If TARGET is present and an array pointer, the result is true if
target associated with POINTER and the target associated with
TARGET have the same shape, are not zero-sized arrays, are
arrays whose elements are not zero-sized storage sequences,
and TARGET and POINTER occupy the same storage units in array
element order. The result is false, if either TARGET or
POINTER is disassociated.
_Example_:
program test_associated
implicit none
real, target :: tgt(2) = (/1., 2./)
real, pointer :: ptr(:)
ptr => tgt
if (associated(ptr) .eqv. .false.) call abort
if (associated(ptr,tgt) .eqv. .false.) call abort
end program test_associated
_See also_:
*note NULL::
File: gfortran.info, Node: ATAN, Next: ATAN2, Prev: ASSOCIATED, Up: Intrinsic Procedures
8.21 `ATAN' -- Arctangent function
==================================
_Description_:
`ATAN(X)' computes the arctangent of X.
_Standard_:
Fortran 77 and later, for a complex argument and for two arguments
Fortran 2008 or later
_Class_:
Elemental function
_Syntax_:
`RESULT = ATAN(X)'
`RESULT = ATAN(Y, X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'; if Y is
present, X shall be REAL.
Y shall
be of the
same type
and kind
as X.
_Return value_:
The return value is of the same type and kind as X. If Y is
present, the result is identical to `ATAN2(Y,X)'. Otherwise, it
the arcus tangent of X, where the real part of the result is in
radians and lies in the range -\pi/2 \leq \Re \atan(x) \leq \pi/2.
_Example_:
program test_atan
real(8) :: x = 2.866_8
x = atan(x)
end program test_atan
_Specific names_:
Name Argument Return type Standard
`ATAN(X)' `REAL(4) X' `REAL(4)' Fortran 77 and
later
`DATAN(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
later
_See also_:
Inverse function: *note TAN::
File: gfortran.info, Node: ATAN2, Next: ATANH, Prev: ATAN, Up: Intrinsic Procedures
8.22 `ATAN2' -- Arctangent function
===================================
_Description_:
`ATAN2(Y, X)' computes the principal value of the argument
function of the complex number X + i Y. This function can be used
to transform from Cartesian into polar coordinates and allows to
determine the angle in the correct quadrant.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ATAN2(Y, X)'
_Arguments_:
Y The type shall be `REAL'.
X The type and kind type parameter shall be the
same as Y. If Y is zero, then X must be
nonzero.
_Return value_:
The return value has the same type and kind type parameter as Y.
It is the principal value of the complex number X + i Y. If X is
nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi.
The sign is positive if Y is positive. If Y is zero, then the
return value is zero if X is positive and \pi if X is negative.
Finally, if X is zero, then the magnitude of the result is \pi/2.
_Example_:
program test_atan2
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = atan2(y,x)
end program test_atan2
_Specific names_:
Name Argument Return type Standard
`ATAN2(X, `REAL(4) X, `REAL(4)' Fortran 77 and
Y)' Y' later
`DATAN2(X, `REAL(8) X, `REAL(8)' Fortran 77 and
Y)' Y' later
File: gfortran.info, Node: ATANH, Next: BESSEL_J0, Prev: ATAN2, Up: Intrinsic Procedures
8.23 `ATANH' -- Inverse hyperbolic tangent function
===================================================
_Description_:
`ATANH(X)' computes the inverse hyperbolic tangent of X.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ATANH(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value has same type and kind as X. If X is complex, the
imaginary part of the result is in radians and lies between -\pi/2
\leq \Im \atanh(x) \leq \pi/2.
_Example_:
PROGRAM test_atanh
REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
WRITE (*,*) ATANH(x)
END PROGRAM
_Specific names_:
Name Argument Return type Standard
`DATANH(X)' `REAL(8) X' `REAL(8)' GNU extension
_See also_:
Inverse function: *note TANH::
File: gfortran.info, Node: BESSEL_J0, Next: BESSEL_J1, Prev: ATANH, Up: Intrinsic Procedures
8.24 `BESSEL_J0' -- Bessel function of the first kind of order 0
================================================================
_Description_:
`BESSEL_J0(X)' computes the Bessel function of the first kind of
order 0 of X. This function is available under the name `BESJ0' as
a GNU extension.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = BESSEL_J0(X)'
_Arguments_:
X The type shall be `REAL', and it shall be
scalar.
_Return value_:
The return value is of type `REAL' and lies in the range -
0.4027... \leq Bessel (0,x) \leq 1. It has the same kind as X.
_Example_:
program test_besj0
real(8) :: x = 0.0_8
x = bessel_j0(x)
end program test_besj0
_Specific names_:
Name Argument Return type Standard
`DBESJ0(X)' `REAL(8) X' `REAL(8)' GNU extension
File: gfortran.info, Node: BESSEL_J1, Next: BESSEL_JN, Prev: BESSEL_J0, Up: Intrinsic Procedures
8.25 `BESSEL_J1' -- Bessel function of the first kind of order 1
================================================================
_Description_:
`BESSEL_J1(X)' computes the Bessel function of the first kind of
order 1 of X. This function is available under the name `BESJ1' as
a GNU extension.
_Standard_:
Fortran 2008
_Class_:
Elemental function
_Syntax_:
`RESULT = BESSEL_J1(X)'
_Arguments_:
X The type shall be `REAL', and it shall be
scalar.
_Return value_:
The return value is of type `REAL' and it lies in the range -
0.5818... \leq Bessel (0,x) \leq 0.5818 . It has the same kind as
X.
_Example_:
program test_besj1
real(8) :: x = 1.0_8
x = bessel_j1(x)
end program test_besj1
_Specific names_:
Name Argument Return type Standard
`DBESJ1(X)' `REAL(8) X' `REAL(8)' GNU extension
File: gfortran.info, Node: BESSEL_JN, Next: BESSEL_Y0, Prev: BESSEL_J1, Up: Intrinsic Procedures
8.26 `BESSEL_JN' -- Bessel function of the first kind
=====================================================
_Description_:
`BESSEL_JN(N, X)' computes the Bessel function of the first kind of
order N of X. This function is available under the name `BESJN' as
a GNU extension. If N and X are arrays, their ranks and shapes
shall conform.
`BESSEL_JN(N1, N2, X)' returns an array with the Bessel functions
of the first kind of the orders N1 to N2.
_Standard_:
Fortran 2008 and later, negative N is allowed as GNU extension
_Class_:
Elemental function, except for the transformational function
`BESSEL_JN(N1, N2, X)'
_Syntax_:
`RESULT = BESSEL_JN(N, X)'
`RESULT = BESSEL_JN(N1, N2, X)'
_Arguments_:
N Shall be a scalar or an array of type
`INTEGER'.
N1 Shall be a non-negative scalar of type
`INTEGER'.
N2 Shall be a non-negative scalar of type
`INTEGER'.
X Shall be a scalar or an array of type `REAL';
for `BESSEL_JN(N1, N2, X)' it shall be scalar.
_Return value_:
The return value is a scalar of type `REAL'. It has the same kind
as X.
_Note_:
The transformational function uses a recurrence algorithm which
might, for some values of X, lead to different results than calls
to the elemental function.
_Example_:
program test_besjn
real(8) :: x = 1.0_8
x = bessel_jn(5,x)
end program test_besjn
_Specific names_:
Name Argument Return type Standard
`DBESJN(N, `INTEGER N' `REAL(8)' GNU extension
X)'
`REAL(8) X'
File: gfortran.info, Node: BESSEL_Y0, Next: BESSEL_Y1, Prev: BESSEL_JN, Up: Intrinsic Procedures
8.27 `BESSEL_Y0' -- Bessel function of the second kind of order 0
=================================================================
_Description_:
`BESSEL_Y0(X)' computes the Bessel function of the second kind of
order 0 of X. This function is available under the name `BESY0' as
a GNU extension.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = BESSEL_Y0(X)'
_Arguments_:
X The type shall be `REAL', and it shall be
scalar.
_Return value_:
The return value is a scalar of type `REAL'. It has the same kind
as X.
_Example_:
program test_besy0
real(8) :: x = 0.0_8
x = bessel_y0(x)
end program test_besy0
_Specific names_:
Name Argument Return type Standard
`DBESY0(X)' `REAL(8) X' `REAL(8)' GNU extension
File: gfortran.info, Node: BESSEL_Y1, Next: BESSEL_YN, Prev: BESSEL_Y0, Up: Intrinsic Procedures
8.28 `BESSEL_Y1' -- Bessel function of the second kind of order 1
=================================================================
_Description_:
`BESSEL_Y1(X)' computes the Bessel function of the second kind of
order 1 of X. This function is available under the name `BESY1' as
a GNU extension.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = BESSEL_Y1(X)'
_Arguments_:
X The type shall be `REAL', and it shall be
scalar.
_Return value_:
The return value is a scalar of type `REAL'. It has the same kind
as X.
_Example_:
program test_besy1
real(8) :: x = 1.0_8
x = bessel_y1(x)
end program test_besy1
_Specific names_:
Name Argument Return type Standard
`DBESY1(X)' `REAL(8) X' `REAL(8)' GNU extension
File: gfortran.info, Node: BESSEL_YN, Next: BGE, Prev: BESSEL_Y1, Up: Intrinsic Procedures
8.29 `BESSEL_YN' -- Bessel function of the second kind
======================================================
_Description_:
`BESSEL_YN(N, X)' computes the Bessel function of the second kind
of order N of X. This function is available under the name `BESYN'
as a GNU extension. If N and X are arrays, their ranks and shapes
shall conform.
`BESSEL_YN(N1, N2, X)' returns an array with the Bessel functions
of the first kind of the orders N1 to N2.
_Standard_:
Fortran 2008 and later, negative N is allowed as GNU extension
_Class_:
Elemental function, except for the transformational function
`BESSEL_YN(N1, N2, X)'
_Syntax_:
`RESULT = BESSEL_YN(N, X)'
`RESULT = BESSEL_YN(N1, N2, X)'
_Arguments_:
N Shall be a scalar or an array of type
`INTEGER' .
N1 Shall be a non-negative scalar of type
`INTEGER'.
N2 Shall be a non-negative scalar of type
`INTEGER'.
X Shall be a scalar or an array of type `REAL';
for `BESSEL_YN(N1, N2, X)' it shall be scalar.
_Return value_:
The return value is a scalar of type `REAL'. It has the same kind
as X.
_Note_:
The transformational function uses a recurrence algorithm which
might, for some values of X, lead to different results than calls
to the elemental function.
_Example_:
program test_besyn
real(8) :: x = 1.0_8
x = bessel_yn(5,x)
end program test_besyn
_Specific names_:
Name Argument Return type Standard
`DBESYN(N,X)' `INTEGER N' `REAL(8)' GNU extension
`REAL(8) X'
File: gfortran.info, Node: BGE, Next: BGT, Prev: BESSEL_YN, Up: Intrinsic Procedures
8.30 `BGE' -- Bitwise greater than or equal to
==============================================
_Description_:
Determines whether an integral is a bitwise greater than or equal
to another.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = BGE(I, J)'
_Arguments_:
I Shall be of `INTEGER' type.
J Shall be of `INTEGER' type, and of the same
kind as I.
_Return value_:
The return value is of type `LOGICAL' and of the default kind.
_See also_:
*note BGT::, *note BLE::, *note BLT::
File: gfortran.info, Node: BGT, Next: BIT_SIZE, Prev: BGE, Up: Intrinsic Procedures
8.31 `BGT' -- Bitwise greater than
==================================
_Description_:
Determines whether an integral is a bitwise greater than another.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = BGT(I, J)'
_Arguments_:
I Shall be of `INTEGER' type.
J Shall be of `INTEGER' type, and of the same
kind as I.
_Return value_:
The return value is of type `LOGICAL' and of the default kind.
_See also_:
*note BGE::, *note BLE::, *note BLT::
File: gfortran.info, Node: BIT_SIZE, Next: BLE, Prev: BGT, Up: Intrinsic Procedures
8.32 `BIT_SIZE' -- Bit size inquiry function
============================================
_Description_:
`BIT_SIZE(I)' returns the number of bits (integer precision plus
sign bit) represented by the type of I. The result of
`BIT_SIZE(I)' is independent of the actual value of I.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = BIT_SIZE(I)'
_Arguments_:
I The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER'
_Example_:
program test_bit_size
integer :: i = 123
integer :: size
size = bit_size(i)
print *, size
end program test_bit_size
File: gfortran.info, Node: BLE, Next: BLT, Prev: BIT_SIZE, Up: Intrinsic Procedures
8.33 `BLE' -- Bitwise less than or equal to
===========================================
_Description_:
Determines whether an integral is a bitwise less than or equal to
another.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = BLE(I, J)'
_Arguments_:
I Shall be of `INTEGER' type.
J Shall be of `INTEGER' type, and of the same
kind as I.
_Return value_:
The return value is of type `LOGICAL' and of the default kind.
_See also_:
*note BGT::, *note BGE::, *note BLT::
File: gfortran.info, Node: BLT, Next: BTEST, Prev: BLE, Up: Intrinsic Procedures
8.34 `BLT' -- Bitwise less than
===============================
_Description_:
Determines whether an integral is a bitwise less than another.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = BLT(I, J)'
_Arguments_:
I Shall be of `INTEGER' type.
J Shall be of `INTEGER' type, and of the same
kind as I.
_Return value_:
The return value is of type `LOGICAL' and of the default kind.
_See also_:
*note BGE::, *note BGT::, *note BLE::
File: gfortran.info, Node: BTEST, Next: C_ASSOCIATED, Prev: BLT, Up: Intrinsic Procedures
8.35 `BTEST' -- Bit test function
=================================
_Description_:
`BTEST(I,POS)' returns logical `.TRUE.' if the bit at POS in I is
set. The counting of the bits starts at 0.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = BTEST(I, POS)'
_Arguments_:
I The type shall be `INTEGER'.
POS The type shall be `INTEGER'.
_Return value_:
The return value is of type `LOGICAL'
_Example_:
program test_btest
integer :: i = 32768 + 1024 + 64
integer :: pos
logical :: bool
do pos=0,16
bool = btest(i, pos)
print *, pos, bool
end do
end program test_btest
File: gfortran.info, Node: C_ASSOCIATED, Next: C_F_POINTER, Prev: BTEST, Up: Intrinsic Procedures
8.36 `C_ASSOCIATED' -- Status of a C pointer
============================================
_Description_:
`C_ASSOCIATED(c_prt_1[, c_ptr_2])' determines the status of the C
pointer C_PTR_1 or if C_PTR_1 is associated with the target
C_PTR_2.
_Standard_:
Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = C_ASSOCIATED(c_prt_1[, c_ptr_2])'
_Arguments_:
C_PTR_1 Scalar of the type `C_PTR' or `C_FUNPTR'.
C_PTR_2 (Optional) Scalar of the same type as C_PTR_1.
_Return value_:
The return value is of type `LOGICAL'; it is `.false.' if either
C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to
different addresses.
_Example_:
subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if(c_associated(b, c_loc(a))) &
stop 'b and a do not point to same target'
end subroutine association_test
_See also_:
*note C_LOC::, *note C_FUNLOC::
File: gfortran.info, Node: C_FUNLOC, Next: C_LOC, Prev: C_F_PROCPOINTER, Up: Intrinsic Procedures
8.37 `C_FUNLOC' -- Obtain the C address of a procedure
======================================================
_Description_:
`C_FUNLOC(x)' determines the C address of the argument.
_Standard_:
Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = C_FUNLOC(x)'
_Arguments_:
X Interoperable function or pointer to such
function.
_Return value_:
The return value is of type `C_FUNPTR' and contains the C address
of the argument.
_Example_:
module x
use iso_c_binding
implicit none
contains
subroutine sub(a) bind(c)
real(c_float) :: a
a = sqrt(a)+5.0
end subroutine sub
end module x
program main
use iso_c_binding
use x
implicit none
interface
subroutine my_routine(p) bind(c,name='myC_func')
import :: c_funptr
type(c_funptr), intent(in) :: p
end subroutine
end interface
call my_routine(c_funloc(sub))
end program main
_See also_:
*note C_ASSOCIATED::, *note C_LOC::, *note C_F_POINTER::, *note
C_F_PROCPOINTER::
File: gfortran.info, Node: C_F_PROCPOINTER, Next: C_FUNLOC, Prev: C_F_POINTER, Up: Intrinsic Procedures
8.38 `C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer
==================================================================
_Description_:
`C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function
pointer CPTR to the Fortran procedure pointer FPTR.
_Standard_:
Fortran 2003 and later
_Class_:
Subroutine
_Syntax_:
`CALL C_F_PROCPOINTER(cptr, fptr)'
_Arguments_:
CPTR scalar of the type `C_FUNPTR'. It is
`INTENT(IN)'.
FPTR procedure pointer interoperable with CPTR. It
is `INTENT(OUT)'.
_Example_:
program main
use iso_c_binding
implicit none
abstract interface
function func(a)
import :: c_float
real(c_float), intent(in) :: a
real(c_float) :: func
end function
end interface
interface
function getIterFunc() bind(c,name="getIterFunc")
import :: c_funptr
type(c_funptr) :: getIterFunc
end function
end interface
type(c_funptr) :: cfunptr
procedure(func), pointer :: myFunc
cfunptr = getIterFunc()
call c_f_procpointer(cfunptr, myFunc)
end program main
_See also_:
*note C_LOC::, *note C_F_POINTER::
File: gfortran.info, Node: C_F_POINTER, Next: C_F_PROCPOINTER, Prev: C_ASSOCIATED, Up: Intrinsic Procedures
8.39 `C_F_POINTER' -- Convert C into Fortran pointer
====================================================
_Description_:
`C_F_POINTER(CPTR, FPTR[, SHAPE])' Assign the target the C pointer
CPTR to the Fortran pointer FPTR and specify its shape.
_Standard_:
Fortran 2003 and later
_Class_:
Subroutine
_Syntax_:
`CALL C_F_POINTER(CPTR, FPTR[, SHAPE])'
_Arguments_:
CPTR scalar of the type `C_PTR'. It is `INTENT(IN)'.
FPTR pointer interoperable with CPTR. It is
`INTENT(OUT)'.
SHAPE (Optional) Rank-one array of type `INTEGER'
with `INTENT(IN)'. It shall be present if and
only if FPTR is an array. The size must be
equal to the rank of FPTR.
_Example_:
program main
use iso_c_binding
implicit none
interface
subroutine my_routine(p) bind(c,name='myC_func')
import :: c_ptr
type(c_ptr), intent(out) :: p
end subroutine
end interface
type(c_ptr) :: cptr
real,pointer :: a(:)
call my_routine(cptr)
call c_f_pointer(cptr, a, [12])
end program main
_See also_:
*note C_LOC::, *note C_F_PROCPOINTER::
File: gfortran.info, Node: C_LOC, Next: C_SIZEOF, Prev: C_FUNLOC, Up: Intrinsic Procedures
8.40 `C_LOC' -- Obtain the C address of an object
=================================================
_Description_:
`C_LOC(X)' determines the C address of the argument.
_Standard_:
Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = C_LOC(X)'
_Arguments_:
X Shall have either the POINTER or TARGET
attribute. It shall not be a coindexed object. It
shall either be a variable with interoperable
type and kind type parameters, or be a scalar,
nonpolymorphic variable with no length type
parameters.
_Return value_:
The return value is of type `C_PTR' and contains the C address of
the argument.
_Example_:
subroutine association_test(a,b)
use iso_c_binding, only: c_associated, c_loc, c_ptr
implicit none
real, pointer :: a
type(c_ptr) :: b
if(c_associated(b, c_loc(a))) &
stop 'b and a do not point to same target'
end subroutine association_test
_See also_:
*note C_ASSOCIATED::, *note C_FUNLOC::, *note C_F_POINTER::, *note
C_F_PROCPOINTER::
File: gfortran.info, Node: C_SIZEOF, Next: CEILING, Prev: C_LOC, Up: Intrinsic Procedures
8.41 `C_SIZEOF' -- Size in bytes of an expression
=================================================
_Description_:
`C_SIZEOF(X)' calculates the number of bytes of storage the
expression `X' occupies.
_Standard_:
Fortran 2008
_Class_:
Inquiry function of the module `ISO_C_BINDING'
_Syntax_:
`N = C_SIZEOF(X)'
_Arguments_:
X The argument shall be an interoperable data
entity.
_Return value_:
The return value is of type integer and of the system-dependent
kind `C_SIZE_T' (from the `ISO_C_BINDING' module). Its value is the
number of bytes occupied by the argument. If the argument has the
`POINTER' attribute, the number of bytes of the storage area
pointed to is returned. If the argument is of a derived type with
`POINTER' or `ALLOCATABLE' components, the return value doesn't
account for the sizes of the data pointed to by these components.
_Example_:
use iso_c_binding
integer(c_int) :: i
real(c_float) :: r, s(5)
print *, (c_sizeof(s)/c_sizeof(r) == 5)
end
The example will print `.TRUE.' unless you are using a platform
where default `REAL' variables are unusually padded.
_See also_:
*note SIZEOF::, *note STORAGE_SIZE::
File: gfortran.info, Node: CEILING, Next: CHAR, Prev: C_SIZEOF, Up: Intrinsic Procedures
8.42 `CEILING' -- Integer ceiling function
==========================================
_Description_:
`CEILING(A)' returns the least integer greater than or equal to A.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = CEILING(A [, KIND])'
_Arguments_:
A The type shall be `REAL'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER(KIND)' if KIND is present and
a default-kind `INTEGER' otherwise.
_Example_:
program test_ceiling
real :: x = 63.29
real :: y = -63.59
print *, ceiling(x) ! returns 64
print *, ceiling(y) ! returns -63
end program test_ceiling
_See also_:
*note FLOOR::, *note NINT::
File: gfortran.info, Node: CHAR, Next: CHDIR, Prev: CEILING, Up: Intrinsic Procedures
8.43 `CHAR' -- Character conversion function
============================================
_Description_:
`CHAR(I [, KIND])' returns the character represented by the
integer I.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = CHAR(I [, KIND])'
_Arguments_:
I The type shall be `INTEGER'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `CHARACTER(1)'
_Example_:
program test_char
integer :: i = 74
character(1) :: c
c = char(i)
print *, i, c ! returns 'J'
end program test_char
_Specific names_:
Name Argument Return type Standard
`CHAR(I)' `INTEGER I' `CHARACTER(LEN=1)'F77 and later
_Note_:
See *note ICHAR:: for a discussion of converting between numerical
values and formatted string representations.
_See also_:
*note ACHAR::, *note IACHAR::, *note ICHAR::
File: gfortran.info, Node: CHDIR, Next: CHMOD, Prev: CHAR, Up: Intrinsic Procedures
8.44 `CHDIR' -- Change working directory
========================================
_Description_:
Change current working directory to a specified path.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL CHDIR(NAME [, STATUS])'
`STATUS = CHDIR(NAME)'
_Arguments_:
NAME The type shall be `CHARACTER' of default kind
and shall specify a valid path within the file
system.
STATUS (Optional) `INTEGER' status flag of the default
kind. Returns 0 on success, and a system
specific and nonzero error code otherwise.
_Example_:
PROGRAM test_chdir
CHARACTER(len=255) :: path
CALL getcwd(path)
WRITE(*,*) TRIM(path)
CALL chdir("/tmp")
CALL getcwd(path)
WRITE(*,*) TRIM(path)
END PROGRAM
_See also_:
*note GETCWD::
File: gfortran.info, Node: CHMOD, Next: CMPLX, Prev: CHDIR, Up: Intrinsic Procedures
8.45 `CHMOD' -- Change access permissions of files
==================================================
_Description_:
`CHMOD' changes the permissions of a file. This function invokes
`/bin/chmod' and might therefore not work on all platforms.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL CHMOD(NAME, MODE[, STATUS])'
`STATUS = CHMOD(NAME, MODE)'
_Arguments_:
NAME Scalar `CHARACTER' of default kind with the
file name. Trailing blanks are ignored unless
the character `achar(0)' is present, then all
characters up to and excluding `achar(0)' are
used as the file name.
MODE Scalar `CHARACTER' of default kind giving the
file permission. MODE uses the same syntax as
the MODE argument of `/bin/chmod'.
STATUS (optional) scalar `INTEGER', which is `0' on
success and nonzero otherwise.
_Return value_:
In either syntax, STATUS is set to `0' on success and nonzero
otherwise.
_Example_:
`CHMOD' as subroutine
program chmod_test
implicit none
integer :: status
call chmod('test.dat','u+x',status)
print *, 'Status: ', status
end program chmod_test
`CHMOD' as function:
program chmod_test
implicit none
integer :: status
status = chmod('test.dat','u+x')
print *, 'Status: ', status
end program chmod_test
File: gfortran.info, Node: CMPLX, Next: COMMAND_ARGUMENT_COUNT, Prev: CHMOD, Up: Intrinsic Procedures
8.46 `CMPLX' -- Complex conversion function
===========================================
_Description_:
`CMPLX(X [, Y [, KIND]])' returns a complex number where X is
converted to the real component. If Y is present it is converted
to the imaginary component. If Y is not present then the
imaginary component is set to 0.0. If X is complex then Y must
not be present.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = CMPLX(X [, Y [, KIND]])'
_Arguments_:
X The type may be `INTEGER', `REAL', or
`COMPLEX'.
Y (Optional; only allowed if X is not
`COMPLEX'.) May be `INTEGER' or `REAL'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of `COMPLEX' type, with a kind equal to KIND
if it is specified. If KIND is not specified, the result is of
the default `COMPLEX' kind, regardless of the kinds of X and Y.
_Example_:
program test_cmplx
integer :: i = 42
real :: x = 3.14
complex :: z
z = cmplx(i, x)
print *, z, cmplx(x)
end program test_cmplx
_See also_:
*note COMPLEX::
File: gfortran.info, Node: COMMAND_ARGUMENT_COUNT, Next: COMPLEX, Prev: CMPLX, Up: Intrinsic Procedures
8.47 `COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments
=====================================================================
_Description_:
`COMMAND_ARGUMENT_COUNT' returns the number of arguments passed on
the command line when the containing program was invoked.
_Standard_:
Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = COMMAND_ARGUMENT_COUNT()'
_Arguments_:
None
_Return value_:
The return value is an `INTEGER' of default kind.
_Example_:
program test_command_argument_count
integer :: count
count = command_argument_count()
print *, count
end program test_command_argument_count
_See also_:
*note GET_COMMAND::, *note GET_COMMAND_ARGUMENT::
File: gfortran.info, Node: COMPILER_OPTIONS, Next: CONJG, Prev: COMPILER_VERSION, Up: Intrinsic Procedures
8.48 `COMPILER_OPTIONS' -- Options passed to the compiler
=========================================================
_Description_:
`COMPILER_OPTIONS' returns a string with the options used for
compiling.
_Standard_:
Fortran 2008
_Class_:
Inquiry function of the module `ISO_FORTRAN_ENV'
_Syntax_:
`STR = COMPILER_OPTIONS()'
_Arguments_:
None.
_Return value_:
The return value is a default-kind string with system-dependent
length. It contains the compiler flags used to compile the file,
which called the `COMPILER_OPTIONS' intrinsic.
_Example_:
use iso_fortran_env
print '(4a)', 'This file was compiled by ', &
compiler_version(), ' using the the options ', &
compiler_options()
end
_See also_:
*note COMPILER_VERSION::, *note ISO_FORTRAN_ENV::
File: gfortran.info, Node: COMPILER_VERSION, Next: COMPILER_OPTIONS, Prev: COMPLEX, Up: Intrinsic Procedures
8.49 `COMPILER_VERSION' -- Compiler version string
==================================================
_Description_:
`COMPILER_VERSION' returns a string with the name and the version
of the compiler.
_Standard_:
Fortran 2008
_Class_:
Inquiry function of the module `ISO_FORTRAN_ENV'
_Syntax_:
`STR = COMPILER_VERSION()'
_Arguments_:
None.
_Return value_:
The return value is a default-kind string with system-dependent
length. It contains the name of the compiler and its version
number.
_Example_:
use iso_fortran_env
print '(4a)', 'This file was compiled by ', &
compiler_version(), ' using the the options ', &
compiler_options()
end
_See also_:
*note COMPILER_OPTIONS::, *note ISO_FORTRAN_ENV::
File: gfortran.info, Node: COMPLEX, Next: COMPILER_VERSION, Prev: COMMAND_ARGUMENT_COUNT, Up: Intrinsic Procedures
8.50 `COMPLEX' -- Complex conversion function
=============================================
_Description_:
`COMPLEX(X, Y)' returns a complex number where X is converted to
the real component and Y is converted to the imaginary component.
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`RESULT = COMPLEX(X, Y)'
_Arguments_:
X The type may be `INTEGER' or `REAL'.
Y The type may be `INTEGER' or `REAL'.
_Return value_:
If X and Y are both of `INTEGER' type, then the return value is of
default `COMPLEX' type.
If X and Y are of `REAL' type, or one is of `REAL' type and one is
of `INTEGER' type, then the return value is of `COMPLEX' type with
a kind equal to that of the `REAL' argument with the highest
precision.
_Example_:
program test_complex
integer :: i = 42
real :: x = 3.14
print *, complex(i, x)
end program test_complex
_See also_:
*note CMPLX::
File: gfortran.info, Node: CONJG, Next: COS, Prev: COMPILER_OPTIONS, Up: Intrinsic Procedures
8.51 `CONJG' -- Complex conjugate function
==========================================
_Description_:
`CONJG(Z)' returns the conjugate of Z. If Z is `(x, y)' then the
result is `(x, -y)'
_Standard_:
Fortran 77 and later, has overloads that are GNU extensions
_Class_:
Elemental function
_Syntax_:
`Z = CONJG(Z)'
_Arguments_:
Z The type shall be `COMPLEX'.
_Return value_:
The return value is of type `COMPLEX'.
_Example_:
program test_conjg
complex :: z = (2.0, 3.0)
complex(8) :: dz = (2.71_8, -3.14_8)
z= conjg(z)
print *, z
dz = dconjg(dz)
print *, dz
end program test_conjg
_Specific names_:
Name Argument Return type Standard
`CONJG(Z)' `COMPLEX Z' `COMPLEX' GNU extension
`DCONJG(Z)' `COMPLEX(8) `COMPLEX(8)' GNU extension
Z'
File: gfortran.info, Node: COS, Next: COSH, Prev: CONJG, Up: Intrinsic Procedures
8.52 `COS' -- Cosine function
=============================
_Description_:
`COS(X)' computes the cosine of X.
_Standard_:
Fortran 77 and later, has overloads that are GNU extensions
_Class_:
Elemental function
_Syntax_:
`RESULT = COS(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value is of the same type and kind as X. The real part
of the result is in radians. If X is of the type `REAL', the
return value lies in the range -1 \leq \cos (x) \leq 1.
_Example_:
program test_cos
real :: x = 0.0
x = cos(x)
end program test_cos
_Specific names_:
Name Argument Return type Standard
`COS(X)' `REAL(4) X' `REAL(4)' Fortran 77 and
later
`DCOS(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
later
`CCOS(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 77 and
X' later
`ZCOS(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
X'
`CDCOS(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
X'
_See also_:
Inverse function: *note ACOS::
File: gfortran.info, Node: COSH, Next: COUNT, Prev: COS, Up: Intrinsic Procedures
8.53 `COSH' -- Hyperbolic cosine function
=========================================
_Description_:
`COSH(X)' computes the hyperbolic cosine of X.
_Standard_:
Fortran 77 and later, for a complex argument Fortran 2008 or later
_Class_:
Elemental function
_Syntax_:
`X = COSH(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value has same type and kind as X. If X is complex, the
imaginary part of the result is in radians. If X is `REAL', the
return value has a lower bound of one, \cosh (x) \geq 1.
_Example_:
program test_cosh
real(8) :: x = 1.0_8
x = cosh(x)
end program test_cosh
_Specific names_:
Name Argument Return type Standard
`COSH(X)' `REAL(4) X' `REAL(4)' Fortran 77 and
later
`DCOSH(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
later
_See also_:
Inverse function: *note ACOSH::
File: gfortran.info, Node: COUNT, Next: CPU_TIME, Prev: COSH, Up: Intrinsic Procedures
8.54 `COUNT' -- Count function
==============================
_Description_:
Counts the number of `.TRUE.' elements in a logical MASK, or, if
the DIM argument is supplied, counts the number of elements along
each row of the array in the DIM direction. If the array has zero
size, or all of the elements of MASK are `.FALSE.', then the
result is `0'.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = COUNT(MASK [, DIM, KIND])'
_Arguments_:
MASK The type shall be `LOGICAL'.
DIM (Optional) The type shall be `INTEGER'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind. If DIM is
present, the result is an array with a rank one less than the rank
of ARRAY, and a size corresponding to the shape of ARRAY with the
DIM dimension removed.
_Example_:
program test_count
integer, dimension(2,3) :: a, b
logical, dimension(2,3) :: mask
a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print *
print '(3i3)', b(1,:)
print '(3i3)', b(2,:)
print *
mask = a.ne.b
print '(3l3)', mask(1,:)
print '(3l3)', mask(2,:)
print *
print '(3i3)', count(mask)
print *
print '(3i3)', count(mask, 1)
print *
print '(3i3)', count(mask, 2)
end program test_count
File: gfortran.info, Node: CPU_TIME, Next: CSHIFT, Prev: COUNT, Up: Intrinsic Procedures
8.55 `CPU_TIME' -- CPU elapsed time in seconds
==============================================
_Description_:
Returns a `REAL' value representing the elapsed CPU time in
seconds. This is useful for testing segments of code to determine
execution time.
If a time source is available, time will be reported with
microsecond resolution. If no time source is available, TIME is
set to `-1.0'.
Note that TIME may contain a, system dependent, arbitrary offset
and may not start with `0.0'. For `CPU_TIME', the absolute value
is meaningless, only differences between subsequent calls to this
subroutine, as shown in the example below, should be used.
_Standard_:
Fortran 95 and later
_Class_:
Subroutine
_Syntax_:
`CALL CPU_TIME(TIME)'
_Arguments_:
TIME The type shall be `REAL' with `INTENT(OUT)'.
_Return value_:
None
_Example_:
program test_cpu_time
real :: start, finish
call cpu_time(start)
! put code to test here
call cpu_time(finish)
print '("Time = ",f6.3," seconds.")',finish-start
end program test_cpu_time
_See also_:
*note SYSTEM_CLOCK::, *note DATE_AND_TIME::
File: gfortran.info, Node: CSHIFT, Next: CTIME, Prev: CPU_TIME, Up: Intrinsic Procedures
8.56 `CSHIFT' -- Circular shift elements of an array
====================================================
_Description_:
`CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on
elements of ARRAY along the dimension of DIM. If DIM is omitted
it is taken to be `1'. DIM is a scalar of type `INTEGER' in the
range of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the
rank of ARRAY is one, then all elements of ARRAY are shifted by
SHIFT places. If rank is greater than one, then all complete rank
one sections of ARRAY along the given dimension are shifted.
Elements shifted out one end of each rank one section are shifted
back in the other end.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = CSHIFT(ARRAY, SHIFT [, DIM])'
_Arguments_:
ARRAY Shall be an array of any type.
SHIFT The type shall be `INTEGER'.
DIM The type shall be `INTEGER'.
_Return value_:
Returns an array of same type and rank as the ARRAY argument.
_Example_:
program test_cshift
integer, dimension(3,3) :: a
a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)
a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
print *
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)
end program test_cshift
File: gfortran.info, Node: CTIME, Next: DATE_AND_TIME, Prev: CSHIFT, Up: Intrinsic Procedures
8.57 `CTIME' -- Convert a time into a string
============================================
_Description_:
`CTIME' converts a system time value, such as returned by `TIME8',
to a string. Unless the application has called `setlocale', the
output will be in the default locale, of length 24 and of the form
`Sat Aug 19 18:13:14 1995'. In other locales, a longer string may
result.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL CTIME(TIME, RESULT)'.
`RESULT = CTIME(TIME)'.
_Arguments_:
TIME The type shall be of type `INTEGER'.
RESULT The type shall be of type `CHARACTER' and of
default kind. It is an `INTENT(OUT)' argument.
If the length of this variable is too short
for the time and date string to fit
completely, it will be blank on procedure
return.
_Return value_:
The converted date and time as a string.
_Example_:
program test_ctime
integer(8) :: i
character(len=30) :: date
i = time8()
! Do something, main part of the program
call ctime(i,date)
print *, 'Program was started on ', date
end program test_ctime
_See Also_:
*note DATE_AND_TIME::, *note GMTIME::, *note LTIME::, *note
TIME::, *note TIME8::
File: gfortran.info, Node: DATE_AND_TIME, Next: DBLE, Prev: CTIME, Up: Intrinsic Procedures
8.58 `DATE_AND_TIME' -- Date and time subroutine
================================================
_Description_:
`DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding
date and time information from the real-time system clock. DATE is
`INTENT(OUT)' and has form ccyymmdd. TIME is `INTENT(OUT)' and
has form hhmmss.sss. ZONE is `INTENT(OUT)' and has form (+-)hhmm,
representing the difference with respect to Coordinated Universal
Time (UTC). Unavailable time and date parameters return blanks.
VALUES is `INTENT(OUT)' and provides the following:
`VALUE(1)': The year
`VALUE(2)': The month
`VALUE(3)': The day of the month
`VALUE(4)': Time difference with UTC
in minutes
`VALUE(5)': The hour of the day
`VALUE(6)': The minutes of the hour
`VALUE(7)': The seconds of the minute
`VALUE(8)': The milliseconds of the
second
_Standard_:
Fortran 95 and later
_Class_:
Subroutine
_Syntax_:
`CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])'
_Arguments_:
DATE (Optional) The type shall be `CHARACTER(LEN=8)'
or larger, and of default kind.
TIME (Optional) The type shall be
`CHARACTER(LEN=10)' or larger, and of default
kind.
ZONE (Optional) The type shall be `CHARACTER(LEN=5)'
or larger, and of default kind.
VALUES (Optional) The type shall be `INTEGER(8)'.
_Return value_:
None
_Example_:
program test_time_and_date
character(8) :: date
character(10) :: time
character(5) :: zone
integer,dimension(8) :: values
! using keyword arguments
call date_and_time(date,time,zone,values)
call date_and_time(DATE=date,ZONE=zone)
call date_and_time(TIME=time)
call date_and_time(VALUES=values)
print '(a,2x,a,2x,a)', date, time, zone
print '(8i5))', values
end program test_time_and_date
_See also_:
*note CPU_TIME::, *note SYSTEM_CLOCK::
File: gfortran.info, Node: DBLE, Next: DCMPLX, Prev: DATE_AND_TIME, Up: Intrinsic Procedures
8.59 `DBLE' -- Double conversion function
=========================================
_Description_:
`DBLE(A)' Converts A to double precision real type.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = DBLE(A)'
_Arguments_:
A The type shall be `INTEGER', `REAL', or
`COMPLEX'.
_Return value_:
The return value is of type double precision real.
_Example_:
program test_dble
real :: x = 2.18
integer :: i = 5
complex :: z = (2.3,1.14)
print *, dble(x), dble(i), dble(z)
end program test_dble
_See also_:
*note REAL::
File: gfortran.info, Node: DCMPLX, Next: DIGITS, Prev: DBLE, Up: Intrinsic Procedures
8.60 `DCMPLX' -- Double complex conversion function
===================================================
_Description_:
`DCMPLX(X [,Y])' returns a double complex number where X is
converted to the real component. If Y is present it is converted
to the imaginary component. If Y is not present then the
imaginary component is set to 0.0. If X is complex then Y must
not be present.
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`RESULT = DCMPLX(X [, Y])'
_Arguments_:
X The type may be `INTEGER', `REAL', or
`COMPLEX'.
Y (Optional if X is not `COMPLEX'.) May be
`INTEGER' or `REAL'.
_Return value_:
The return value is of type `COMPLEX(8)'
_Example_:
program test_dcmplx
integer :: i = 42
real :: x = 3.14
complex :: z
z = cmplx(i, x)
print *, dcmplx(i)
print *, dcmplx(x)
print *, dcmplx(z)
print *, dcmplx(x,i)
end program test_dcmplx
File: gfortran.info, Node: DIGITS, Next: DIM, Prev: DCMPLX, Up: Intrinsic Procedures
8.61 `DIGITS' -- Significant binary digits function
===================================================
_Description_:
`DIGITS(X)' returns the number of significant binary digits of the
internal model representation of X. For example, on a system
using a 32-bit floating point representation, a default real
number would likely return 24.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = DIGITS(X)'
_Arguments_:
X The type may be `INTEGER' or `REAL'.
_Return value_:
The return value is of type `INTEGER'.
_Example_:
program test_digits
integer :: i = 12345
real :: x = 3.143
real(8) :: y = 2.33
print *, digits(i)
print *, digits(x)
print *, digits(y)
end program test_digits
File: gfortran.info, Node: DIM, Next: DOT_PRODUCT, Prev: DIGITS, Up: Intrinsic Procedures
8.62 `DIM' -- Positive difference
=================================
_Description_:
`DIM(X,Y)' returns the difference `X-Y' if the result is positive;
otherwise returns zero.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = DIM(X, Y)'
_Arguments_:
X The type shall be `INTEGER' or `REAL'
Y The type shall be the same type and kind as X.
_Return value_:
The return value is of type `INTEGER' or `REAL'.
_Example_:
program test_dim
integer :: i
real(8) :: x
i = dim(4, 15)
x = dim(4.345_8, 2.111_8)
print *, i
print *, x
end program test_dim
_Specific names_:
Name Argument Return type Standard
`DIM(X,Y)' `REAL(4) X, `REAL(4)' Fortran 77 and
Y' later
`IDIM(X,Y)' `INTEGER(4) `INTEGER(4)' Fortran 77 and
X, Y' later
`DDIM(X,Y)' `REAL(8) X, `REAL(8)' Fortran 77 and
Y' later
File: gfortran.info, Node: DOT_PRODUCT, Next: DPROD, Prev: DIM, Up: Intrinsic Procedures
8.63 `DOT_PRODUCT' -- Dot product function
==========================================
_Description_:
`DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product
multiplication of two vectors VECTOR_A and VECTOR_B. The two
vectors may be either numeric or logical and must be arrays of
rank one and of equal size. If the vectors are `INTEGER' or
`REAL', the result is `SUM(VECTOR_A*VECTOR_B)'. If the vectors are
`COMPLEX', the result is `SUM(CONJG(VECTOR_A)*VECTOR_B)'. If the
vectors are `LOGICAL', the result is `ANY(VECTOR_A .AND.
VECTOR_B)'.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)'
_Arguments_:
VECTOR_A The type shall be numeric or `LOGICAL', rank 1.
VECTOR_B The type shall be numeric if VECTOR_A is of
numeric type or `LOGICAL' if VECTOR_A is of
type `LOGICAL'. VECTOR_B shall be a rank-one
array.
_Return value_:
If the arguments are numeric, the return value is a scalar of
numeric type, `INTEGER', `REAL', or `COMPLEX'. If the arguments
are `LOGICAL', the return value is `.TRUE.' or `.FALSE.'.
_Example_:
program test_dot_prod
integer, dimension(3) :: a, b
a = (/ 1, 2, 3 /)
b = (/ 4, 5, 6 /)
print '(3i3)', a
print *
print '(3i3)', b
print *
print *, dot_product(a,b)
end program test_dot_prod
File: gfortran.info, Node: DPROD, Next: DREAL, Prev: DOT_PRODUCT, Up: Intrinsic Procedures
8.64 `DPROD' -- Double product function
=======================================
_Description_:
`DPROD(X,Y)' returns the product `X*Y'.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = DPROD(X, Y)'
_Arguments_:
X The type shall be `REAL'.
Y The type shall be `REAL'.
_Return value_:
The return value is of type `REAL(8)'.
_Example_:
program test_dprod
real :: x = 5.2
real :: y = 2.3
real(8) :: d
d = dprod(x,y)
print *, d
end program test_dprod
_Specific names_:
Name Argument Return type Standard
`DPROD(X,Y)' `REAL(4) X, `REAL(4)' Fortran 77 and
Y' later
File: gfortran.info, Node: DREAL, Next: DSHIFTL, Prev: DPROD, Up: Intrinsic Procedures
8.65 `DREAL' -- Double real part function
=========================================
_Description_:
`DREAL(Z)' returns the real part of complex variable Z.
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`RESULT = DREAL(A)'
_Arguments_:
A The type shall be `COMPLEX(8)'.
_Return value_:
The return value is of type `REAL(8)'.
_Example_:
program test_dreal
complex(8) :: z = (1.3_8,7.2_8)
print *, dreal(z)
end program test_dreal
_See also_:
*note AIMAG::
File: gfortran.info, Node: DSHIFTL, Next: DSHIFTR, Prev: DREAL, Up: Intrinsic Procedures
8.66 `DSHIFTL' -- Combined left shift
=====================================
_Description_:
`DSHIFTL(I, J, SHIFT)' combines bits of I and J. The rightmost
SHIFT bits of the result are the leftmost SHIFT bits of J, and the
remaining bits are the rightmost bits of I.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = DSHIFTL(I, J, SHIFT)'
_Arguments_:
I Shall be of type `INTEGER'.
J Shall be of type `INTEGER', and of the same
kind as I.
SHIFT Shall be of type `INTEGER'.
_Return value_:
The return value has same type and kind as I.
_See also_:
*note DSHIFTR::
File: gfortran.info, Node: DSHIFTR, Next: DTIME, Prev: DSHIFTL, Up: Intrinsic Procedures
8.67 `DSHIFTR' -- Combined right shift
======================================
_Description_:
`DSHIFTR(I, J, SHIFT)' combines bits of I and J. The leftmost
SHIFT bits of the result are the rightmost SHIFT bits of I, and
the remaining bits are the leftmost bits of J.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = DSHIFTR(I, J, SHIFT)'
_Arguments_:
I Shall be of type `INTEGER'.
J Shall be of type `INTEGER', and of the same
kind as I.
SHIFT Shall be of type `INTEGER'.
_Return value_:
The return value has same type and kind as I.
_See also_:
*note DSHIFTL::
File: gfortran.info, Node: DTIME, Next: EOSHIFT, Prev: DSHIFTR, Up: Intrinsic Procedures
8.68 `DTIME' -- Execution time subroutine (or function)
=======================================================
_Description_:
`DTIME(VALUES, TIME)' initially returns the number of seconds of
runtime since the start of the process's execution in TIME. VALUES
returns the user and system components of this time in `VALUES(1)'
and `VALUES(2)' respectively. TIME is equal to `VALUES(1) +
VALUES(2)'.
Subsequent invocations of `DTIME' return values accumulated since
the previous invocation.
On some systems, the underlying timings are represented using
types with sufficiently small limits that overflows (wrap around)
are possible, such as 32-bit types. Therefore, the values returned
by this intrinsic might be, or become, negative, or numerically
less than previous values, during a single run of the compiled
program.
Please note, that this implementation is thread safe if used
within OpenMP directives, i.e., its state will be consistent while
called from multiple threads. However, if `DTIME' is called from
multiple threads, the result is still the time since the last
invocation. This may not give the intended results. If possible,
use `CPU_TIME' instead.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
VALUES and TIME are `INTENT(OUT)' and provide the following:
`VALUES(1)': User time in seconds.
`VALUES(2)': System time in seconds.
`TIME': Run time since start in
seconds.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL DTIME(VALUES, TIME)'.
`TIME = DTIME(VALUES)', (not recommended).
_Arguments_:
VALUES The type shall be `REAL(4), DIMENSION(2)'.
TIME The type shall be `REAL(4)'.
_Return value_:
Elapsed time in seconds since the last invocation or since the
start of program execution if not called before.
_Example_:
program test_dtime
integer(8) :: i, j
real, dimension(2) :: tarray
real :: result
call dtime(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
do i=1,100000000 ! Just a delay
j = i * i - i
end do
call dtime(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
end program test_dtime
_See also_:
*note CPU_TIME::
File: gfortran.info, Node: EOSHIFT, Next: EPSILON, Prev: DTIME, Up: Intrinsic Procedures
8.69 `EOSHIFT' -- End-off shift elements of an array
====================================================
_Description_:
`EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift
on elements of ARRAY along the dimension of DIM. If DIM is
omitted it is taken to be `1'. DIM is a scalar of type `INTEGER'
in the range of 1 \leq DIM \leq n) where n is the rank of ARRAY.
If the rank of ARRAY is one, then all elements of ARRAY are
shifted by SHIFT places. If rank is greater than one, then all
complete rank one sections of ARRAY along the given dimension are
shifted. Elements shifted out one end of each rank one section
are dropped. If BOUNDARY is present then the corresponding value
of from BOUNDARY is copied back in the other end. If BOUNDARY is
not present then the following are copied in depending on the type
of ARRAY.
_Array _Boundary Value_
Type_
Numeric 0 of the type and kind of ARRAY.
Logical `.FALSE.'.
Character(LEN)LEN blanks.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])'
_Arguments_:
ARRAY May be any type, not scalar.
SHIFT The type shall be `INTEGER'.
BOUNDARY Same type as ARRAY.
DIM The type shall be `INTEGER'.
_Return value_:
Returns an array of same type and rank as the ARRAY argument.
_Example_:
program test_eoshift
integer, dimension(3,3) :: a
a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)
a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
print *
print '(3i3)', a(1,:)
print '(3i3)', a(2,:)
print '(3i3)', a(3,:)
end program test_eoshift
File: gfortran.info, Node: EPSILON, Next: ERF, Prev: EOSHIFT, Up: Intrinsic Procedures
8.70 `EPSILON' -- Epsilon function
==================================
_Description_:
`EPSILON(X)' returns the smallest number E of the same kind as X
such that 1 + E > 1.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = EPSILON(X)'
_Arguments_:
X The type shall be `REAL'.
_Return value_:
The return value is of same type as the argument.
_Example_:
program test_epsilon
real :: x = 3.143
real(8) :: y = 2.33
print *, EPSILON(x)
print *, EPSILON(y)
end program test_epsilon
File: gfortran.info, Node: ERF, Next: ERFC, Prev: EPSILON, Up: Intrinsic Procedures
8.71 `ERF' -- Error function
============================
_Description_:
`ERF(X)' computes the error function of X.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ERF(X)'
_Arguments_:
X The type shall be `REAL'.
_Return value_:
The return value is of type `REAL', of the same kind as X and lies
in the range -1 \leq erf (x) \leq 1 .
_Example_:
program test_erf
real(8) :: x = 0.17_8
x = erf(x)
end program test_erf
_Specific names_:
Name Argument Return type Standard
`DERF(X)' `REAL(8) X' `REAL(8)' GNU extension
File: gfortran.info, Node: ERFC, Next: ERFC_SCALED, Prev: ERF, Up: Intrinsic Procedures
8.72 `ERFC' -- Error function
=============================
_Description_:
`ERFC(X)' computes the complementary error function of X.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ERFC(X)'
_Arguments_:
X The type shall be `REAL'.
_Return value_:
The return value is of type `REAL' and of the same kind as X. It
lies in the range 0 \leq erfc (x) \leq 2 .
_Example_:
program test_erfc
real(8) :: x = 0.17_8
x = erfc(x)
end program test_erfc
_Specific names_:
Name Argument Return type Standard
`DERFC(X)' `REAL(8) X' `REAL(8)' GNU extension
File: gfortran.info, Node: ERFC_SCALED, Next: ETIME, Prev: ERFC, Up: Intrinsic Procedures
8.73 `ERFC_SCALED' -- Error function
====================================
_Description_:
`ERFC_SCALED(X)' computes the exponentially-scaled complementary
error function of X.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ERFC_SCALED(X)'
_Arguments_:
X The type shall be `REAL'.
_Return value_:
The return value is of type `REAL' and of the same kind as X.
_Example_:
program test_erfc_scaled
real(8) :: x = 0.17_8
x = erfc_scaled(x)
end program test_erfc_scaled
File: gfortran.info, Node: ETIME, Next: EXECUTE_COMMAND_LINE, Prev: ERFC_SCALED, Up: Intrinsic Procedures
8.74 `ETIME' -- Execution time subroutine (or function)
=======================================================
_Description_:
`ETIME(VALUES, TIME)' returns the number of seconds of runtime
since the start of the process's execution in TIME. VALUES
returns the user and system components of this time in `VALUES(1)'
and `VALUES(2)' respectively. TIME is equal to `VALUES(1) +
VALUES(2)'.
On some systems, the underlying timings are represented using
types with sufficiently small limits that overflows (wrap around)
are possible, such as 32-bit types. Therefore, the values returned
by this intrinsic might be, or become, negative, or numerically
less than previous values, during a single run of the compiled
program.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
VALUES and TIME are `INTENT(OUT)' and provide the following:
`VALUES(1)': User time in seconds.
`VALUES(2)': System time in seconds.
`TIME': Run time since start in seconds.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL ETIME(VALUES, TIME)'.
`TIME = ETIME(VALUES)', (not recommended).
_Arguments_:
VALUES The type shall be `REAL(4), DIMENSION(2)'.
TIME The type shall be `REAL(4)'.
_Return value_:
Elapsed time in seconds since the start of program execution.
_Example_:
program test_etime
integer(8) :: i, j
real, dimension(2) :: tarray
real :: result
call ETIME(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
do i=1,100000000 ! Just a delay
j = i * i - i
end do
call ETIME(tarray, result)
print *, result
print *, tarray(1)
print *, tarray(2)
end program test_etime
_See also_:
*note CPU_TIME::
File: gfortran.info, Node: EXECUTE_COMMAND_LINE, Next: EXIT, Prev: ETIME, Up: Intrinsic Procedures
8.75 `EXECUTE_COMMAND_LINE' -- Execute a shell command
======================================================
_Description_:
`EXECUTE_COMMAND_LINE' runs a shell command, synchronously or
asynchronously.
The `COMMAND' argument is passed to the shell and executed, using
the C library's `system' call. (The shell is `sh' on Unix
systems, and `cmd.exe' on Windows.) If `WAIT' is present and has
the value false, the execution of the command is asynchronous if
the system supports it; otherwise, the command is executed
synchronously.
The three last arguments allow the user to get status information.
After synchronous execution, `EXITSTAT' contains the integer exit
code of the command, as returned by `system'. `CMDSTAT' is set to
zero if the command line was executed (whatever its exit status
was). `CMDMSG' is assigned an error message if an error has
occurred.
Note that the `system' function need not be thread-safe. It is the
responsibility of the user to ensure that `system' is not called
concurrently.
_Standard_:
Fortran 2008 and later
_Class_:
Subroutine
_Syntax_:
`CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT,
CMDMSG ])'
_Arguments_:
COMMAND Shall be a default `CHARACTER' scalar.
WAIT (Optional) Shall be a default `LOGICAL' scalar.
EXITSTAT (Optional) Shall be an `INTEGER' of the
default kind.
CMDSTAT (Optional) Shall be an `INTEGER' of the
default kind.
CMDMSG (Optional) Shall be an `CHARACTER' scalar of
the default kind.
_Example_:
program test_exec
integer :: i
call execute_command_line ("external_prog.exe", exitstat=i)
print *, "Exit status of external_prog.exe was ", i
call execute_command_line ("reindex_files.exe", wait=.false.)
print *, "Now reindexing files in the background"
end program test_exec
_Note_:
Because this intrinsic is implemented in terms of the `system'
function call, its behavior with respect to signaling is processor
dependent. In particular, on POSIX-compliant systems, the SIGINT
and SIGQUIT signals will be ignored, and the SIGCHLD will be
blocked. As such, if the parent process is terminated, the child
process might not be terminated alongside.
_See also_:
*note SYSTEM::
File: gfortran.info, Node: EXIT, Next: EXP, Prev: EXECUTE_COMMAND_LINE, Up: Intrinsic Procedures
8.76 `EXIT' -- Exit the program with status.
============================================
_Description_:
`EXIT' causes immediate termination of the program with status.
If status is omitted it returns the canonical _success_ for the
system. All Fortran I/O units are closed.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL EXIT([STATUS])'
_Arguments_:
STATUS Shall be an `INTEGER' of the default kind.
_Return value_:
`STATUS' is passed to the parent process on exit.
_Example_:
program test_exit
integer :: STATUS = 0
print *, 'This program is going to exit.'
call EXIT(STATUS)
end program test_exit
_See also_:
*note ABORT::, *note KILL::
File: gfortran.info, Node: EXP, Next: EXPONENT, Prev: EXIT, Up: Intrinsic Procedures
8.77 `EXP' -- Exponential function
==================================
_Description_:
`EXP(X)' computes the base e exponential of X.
_Standard_:
Fortran 77 and later, has overloads that are GNU extensions
_Class_:
Elemental function
_Syntax_:
`RESULT = EXP(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value has same type and kind as X.
_Example_:
program test_exp
real :: x = 1.0
x = exp(x)
end program test_exp
_Specific names_:
Name Argument Return type Standard
`EXP(X)' `REAL(4) X' `REAL(4)' Fortran 77 and
later
`DEXP(X)' `REAL(8) X' `REAL(8)' Fortran 77 and
later
`CEXP(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 77 and
X' later
`ZEXP(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
X'
`CDEXP(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
X'
File: gfortran.info, Node: EXPONENT, Next: EXTENDS_TYPE_OF, Prev: EXP, Up: Intrinsic Procedures
8.78 `EXPONENT' -- Exponent function
====================================
_Description_:
`EXPONENT(X)' returns the value of the exponent part of X. If X is
zero the value returned is zero.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = EXPONENT(X)'
_Arguments_:
X The type shall be `REAL'.
_Return value_:
The return value is of type default `INTEGER'.
_Example_:
program test_exponent
real :: x = 1.0
integer :: i
i = exponent(x)
print *, i
print *, exponent(0.0)
end program test_exponent
File: gfortran.info, Node: EXTENDS_TYPE_OF, Next: FDATE, Prev: EXPONENT, Up: Intrinsic Procedures
8.79 `EXTENDS_TYPE_OF' -- Query dynamic type for extension
===========================================================
_Description_:
Query dynamic type for extension.
_Standard_:
Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = EXTENDS_TYPE_OF(A, MOLD)'
_Arguments_:
A Shall be an object of extensible declared type
or unlimited polymorphic.
MOLD Shall be an object of extensible declared type
or unlimited polymorphic.
_Return value_:
The return value is a scalar of type default logical. It is true
if and only if the dynamic type of A is an extension type of the
dynamic type of MOLD.
_See also_:
*note SAME_TYPE_AS::
File: gfortran.info, Node: FDATE, Next: FGET, Prev: EXTENDS_TYPE_OF, Up: Intrinsic Procedures
8.80 `FDATE' -- Get the current time as a string
================================================
_Description_:
`FDATE(DATE)' returns the current date (using the same format as
`CTIME') in DATE. It is equivalent to `CALL CTIME(DATE, TIME())'.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL FDATE(DATE)'.
`DATE = FDATE()'.
_Arguments_:
DATE The type shall be of type `CHARACTER' of the
default kind. It is an `INTENT(OUT)' argument.
If the length of this variable is too short
for the date and time string to fit
completely, it will be blank on procedure
return.
_Return value_:
The current date and time as a string.
_Example_:
program test_fdate
integer(8) :: i, j
character(len=30) :: date
call fdate(date)
print *, 'Program started on ', date
do i = 1, 100000000 ! Just a delay
j = i * i - i
end do
call fdate(date)
print *, 'Program ended on ', date
end program test_fdate
_See also_:
*note DATE_AND_TIME::, *note CTIME::
File: gfortran.info, Node: FGET, Next: FGETC, Prev: FDATE, Up: Intrinsic Procedures
8.81 `FGET' -- Read a single character in stream mode from stdin
================================================================
_Description_:
Read a single character in stream mode from stdin by bypassing
normal formatted output. Stream I/O should not be mixed with
normal record-oriented (formatted or unformatted) I/O on the same
unit; the results are unpredictable.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
Note that the `FGET' intrinsic is provided for backwards
compatibility with `g77'. GNU Fortran provides the Fortran 2003
Stream facility. Programmers should consider the use of new
stream IO feature in new code for future portability. See also
*note Fortran 2003 status::.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL FGET(C [, STATUS])'
`STATUS = FGET(C)'
_Arguments_:
C The type shall be `CHARACTER' and of default
kind.
STATUS (Optional) status flag of type `INTEGER'.
Returns 0 on success, -1 on end-of-file, and a
system specific positive error code otherwise.
_Example_:
PROGRAM test_fget
INTEGER, PARAMETER :: strlen = 100
INTEGER :: status, i = 1
CHARACTER(len=strlen) :: str = ""
WRITE (*,*) 'Enter text:'
DO
CALL fget(str(i:i), status)
if (status /= 0 .OR. i > strlen) exit
i = i + 1
END DO
WRITE (*,*) TRIM(str)
END PROGRAM
_See also_:
*note FGETC::, *note FPUT::, *note FPUTC::
File: gfortran.info, Node: FGETC, Next: FLOOR, Prev: FGET, Up: Intrinsic Procedures
8.82 `FGETC' -- Read a single character in stream mode
======================================================
_Description_:
Read a single character in stream mode by bypassing normal
formatted output. Stream I/O should not be mixed with normal
record-oriented (formatted or unformatted) I/O on the same unit;
the results are unpredictable.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
Note that the `FGET' intrinsic is provided for backwards
compatibility with `g77'. GNU Fortran provides the Fortran 2003
Stream facility. Programmers should consider the use of new
stream IO feature in new code for future portability. See also
*note Fortran 2003 status::.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL FGETC(UNIT, C [, STATUS])'
`STATUS = FGETC(UNIT, C)'
_Arguments_:
UNIT The type shall be `INTEGER'.
C The type shall be `CHARACTER' and of default
kind.
STATUS (Optional) status flag of type `INTEGER'.
Returns 0 on success, -1 on end-of-file and a
system specific positive error code otherwise.
_Example_:
PROGRAM test_fgetc
INTEGER :: fd = 42, status
CHARACTER :: c
OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
DO
CALL fgetc(fd, c, status)
IF (status /= 0) EXIT
call fput(c)
END DO
CLOSE(UNIT=fd)
END PROGRAM
_See also_:
*note FGET::, *note FPUT::, *note FPUTC::
File: gfortran.info, Node: FLOOR, Next: FLUSH, Prev: FGETC, Up: Intrinsic Procedures
8.83 `FLOOR' -- Integer floor function
======================================
_Description_:
`FLOOR(A)' returns the greatest integer less than or equal to X.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = FLOOR(A [, KIND])'
_Arguments_:
A The type shall be `REAL'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER(KIND)' if KIND is present and
of default-kind `INTEGER' otherwise.
_Example_:
program test_floor
real :: x = 63.29
real :: y = -63.59
print *, floor(x) ! returns 63
print *, floor(y) ! returns -64
end program test_floor
_See also_:
*note CEILING::, *note NINT::
File: gfortran.info, Node: FLUSH, Next: FNUM, Prev: FLOOR, Up: Intrinsic Procedures
8.84 `FLUSH' -- Flush I/O unit(s)
=================================
_Description_:
Flushes Fortran unit(s) currently open for output. Without the
optional argument, all units are flushed, otherwise just the unit
specified.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL FLUSH(UNIT)'
_Arguments_:
UNIT (Optional) The type shall be `INTEGER'.
_Note_:
Beginning with the Fortran 2003 standard, there is a `FLUSH'
statement that should be preferred over the `FLUSH' intrinsic.
The `FLUSH' intrinsic and the Fortran 2003 `FLUSH' statement have
identical effect: they flush the runtime library's I/O buffer so
that the data becomes visible to other processes. This does not
guarantee that the data is committed to disk.
On POSIX systems, you can request that all data is transferred to
the storage device by calling the `fsync' function, with the POSIX
file descriptor of the I/O unit as argument (retrieved with GNU
intrinsic `FNUM'). The following example shows how:
! Declare the interface for POSIX fsync function
interface
function fsync (fd) bind(c,name="fsync")
use iso_c_binding, only: c_int
integer(c_int), value :: fd
integer(c_int) :: fsync
end function fsync
end interface
! Variable declaration
integer :: ret
! Opening unit 10
open (10,file="foo")
! ...
! Perform I/O on unit 10
! ...
! Flush and sync
flush(10)
ret = fsync(fnum(10))
! Handle possible error
if (ret /= 0) stop "Error calling FSYNC"
File: gfortran.info, Node: FNUM, Next: FPUT, Prev: FLUSH, Up: Intrinsic Procedures
8.85 `FNUM' -- File number function
===================================
_Description_:
`FNUM(UNIT)' returns the POSIX file descriptor number
corresponding to the open Fortran I/O unit `UNIT'.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = FNUM(UNIT)'
_Arguments_:
UNIT The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER'
_Example_:
program test_fnum
integer :: i
open (unit=10, status = "scratch")
i = fnum(10)
print *, i
close (10)
end program test_fnum
File: gfortran.info, Node: FPUT, Next: FPUTC, Prev: FNUM, Up: Intrinsic Procedures
8.86 `FPUT' -- Write a single character in stream mode to stdout
================================================================
_Description_:
Write a single character in stream mode to stdout by bypassing
normal formatted output. Stream I/O should not be mixed with
normal record-oriented (formatted or unformatted) I/O on the same
unit; the results are unpredictable.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
Note that the `FGET' intrinsic is provided for backwards
compatibility with `g77'. GNU Fortran provides the Fortran 2003
Stream facility. Programmers should consider the use of new
stream IO feature in new code for future portability. See also
*note Fortran 2003 status::.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL FPUT(C [, STATUS])'
`STATUS = FPUT(C)'
_Arguments_:
C The type shall be `CHARACTER' and of default
kind.
STATUS (Optional) status flag of type `INTEGER'.
Returns 0 on success, -1 on end-of-file and a
system specific positive error code otherwise.
_Example_:
PROGRAM test_fput
CHARACTER(len=10) :: str = "gfortran"
INTEGER :: i
DO i = 1, len_trim(str)
CALL fput(str(i:i))
END DO
END PROGRAM
_See also_:
*note FPUTC::, *note FGET::, *note FGETC::
File: gfortran.info, Node: FPUTC, Next: FRACTION, Prev: FPUT, Up: Intrinsic Procedures
8.87 `FPUTC' -- Write a single character in stream mode
=======================================================
_Description_:
Write a single character in stream mode by bypassing normal
formatted output. Stream I/O should not be mixed with normal
record-oriented (formatted or unformatted) I/O on the same unit;
the results are unpredictable.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
Note that the `FGET' intrinsic is provided for backwards
compatibility with `g77'. GNU Fortran provides the Fortran 2003
Stream facility. Programmers should consider the use of new
stream IO feature in new code for future portability. See also
*note Fortran 2003 status::.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL FPUTC(UNIT, C [, STATUS])'
`STATUS = FPUTC(UNIT, C)'
_Arguments_:
UNIT The type shall be `INTEGER'.
C The type shall be `CHARACTER' and of default
kind.
STATUS (Optional) status flag of type `INTEGER'.
Returns 0 on success, -1 on end-of-file and a
system specific positive error code otherwise.
_Example_:
PROGRAM test_fputc
CHARACTER(len=10) :: str = "gfortran"
INTEGER :: fd = 42, i
OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
DO i = 1, len_trim(str)
CALL fputc(fd, str(i:i))
END DO
CLOSE(fd)
END PROGRAM
_See also_:
*note FPUT::, *note FGET::, *note FGETC::
File: gfortran.info, Node: FRACTION, Next: FREE, Prev: FPUTC, Up: Intrinsic Procedures
8.88 `FRACTION' -- Fractional part of the model representation
==============================================================
_Description_:
`FRACTION(X)' returns the fractional part of the model
representation of `X'.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`Y = FRACTION(X)'
_Arguments_:
X The type of the argument shall be a `REAL'.
_Return value_:
The return value is of the same type and kind as the argument.
The fractional part of the model representation of `X' is returned;
it is `X * RADIX(X)**(-EXPONENT(X))'.
_Example_:
program test_fraction
real :: x
x = 178.1387e-4
print *, fraction(x), x * radix(x)**(-exponent(x))
end program test_fraction
File: gfortran.info, Node: FREE, Next: FSEEK, Prev: FRACTION, Up: Intrinsic Procedures
8.89 `FREE' -- Frees memory
===========================
_Description_:
Frees memory previously allocated by `MALLOC'. The `FREE'
intrinsic is an extension intended to be used with Cray pointers,
and is provided in GNU Fortran to allow user to compile legacy
code. For new code using Fortran 95 pointers, the memory
de-allocation intrinsic is `DEALLOCATE'.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL FREE(PTR)'
_Arguments_:
PTR The type shall be `INTEGER'. It represents the
location of the memory that should be
de-allocated.
_Return value_:
None
_Example_:
See `MALLOC' for an example.
_See also_:
*note MALLOC::
File: gfortran.info, Node: FSEEK, Next: FSTAT, Prev: FREE, Up: Intrinsic Procedures
8.90 `FSEEK' -- Low level file positioning subroutine
=====================================================
_Description_:
Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the
OFFSET is taken as an absolute value `SEEK_SET', if set to 1,
OFFSET is taken to be relative to the current position `SEEK_CUR',
and if set to 2 relative to the end of the file `SEEK_END'. On
error, STATUS is set to a nonzero value. If STATUS the seek fails
silently.
This intrinsic routine is not fully backwards compatible with
`g77'. In `g77', the `FSEEK' takes a statement label instead of a
STATUS variable. If FSEEK is used in old code, change
CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
to
INTEGER :: status
CALL FSEEK(UNIT, OFFSET, WHENCE, status)
IF (status /= 0) GOTO label
Please note that GNU Fortran provides the Fortran 2003 Stream
facility. Programmers should consider the use of new stream IO
feature in new code for future portability. See also *note Fortran
2003 status::.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])'
_Arguments_:
UNIT Shall be a scalar of type `INTEGER'.
OFFSET Shall be a scalar of type `INTEGER'.
WHENCE Shall be a scalar of type `INTEGER'. Its
value shall be either 0, 1 or 2.
STATUS (Optional) shall be a scalar of type
`INTEGER(4)'.
_Example_:
PROGRAM test_fseek
INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
INTEGER :: fd, offset, ierr
ierr = 0
offset = 5
fd = 10
OPEN(UNIT=fd, FILE="fseek.test")
CALL FSEEK(fd, offset, SEEK_SET, ierr) ! move to OFFSET
print *, FTELL(fd), ierr
CALL FSEEK(fd, 0, SEEK_END, ierr) ! move to end
print *, FTELL(fd), ierr
CALL FSEEK(fd, 0, SEEK_SET, ierr) ! move to beginning
print *, FTELL(fd), ierr
CLOSE(UNIT=fd)
END PROGRAM
_See also_:
*note FTELL::
File: gfortran.info, Node: FSTAT, Next: FTELL, Prev: FSEEK, Up: Intrinsic Procedures
8.91 `FSTAT' -- Get file status
===============================
_Description_:
`FSTAT' is identical to *note STAT::, except that information
about an already opened file is obtained.
The elements in `VALUES' are the same as described by *note STAT::.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL FSTAT(UNIT, VALUES [, STATUS])'
`STATUS = FSTAT(UNIT, VALUES)'
_Arguments_:
UNIT An open I/O unit number of type `INTEGER'.
VALUES The type shall be `INTEGER(4), DIMENSION(13)'.
STATUS (Optional) status flag of type `INTEGER(4)'.
Returns 0 on success and a system specific
error code otherwise.
_Example_:
See *note STAT:: for an example.
_See also_:
To stat a link: *note LSTAT::, to stat a file: *note STAT::
File: gfortran.info, Node: FTELL, Next: GAMMA, Prev: FSTAT, Up: Intrinsic Procedures
8.92 `FTELL' -- Current stream position
=======================================
_Description_:
Retrieves the current position within an open file.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL FTELL(UNIT, OFFSET)'
`OFFSET = FTELL(UNIT)'
_Arguments_:
OFFSET Shall of type `INTEGER'.
UNIT Shall of type `INTEGER'.
_Return value_:
In either syntax, OFFSET is set to the current offset of unit
number UNIT, or to -1 if the unit is not currently open.
_Example_:
PROGRAM test_ftell
INTEGER :: i
OPEN(10, FILE="temp.dat")
CALL ftell(10,i)
WRITE(*,*) i
END PROGRAM
_See also_:
*note FSEEK::
File: gfortran.info, Node: GAMMA, Next: GERROR, Prev: FTELL, Up: Intrinsic Procedures
8.93 `GAMMA' -- Gamma function
==============================
_Description_:
`GAMMA(X)' computes Gamma (\Gamma) of X. For positive, integer
values of X the Gamma function simplifies to the factorial
function \Gamma(x)=(x-1)!.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`X = GAMMA(X)'
_Arguments_:
X Shall be of type `REAL' and neither zero nor a
negative integer.
_Return value_:
The return value is of type `REAL' of the same kind as X.
_Example_:
program test_gamma
real :: x = 1.0
x = gamma(x) ! returns 1.0
end program test_gamma
_Specific names_:
Name Argument Return type Standard
`GAMMA(X)' `REAL(4) X' `REAL(4)' GNU Extension
`DGAMMA(X)' `REAL(8) X' `REAL(8)' GNU Extension
_See also_:
Logarithm of the Gamma function: *note LOG_GAMMA::
File: gfortran.info, Node: GERROR, Next: GETARG, Prev: GAMMA, Up: Intrinsic Procedures
8.94 `GERROR' -- Get last system error message
==============================================
_Description_:
Returns the system error message corresponding to the last system
error. This resembles the functionality of `strerror(3)' in C.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL GERROR(RESULT)'
_Arguments_:
RESULT Shall of type `CHARACTER' and of default
_Example_:
PROGRAM test_gerror
CHARACTER(len=100) :: msg
CALL gerror(msg)
WRITE(*,*) msg
END PROGRAM
_See also_:
*note IERRNO::, *note PERROR::
File: gfortran.info, Node: GETARG, Next: GET_COMMAND, Prev: GERROR, Up: Intrinsic Procedures
8.95 `GETARG' -- Get command line arguments
===========================================
_Description_:
Retrieve the POS-th argument that was passed on the command line
when the containing program was invoked.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. In new code, programmers should consider the use
of the *note GET_COMMAND_ARGUMENT:: intrinsic defined by the
Fortran 2003 standard.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL GETARG(POS, VALUE)'
_Arguments_:
POS Shall be of type `INTEGER' and not wider than
the default integer kind; POS \geq 0
VALUE Shall be of type `CHARACTER' and of default
kind.
VALUE Shall be of type `CHARACTER'.
_Return value_:
After `GETARG' returns, the VALUE argument holds the POSth command
line argument. If VALUE can not hold the argument, it is truncated
to fit the length of VALUE. If there are less than POS arguments
specified at the command line, VALUE will be filled with blanks.
If POS = 0, VALUE is set to the name of the program (on systems
that support this feature).
_Example_:
PROGRAM test_getarg
INTEGER :: i
CHARACTER(len=32) :: arg
DO i = 1, iargc()
CALL getarg(i, arg)
WRITE (*,*) arg
END DO
END PROGRAM
_See also_:
GNU Fortran 77 compatibility function: *note IARGC::
Fortran 2003 functions and subroutines: *note GET_COMMAND::, *note
GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
File: gfortran.info, Node: GET_COMMAND, Next: GET_COMMAND_ARGUMENT, Prev: GETARG, Up: Intrinsic Procedures
8.96 `GET_COMMAND' -- Get the entire command line
=================================================
_Description_:
Retrieve the entire command line that was used to invoke the
program.
_Standard_:
Fortran 2003 and later
_Class_:
Subroutine
_Syntax_:
`CALL GET_COMMAND([COMMAND, LENGTH, STATUS])'
_Arguments_:
COMMAND (Optional) shall be of type `CHARACTER' and of
default kind.
LENGTH (Optional) Shall be of type `INTEGER' and of
default kind.
STATUS (Optional) Shall be of type `INTEGER' and of
default kind.
_Return value_:
If COMMAND is present, stores the entire command line that was used
to invoke the program in COMMAND. If LENGTH is present, it is
assigned the length of the command line. If STATUS is present, it
is assigned 0 upon success of the command, -1 if COMMAND is too
short to store the command line, or a positive value in case of an
error.
_Example_:
PROGRAM test_get_command
CHARACTER(len=255) :: cmd
CALL get_command(cmd)
WRITE (*,*) TRIM(cmd)
END PROGRAM
_See also_:
*note GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
File: gfortran.info, Node: GET_COMMAND_ARGUMENT, Next: GETCWD, Prev: GET_COMMAND, Up: Intrinsic Procedures
8.97 `GET_COMMAND_ARGUMENT' -- Get command line arguments
=========================================================
_Description_:
Retrieve the NUMBER-th argument that was passed on the command
line when the containing program was invoked.
_Standard_:
Fortran 2003 and later
_Class_:
Subroutine
_Syntax_:
`CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])'
_Arguments_:
NUMBER Shall be a scalar of type `INTEGER' and of
default kind, NUMBER \geq 0
VALUE (Optional) Shall be a scalar of type
`CHARACTER' and of default kind.
LENGTH (Optional) Shall be a scalar of type `INTEGER'
and of default kind.
STATUS (Optional) Shall be a scalar of type `INTEGER'
and of default kind.
_Return value_:
After `GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the
NUMBER-th command line argument. If VALUE can not hold the
argument, it is truncated to fit the length of VALUE. If there are
less than NUMBER arguments specified at the command line, VALUE
will be filled with blanks. If NUMBER = 0, VALUE is set to the
name of the program (on systems that support this feature). The
LENGTH argument contains the length of the NUMBER-th command line
argument. If the argument retrieval fails, STATUS is a positive
number; if VALUE contains a truncated command line argument,
STATUS is -1; and otherwise the STATUS is zero.
_Example_:
PROGRAM test_get_command_argument
INTEGER :: i
CHARACTER(len=32) :: arg
i = 0
DO
CALL get_command_argument(i, arg)
IF (LEN_TRIM(arg) == 0) EXIT
WRITE (*,*) TRIM(arg)
i = i+1
END DO
END PROGRAM
_See also_:
*note GET_COMMAND::, *note COMMAND_ARGUMENT_COUNT::
File: gfortran.info, Node: GETCWD, Next: GETENV, Prev: GET_COMMAND_ARGUMENT, Up: Intrinsic Procedures
8.98 `GETCWD' -- Get current working directory
==============================================
_Description_:
Get current working directory.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL GETCWD(C [, STATUS])'
`STATUS = GETCWD(C)'
_Arguments_:
C The type shall be `CHARACTER' and of default
kind.
STATUS (Optional) status flag. Returns 0 on success,
a system specific and nonzero error code
otherwise.
_Example_:
PROGRAM test_getcwd
CHARACTER(len=255) :: cwd
CALL getcwd(cwd)
WRITE(*,*) TRIM(cwd)
END PROGRAM
_See also_:
*note CHDIR::
File: gfortran.info, Node: GETENV, Next: GET_ENVIRONMENT_VARIABLE, Prev: GETCWD, Up: Intrinsic Procedures
8.99 `GETENV' -- Get an environmental variable
==============================================
_Description_:
Get the VALUE of the environmental variable NAME.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. In new code, programmers should consider the use
of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the
Fortran 2003 standard.
Note that `GETENV' need not be thread-safe. It is the
responsibility of the user to ensure that the environment is not
being updated concurrently with a call to the `GETENV' intrinsic.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL GETENV(NAME, VALUE)'
_Arguments_:
NAME Shall be of type `CHARACTER' and of default
kind.
VALUE Shall be of type `CHARACTER' and of default
kind.
_Return value_:
Stores the value of NAME in VALUE. If VALUE is not large enough to
hold the data, it is truncated. If NAME is not set, VALUE will be
filled with blanks.
_Example_:
PROGRAM test_getenv
CHARACTER(len=255) :: homedir
CALL getenv("HOME", homedir)
WRITE (*,*) TRIM(homedir)
END PROGRAM
_See also_:
*note GET_ENVIRONMENT_VARIABLE::
File: gfortran.info, Node: GET_ENVIRONMENT_VARIABLE, Next: GETGID, Prev: GETENV, Up: Intrinsic Procedures
8.100 `GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable
=================================================================
_Description_:
Get the VALUE of the environmental variable NAME.
Note that `GET_ENVIRONMENT_VARIABLE' need not be thread-safe. It
is the responsibility of the user to ensure that the environment is
not being updated concurrently with a call to the
`GET_ENVIRONMENT_VARIABLE' intrinsic.
_Standard_:
Fortran 2003 and later
_Class_:
Subroutine
_Syntax_:
`CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS,
TRIM_NAME)'
_Arguments_:
NAME Shall be a scalar of type `CHARACTER' and of
default kind.
VALUE (Optional) Shall be a scalar of type
`CHARACTER' and of default kind.
LENGTH (Optional) Shall be a scalar of type `INTEGER'
and of default kind.
STATUS (Optional) Shall be a scalar of type `INTEGER'
and of default kind.
TRIM_NAME (Optional) Shall be a scalar of type `LOGICAL'
and of default kind.
_Return value_:
Stores the value of NAME in VALUE. If VALUE is not large enough to
hold the data, it is truncated. If NAME is not set, VALUE will be
filled with blanks. Argument LENGTH contains the length needed for
storing the environment variable NAME or zero if it is not
present. STATUS is -1 if VALUE is present but too short for the
environment variable; it is 1 if the environment variable does not
exist and 2 if the processor does not support environment
variables; in all other cases STATUS is zero. If TRIM_NAME is
present with the value `.FALSE.', the trailing blanks in NAME are
significant; otherwise they are not part of the environment
variable name.
_Example_:
PROGRAM test_getenv
CHARACTER(len=255) :: homedir
CALL get_environment_variable("HOME", homedir)
WRITE (*,*) TRIM(homedir)
END PROGRAM
File: gfortran.info, Node: GETGID, Next: GETLOG, Prev: GET_ENVIRONMENT_VARIABLE, Up: Intrinsic Procedures
8.101 `GETGID' -- Group ID function
===================================
_Description_:
Returns the numerical group ID of the current process.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = GETGID()'
_Return value_:
The return value of `GETGID' is an `INTEGER' of the default kind.
_Example_:
See `GETPID' for an example.
_See also_:
*note GETPID::, *note GETUID::
File: gfortran.info, Node: GETLOG, Next: GETPID, Prev: GETGID, Up: Intrinsic Procedures
8.102 `GETLOG' -- Get login name
================================
_Description_:
Gets the username under which the program is running.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL GETLOG(C)'
_Arguments_:
C Shall be of type `CHARACTER' and of default
kind.
_Return value_:
Stores the current user name in LOGIN. (On systems where POSIX
functions `geteuid' and `getpwuid' are not available, and the
`getlogin' function is not implemented either, this will return a
blank string.)
_Example_:
PROGRAM TEST_GETLOG
CHARACTER(32) :: login
CALL GETLOG(login)
WRITE(*,*) login
END PROGRAM
_See also_:
*note GETUID::
File: gfortran.info, Node: GETPID, Next: GETUID, Prev: GETLOG, Up: Intrinsic Procedures
8.103 `GETPID' -- Process ID function
=====================================
_Description_:
Returns the numerical process identifier of the current process.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = GETPID()'
_Return value_:
The return value of `GETPID' is an `INTEGER' of the default kind.
_Example_:
program info
print *, "The current process ID is ", getpid()
print *, "Your numerical user ID is ", getuid()
print *, "Your numerical group ID is ", getgid()
end program info
_See also_:
*note GETGID::, *note GETUID::
File: gfortran.info, Node: GETUID, Next: GMTIME, Prev: GETPID, Up: Intrinsic Procedures
8.104 `GETUID' -- User ID function
==================================
_Description_:
Returns the numerical user ID of the current process.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = GETUID()'
_Return value_:
The return value of `GETUID' is an `INTEGER' of the default kind.
_Example_:
See `GETPID' for an example.
_See also_:
*note GETPID::, *note GETLOG::
File: gfortran.info, Node: GMTIME, Next: HOSTNM, Prev: GETUID, Up: Intrinsic Procedures
8.105 `GMTIME' -- Convert time to GMT info
==========================================
_Description_:
Given a system time value TIME (as provided by the `TIME8'
intrinsic), fills VALUES with values extracted from it appropriate
to the UTC time zone (Universal Coordinated Time, also known in
some countries as GMT, Greenwich Mean Time), using `gmtime(3)'.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL GMTIME(TIME, VALUES)'
_Arguments_:
TIME An `INTEGER' scalar expression corresponding
to a system time, with `INTENT(IN)'.
VALUES A default `INTEGER' array with 9 elements,
with `INTENT(OUT)'.
_Return value_:
The elements of VALUES are assigned as follows:
1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
seconds
2. Minutes after the hour, range 0-59
3. Hours past midnight, range 0-23
4. Day of month, range 0-31
5. Number of months since January, range 0-12
6. Years since 1900
7. Number of days since Sunday, range 0-6
8. Days since January 1
9. Daylight savings indicator: positive if daylight savings is in
effect, zero if not, and negative if the information is not
available.
_See also_:
*note CTIME::, *note LTIME::, *note TIME::, *note TIME8::
File: gfortran.info, Node: HOSTNM, Next: HUGE, Prev: GMTIME, Up: Intrinsic Procedures
8.106 `HOSTNM' -- Get system host name
======================================
_Description_:
Retrieves the host name of the system on which the program is
running.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL HOSTNM(C [, STATUS])'
`STATUS = HOSTNM(NAME)'
_Arguments_:
C Shall of type `CHARACTER' and of default kind.
STATUS (Optional) status flag of type `INTEGER'.
Returns 0 on success, or a system specific
error code otherwise.
_Return value_:
In either syntax, NAME is set to the current hostname if it can be
obtained, or to a blank string otherwise.
File: gfortran.info, Node: HUGE, Next: HYPOT, Prev: HOSTNM, Up: Intrinsic Procedures
8.107 `HUGE' -- Largest number of a kind
========================================
_Description_:
`HUGE(X)' returns the largest number that is not an infinity in
the model of the type of `X'.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = HUGE(X)'
_Arguments_:
X Shall be of type `REAL' or `INTEGER'.
_Return value_:
The return value is of the same type and kind as X
_Example_:
program test_huge_tiny
print *, huge(0), huge(0.0), huge(0.0d0)
print *, tiny(0.0), tiny(0.0d0)
end program test_huge_tiny
File: gfortran.info, Node: HYPOT, Next: IACHAR, Prev: HUGE, Up: Intrinsic Procedures
8.108 `HYPOT' -- Euclidean distance function
============================================
_Description_:
`HYPOT(X,Y)' is the Euclidean distance function. It is equal to
\sqrtX^2 + Y^2, without undue underflow or overflow.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = HYPOT(X, Y)'
_Arguments_:
X The type shall be `REAL'.
Y The type and kind type parameter shall be the
same as X.
_Return value_:
The return value has the same type and kind type parameter as X.
_Example_:
program test_hypot
real(4) :: x = 1.e0_4, y = 0.5e0_4
x = hypot(x,y)
end program test_hypot
File: gfortran.info, Node: IACHAR, Next: IALL, Prev: HYPOT, Up: Intrinsic Procedures
8.109 `IACHAR' -- Code in ASCII collating sequence
==================================================
_Description_:
`IACHAR(C)' returns the code for the ASCII character in the first
character position of `C'.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = IACHAR(C [, KIND])'
_Arguments_:
C Shall be a scalar `CHARACTER', with
`INTENT(IN)'
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind.
_Example_:
program test_iachar
integer i
i = iachar(' ')
end program test_iachar
_Note_:
See *note ICHAR:: for a discussion of converting between numerical
values and formatted string representations.
_See also_:
*note ACHAR::, *note CHAR::, *note ICHAR::
File: gfortran.info, Node: IALL, Next: IAND, Prev: IACHAR, Up: Intrinsic Procedures
8.110 `IALL' -- Bitwise AND of array elements
=============================================
_Description_:
Reduces with bitwise AND the elements of ARRAY along dimension DIM
if the corresponding element in MASK is `TRUE'.
_Standard_:
Fortran 2008 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = IALL(ARRAY[, MASK])'
`RESULT = IALL(ARRAY, DIM[, MASK])'
_Arguments_:
ARRAY Shall be an array of type `INTEGER'
DIM (Optional) shall be a scalar of type `INTEGER'
with a value in the range from 1 to n, where n
equals the rank of ARRAY.
MASK (Optional) shall be of type `LOGICAL' and
either be a scalar or an array of the same
shape as ARRAY.
_Return value_:
The result is of the same type as ARRAY.
If DIM is absent, a scalar with the bitwise ALL of all elements in
ARRAY is returned. Otherwise, an array of rank n-1, where n equals
the rank of ARRAY, and a shape similar to that of ARRAY with
dimension DIM dropped is returned.
_Example_:
PROGRAM test_iall
INTEGER(1) :: a(2)
a(1) = b'00100100'
a(2) = b'01101010'
! prints 00100000
PRINT '(b8.8)', IALL(a)
END PROGRAM
_See also_:
*note IANY::, *note IPARITY::, *note IAND::
File: gfortran.info, Node: IAND, Next: IANY, Prev: IALL, Up: Intrinsic Procedures
8.111 `IAND' -- Bitwise logical and
===================================
_Description_:
Bitwise logical `AND'.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = IAND(I, J)'
_Arguments_:
I The type shall be `INTEGER'.
J The type shall be `INTEGER', of the same kind
as I. (As a GNU extension, different kinds
are also permitted.)
_Return value_:
The return type is `INTEGER', of the same kind as the arguments.
(If the argument kinds differ, it is of the same kind as the
larger argument.)
_Example_:
PROGRAM test_iand
INTEGER :: a, b
DATA a / Z'F' /, b / Z'3' /
WRITE (*,*) IAND(a, b)
END PROGRAM
_See also_:
*note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note
IBCLR::, *note NOT::
File: gfortran.info, Node: IANY, Next: IARGC, Prev: IAND, Up: Intrinsic Procedures
8.112 `IANY' -- Bitwise OR of array elements
============================================
_Description_:
Reduces with bitwise OR (inclusive or) the elements of ARRAY along
dimension DIM if the corresponding element in MASK is `TRUE'.
_Standard_:
Fortran 2008 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = IANY(ARRAY[, MASK])'
`RESULT = IANY(ARRAY, DIM[, MASK])'
_Arguments_:
ARRAY Shall be an array of type `INTEGER'
DIM (Optional) shall be a scalar of type `INTEGER'
with a value in the range from 1 to n, where n
equals the rank of ARRAY.
MASK (Optional) shall be of type `LOGICAL' and
either be a scalar or an array of the same
shape as ARRAY.
_Return value_:
The result is of the same type as ARRAY.
If DIM is absent, a scalar with the bitwise OR of all elements in
ARRAY is returned. Otherwise, an array of rank n-1, where n equals
the rank of ARRAY, and a shape similar to that of ARRAY with
dimension DIM dropped is returned.
_Example_:
PROGRAM test_iany
INTEGER(1) :: a(2)
a(1) = b'00100100'
a(2) = b'01101010'
! prints 01101110
PRINT '(b8.8)', IANY(a)
END PROGRAM
_See also_:
*note IPARITY::, *note IALL::, *note IOR::
File: gfortran.info, Node: IARGC, Next: IBCLR, Prev: IANY, Up: Intrinsic Procedures
8.113 `IARGC' -- Get the number of command line arguments
=========================================================
_Description_:
`IARGC' returns the number of arguments passed on the command line
when the containing program was invoked.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. In new code, programmers should consider the use
of the *note COMMAND_ARGUMENT_COUNT:: intrinsic defined by the
Fortran 2003 standard.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = IARGC()'
_Arguments_:
None.
_Return value_:
The number of command line arguments, type `INTEGER(4)'.
_Example_:
See *note GETARG::
_See also_:
GNU Fortran 77 compatibility subroutine: *note GETARG::
Fortran 2003 functions and subroutines: *note GET_COMMAND::, *note
GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::
File: gfortran.info, Node: IBCLR, Next: IBITS, Prev: IARGC, Up: Intrinsic Procedures
8.114 `IBCLR' -- Clear bit
==========================
_Description_:
`IBCLR' returns the value of I with the bit at position POS set to
zero.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = IBCLR(I, POS)'
_Arguments_:
I The type shall be `INTEGER'.
POS The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note
IEOR::, *note MVBITS::
File: gfortran.info, Node: IBITS, Next: IBSET, Prev: IBCLR, Up: Intrinsic Procedures
8.115 `IBITS' -- Bit extraction
===============================
_Description_:
`IBITS' extracts a field of length LEN from I, starting from bit
position POS and extending left for LEN bits. The result is
right-justified and the remaining bits are zeroed. The value of
`POS+LEN' must be less than or equal to the value `BIT_SIZE(I)'.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = IBITS(I, POS, LEN)'
_Arguments_:
I The type shall be `INTEGER'.
POS The type shall be `INTEGER'.
LEN The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::,
*note IOR::, *note IEOR::
File: gfortran.info, Node: IBSET, Next: ICHAR, Prev: IBITS, Up: Intrinsic Procedures
8.116 `IBSET' -- Set bit
========================
_Description_:
`IBSET' returns the value of I with the bit at position POS set to
one.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = IBSET(I, POS)'
_Arguments_:
I The type shall be `INTEGER'.
POS The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note
IEOR::, *note MVBITS::
File: gfortran.info, Node: ICHAR, Next: IDATE, Prev: IBSET, Up: Intrinsic Procedures
8.117 `ICHAR' -- Character-to-integer conversion function
=========================================================
_Description_:
`ICHAR(C)' returns the code for the character in the first
character position of `C' in the system's native character set.
The correspondence between characters and their codes is not
necessarily the same across different GNU Fortran implementations.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ICHAR(C [, KIND])'
_Arguments_:
C Shall be a scalar `CHARACTER', with
`INTENT(IN)'
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind.
_Example_:
program test_ichar
integer i
i = ichar(' ')
end program test_ichar
_Specific names_:
Name Argument Return type Standard
`ICHAR(C)' `CHARACTER `INTEGER(4)' Fortran 77 and
C' later
_Note_:
No intrinsic exists to convert between a numeric value and a
formatted character string representation - for instance, given the
`CHARACTER' value `'154'', obtaining an `INTEGER' or `REAL' value
with the value 154, or vice versa. Instead, this functionality is
provided by internal-file I/O, as in the following example:
program read_val
integer value
character(len=10) string, string2
string = '154'
! Convert a string to a numeric value
read (string,'(I10)') value
print *, value
! Convert a value to a formatted string
write (string2,'(I10)') value
print *, string2
end program read_val
_See also_:
*note ACHAR::, *note CHAR::, *note IACHAR::
File: gfortran.info, Node: IDATE, Next: IEOR, Prev: ICHAR, Up: Intrinsic Procedures
8.118 `IDATE' -- Get current local time subroutine (day/month/year)
===================================================================
_Description_:
`IDATE(VALUES)' Fills VALUES with the numerical values at the
current local time. The day (in the range 1-31), month (in the
range 1-12), and year appear in elements 1, 2, and 3 of VALUES,
respectively. The year has four significant digits.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL IDATE(VALUES)'
_Arguments_:
VALUES The type shall be `INTEGER, DIMENSION(3)' and
the kind shall be the default integer kind.
_Return value_:
Does not return anything.
_Example_:
program test_idate
integer, dimension(3) :: tarray
call idate(tarray)
print *, tarray(1)
print *, tarray(2)
print *, tarray(3)
end program test_idate
File: gfortran.info, Node: IEOR, Next: IERRNO, Prev: IDATE, Up: Intrinsic Procedures
8.119 `IEOR' -- Bitwise logical exclusive or
============================================
_Description_:
`IEOR' returns the bitwise Boolean exclusive-OR of I and J.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = IEOR(I, J)'
_Arguments_:
I The type shall be `INTEGER'.
J The type shall be `INTEGER', of the same kind
as I. (As a GNU extension, different kinds
are also permitted.)
_Return value_:
The return type is `INTEGER', of the same kind as the arguments.
(If the argument kinds differ, it is of the same kind as the
larger argument.)
_See also_:
*note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
IBCLR::, *note NOT::
File: gfortran.info, Node: IERRNO, Next: IMAGE_INDEX, Prev: IEOR, Up: Intrinsic Procedures
8.120 `IERRNO' -- Get the last system error number
==================================================
_Description_:
Returns the last system error number, as given by the C `errno'
variable.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = IERRNO()'
_Arguments_:
None.
_Return value_:
The return value is of type `INTEGER' and of the default integer
kind.
_See also_:
*note PERROR::
File: gfortran.info, Node: IMAGE_INDEX, Next: INDEX intrinsic, Prev: IERRNO, Up: Intrinsic Procedures
8.121 `IMAGE_INDEX' -- Function that converts a cosubscript to an image index
=============================================================================
_Description_:
Returns the image index belonging to a cosubscript.
_Standard_:
Fortran 2008 and later
_Class_:
Inquiry function.
_Syntax_:
`RESULT = IMAGE_INDEX(COARRAY, SUB)'
_Arguments_: None.
COARRAY Coarray of any type.
SUB default integer rank-1 array of a size equal to
the corank of COARRAY.
_Return value_:
Scalar default integer with the value of the image index which
corresponds to the cosubscripts. For invalid cosubscripts the
result is zero.
_Example_:
INTEGER :: array[2,-1:4,8,*]
! Writes 28 (or 0 if there are fewer than 28 images)
WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])
_See also_:
*note THIS_IMAGE::, *note NUM_IMAGES::
File: gfortran.info, Node: INDEX intrinsic, Next: INT, Prev: IMAGE_INDEX, Up: Intrinsic Procedures
8.122 `INDEX' -- Position of a substring within a string
========================================================
_Description_:
Returns the position of the start of the first occurrence of string
SUBSTRING as a substring in STRING, counting from one. If
SUBSTRING is not present in STRING, zero is returned. If the BACK
argument is present and true, the return value is the start of the
last occurrence rather than the first.
_Standard_:
Fortran 77 and later, with KIND argument Fortran 2003 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])'
_Arguments_:
STRING Shall be a scalar `CHARACTER', with
`INTENT(IN)'
SUBSTRING Shall be a scalar `CHARACTER', with
`INTENT(IN)'
BACK (Optional) Shall be a scalar `LOGICAL', with
`INTENT(IN)'
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind.
_Specific names_:
Name Argument Return type Standard
`INDEX(STRING,`CHARACTER' `INTEGER(4)' Fortran 77 and
SUBSTRING)' later
_See also_:
*note SCAN::, *note VERIFY::
File: gfortran.info, Node: INT, Next: INT2, Prev: INDEX intrinsic, Up: Intrinsic Procedures
8.123 `INT' -- Convert to integer type
======================================
_Description_:
Convert to integer type
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = INT(A [, KIND))'
_Arguments_:
A Shall be of type `INTEGER', `REAL', or
`COMPLEX'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
These functions return a `INTEGER' variable or array under the
following rules:
(A)
If A is of type `INTEGER', `INT(A) = A'
(B)
If A is of type `REAL' and |A| < 1, `INT(A)' equals `0'. If
|A| \geq 1, then `INT(A)' equals the largest integer that
does not exceed the range of A and whose sign is the same as
the sign of A.
(C)
If A is of type `COMPLEX', rule B is applied to the real part
of A.
_Example_:
program test_int
integer :: i = 42
complex :: z = (-3.7, 1.0)
print *, int(i)
print *, int(z), int(z,8)
end program
_Specific names_:
Name Argument Return type Standard
`INT(A)' `REAL(4) A' `INTEGER' Fortran 77 and
later
`IFIX(A)' `REAL(4) A' `INTEGER' Fortran 77 and
later
`IDINT(A)' `REAL(8) A' `INTEGER' Fortran 77 and
later
File: gfortran.info, Node: INT2, Next: INT8, Prev: INT, Up: Intrinsic Procedures
8.124 `INT2' -- Convert to 16-bit integer type
==============================================
_Description_:
Convert to a `KIND=2' integer type. This is equivalent to the
standard `INT' intrinsic with an optional argument of `KIND=2',
and is only included for backwards compatibility.
The `SHORT' intrinsic is equivalent to `INT2'.
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`RESULT = INT2(A)'
_Arguments_:
A Shall be of type `INTEGER', `REAL', or
`COMPLEX'.
_Return value_:
The return value is a `INTEGER(2)' variable.
_See also_:
*note INT::, *note INT8::, *note LONG::
File: gfortran.info, Node: INT8, Next: IOR, Prev: INT2, Up: Intrinsic Procedures
8.125 `INT8' -- Convert to 64-bit integer type
==============================================
_Description_:
Convert to a `KIND=8' integer type. This is equivalent to the
standard `INT' intrinsic with an optional argument of `KIND=8',
and is only included for backwards compatibility.
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`RESULT = INT8(A)'
_Arguments_:
A Shall be of type `INTEGER', `REAL', or
`COMPLEX'.
_Return value_:
The return value is a `INTEGER(8)' variable.
_See also_:
*note INT::, *note INT2::, *note LONG::
File: gfortran.info, Node: IOR, Next: IPARITY, Prev: INT8, Up: Intrinsic Procedures
8.126 `IOR' -- Bitwise logical or
=================================
_Description_:
`IOR' returns the bitwise Boolean inclusive-OR of I and J.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = IOR(I, J)'
_Arguments_:
I The type shall be `INTEGER'.
J The type shall be `INTEGER', of the same kind
as I. (As a GNU extension, different kinds
are also permitted.)
_Return value_:
The return type is `INTEGER', of the same kind as the arguments.
(If the argument kinds differ, it is of the same kind as the
larger argument.)
_See also_:
*note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
IBCLR::, *note NOT::
File: gfortran.info, Node: IPARITY, Next: IRAND, Prev: IOR, Up: Intrinsic Procedures
8.127 `IPARITY' -- Bitwise XOR of array elements
================================================
_Description_:
Reduces with bitwise XOR (exclusive or) the elements of ARRAY along
dimension DIM if the corresponding element in MASK is `TRUE'.
_Standard_:
Fortran 2008 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = IPARITY(ARRAY[, MASK])'
`RESULT = IPARITY(ARRAY, DIM[, MASK])'
_Arguments_:
ARRAY Shall be an array of type `INTEGER'
DIM (Optional) shall be a scalar of type `INTEGER'
with a value in the range from 1 to n, where n
equals the rank of ARRAY.
MASK (Optional) shall be of type `LOGICAL' and
either be a scalar or an array of the same
shape as ARRAY.
_Return value_:
The result is of the same type as ARRAY.
If DIM is absent, a scalar with the bitwise XOR of all elements in
ARRAY is returned. Otherwise, an array of rank n-1, where n equals
the rank of ARRAY, and a shape similar to that of ARRAY with
dimension DIM dropped is returned.
_Example_:
PROGRAM test_iparity
INTEGER(1) :: a(2)
a(1) = b'00100100'
a(2) = b'01101010'
! prints 01001110
PRINT '(b8.8)', IPARITY(a)
END PROGRAM
_See also_:
*note IANY::, *note IALL::, *note IEOR::, *note PARITY::
File: gfortran.info, Node: IRAND, Next: IS_IOSTAT_END, Prev: IPARITY, Up: Intrinsic Procedures
8.128 `IRAND' -- Integer pseudo-random number
=============================================
_Description_:
`IRAND(FLAG)' returns a pseudo-random number from a uniform
distribution between 0 and a system-dependent limit (which is in
most cases 2147483647). If FLAG is 0, the next number in the
current sequence is returned; if FLAG is 1, the generator is
restarted by `CALL SRAND(0)'; if FLAG has any other value, it is
used as a new seed with `SRAND'.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. It implements a simple modulo generator as provided
by `g77'. For new code, one should consider the use of *note
RANDOM_NUMBER:: as it implements a superior algorithm.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = IRAND(I)'
_Arguments_:
I Shall be a scalar `INTEGER' of kind 4.
_Return value_:
The return value is of `INTEGER(kind=4)' type.
_Example_:
program test_irand
integer,parameter :: seed = 86456
call srand(seed)
print *, irand(), irand(), irand(), irand()
print *, irand(seed), irand(), irand(), irand()
end program test_irand
File: gfortran.info, Node: IS_IOSTAT_END, Next: IS_IOSTAT_EOR, Prev: IRAND, Up: Intrinsic Procedures
8.129 `IS_IOSTAT_END' -- Test for end-of-file value
===================================================
_Description_:
`IS_IOSTAT_END' tests whether an variable has the value of the I/O
status "end of file". The function is equivalent to comparing the
variable with the `IOSTAT_END' parameter of the intrinsic module
`ISO_FORTRAN_ENV'.
_Standard_:
Fortran 2003 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = IS_IOSTAT_END(I)'
_Arguments_:
I Shall be of the type `INTEGER'.
_Return value_:
Returns a `LOGICAL' of the default kind, which `.TRUE.' if I has
the value which indicates an end of file condition for `IOSTAT='
specifiers, and is `.FALSE.' otherwise.
_Example_:
PROGRAM iostat
IMPLICIT NONE
INTEGER :: stat, i
OPEN(88, FILE='test.dat')
READ(88, *, IOSTAT=stat) i
IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
END PROGRAM
File: gfortran.info, Node: IS_IOSTAT_EOR, Next: ISATTY, Prev: IS_IOSTAT_END, Up: Intrinsic Procedures
8.130 `IS_IOSTAT_EOR' -- Test for end-of-record value
=====================================================
_Description_:
`IS_IOSTAT_EOR' tests whether an variable has the value of the I/O
status "end of record". The function is equivalent to comparing the
variable with the `IOSTAT_EOR' parameter of the intrinsic module
`ISO_FORTRAN_ENV'.
_Standard_:
Fortran 2003 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = IS_IOSTAT_EOR(I)'
_Arguments_:
I Shall be of the type `INTEGER'.
_Return value_:
Returns a `LOGICAL' of the default kind, which `.TRUE.' if I has
the value which indicates an end of file condition for `IOSTAT='
specifiers, and is `.FALSE.' otherwise.
_Example_:
PROGRAM iostat
IMPLICIT NONE
INTEGER :: stat, i(50)
OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
READ(88, IOSTAT=stat) i
IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
END PROGRAM
File: gfortran.info, Node: ISATTY, Next: ISHFT, Prev: IS_IOSTAT_EOR, Up: Intrinsic Procedures
8.131 `ISATTY' -- Whether a unit is a terminal device.
======================================================
_Description_:
Determine whether a unit is connected to a terminal device.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = ISATTY(UNIT)'
_Arguments_:
UNIT Shall be a scalar `INTEGER'.
_Return value_:
Returns `.TRUE.' if the UNIT is connected to a terminal device,
`.FALSE.' otherwise.
_Example_:
PROGRAM test_isatty
INTEGER(kind=1) :: unit
DO unit = 1, 10
write(*,*) isatty(unit=unit)
END DO
END PROGRAM
_See also_:
*note TTYNAM::
File: gfortran.info, Node: ISHFT, Next: ISHFTC, Prev: ISATTY, Up: Intrinsic Procedures
8.132 `ISHFT' -- Shift bits
===========================
_Description_:
`ISHFT' returns a value corresponding to I with all of the bits
shifted SHIFT places. A value of SHIFT greater than zero
corresponds to a left shift, a value of zero corresponds to no
shift, and a value less than zero corresponds to a right shift.
If the absolute value of SHIFT is greater than `BIT_SIZE(I)', the
value is undefined. Bits shifted out from the left end or right
end are lost; zeros are shifted in from the opposite end.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ISHFT(I, SHIFT)'
_Arguments_:
I The type shall be `INTEGER'.
SHIFT The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note ISHFTC::
File: gfortran.info, Node: ISHFTC, Next: ISNAN, Prev: ISHFT, Up: Intrinsic Procedures
8.133 `ISHFTC' -- Shift bits circularly
=======================================
_Description_:
`ISHFTC' returns a value corresponding to I with the rightmost
SIZE bits shifted circularly SHIFT places; that is, bits shifted
out one end are shifted into the opposite end. A value of SHIFT
greater than zero corresponds to a left shift, a value of zero
corresponds to no shift, and a value less than zero corresponds to
a right shift. The absolute value of SHIFT must be less than
SIZE. If the SIZE argument is omitted, it is taken to be
equivalent to `BIT_SIZE(I)'.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = ISHFTC(I, SHIFT [, SIZE])'
_Arguments_:
I The type shall be `INTEGER'.
SHIFT The type shall be `INTEGER'.
SIZE (Optional) The type shall be `INTEGER'; the
value must be greater than zero and less than
or equal to `BIT_SIZE(I)'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note ISHFT::
File: gfortran.info, Node: ISNAN, Next: ITIME, Prev: ISHFTC, Up: Intrinsic Procedures
8.134 `ISNAN' -- Test for a NaN
===============================
_Description_:
`ISNAN' tests whether a floating-point value is an IEEE
Not-a-Number (NaN).
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`ISNAN(X)'
_Arguments_:
X Variable of the type `REAL'.
_Return value_:
Returns a default-kind `LOGICAL'. The returned value is `TRUE' if
X is a NaN and `FALSE' otherwise.
_Example_:
program test_nan
implicit none
real :: x
x = -1.0
x = sqrt(x)
if (isnan(x)) stop '"x" is a NaN'
end program test_nan
File: gfortran.info, Node: ITIME, Next: KILL, Prev: ISNAN, Up: Intrinsic Procedures
8.135 `ITIME' -- Get current local time subroutine (hour/minutes/seconds)
=========================================================================
_Description_:
`IDATE(VALUES)' Fills VALUES with the numerical values at the
current local time. The hour (in the range 1-24), minute (in the
range 1-60), and seconds (in the range 1-60) appear in elements 1,
2, and 3 of VALUES, respectively.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL ITIME(VALUES)'
_Arguments_:
VALUES The type shall be `INTEGER, DIMENSION(3)' and
the kind shall be the default integer kind.
_Return value_:
Does not return anything.
_Example_:
program test_itime
integer, dimension(3) :: tarray
call itime(tarray)
print *, tarray(1)
print *, tarray(2)
print *, tarray(3)
end program test_itime
File: gfortran.info, Node: KILL, Next: KIND, Prev: ITIME, Up: Intrinsic Procedures
8.136 `KILL' -- Send a signal to a process
==========================================
_Description_:
_Standard_:
Sends the signal specified by SIGNAL to the process PID. See
`kill(2)'.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Class_:
Subroutine, function
_Syntax_:
`CALL KILL(C, VALUE [, STATUS])'
`STATUS = KILL(C, VALUE)'
_Arguments_:
C Shall be a scalar `INTEGER', with `INTENT(IN)'
VALUE Shall be a scalar `INTEGER', with `INTENT(IN)'
STATUS (Optional) status flag of type `INTEGER(4)' or
`INTEGER(8)'. Returns 0 on success, or a
system-specific error code otherwise.
_See also_:
*note ABORT::, *note EXIT::
File: gfortran.info, Node: KIND, Next: LBOUND, Prev: KILL, Up: Intrinsic Procedures
8.137 `KIND' -- Kind of an entity
=================================
_Description_:
`KIND(X)' returns the kind value of the entity X.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`K = KIND(X)'
_Arguments_:
X Shall be of type `LOGICAL', `INTEGER', `REAL',
`COMPLEX' or `CHARACTER'.
_Return value_:
The return value is a scalar of type `INTEGER' and of the default
integer kind.
_Example_:
program test_kind
integer,parameter :: kc = kind(' ')
integer,parameter :: kl = kind(.true.)
print *, "The default character kind is ", kc
print *, "The default logical kind is ", kl
end program test_kind
File: gfortran.info, Node: LBOUND, Next: LCOBOUND, Prev: KIND, Up: Intrinsic Procedures
8.138 `LBOUND' -- Lower dimension bounds of an array
====================================================
_Description_:
Returns the lower bounds of an array, or a single lower bound
along the DIM dimension.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = LBOUND(ARRAY [, DIM [, KIND]])'
_Arguments_:
ARRAY Shall be an array, of any type.
DIM (Optional) Shall be a scalar `INTEGER'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind. If DIM is
absent, the result is an array of the lower bounds of ARRAY. If
DIM is present, the result is a scalar corresponding to the lower
bound of the array along that dimension. If ARRAY is an
expression rather than a whole array or array structure component,
or if it has a zero extent along the relevant dimension, the lower
bound is taken to be 1.
_See also_:
*note UBOUND::, *note LCOBOUND::
File: gfortran.info, Node: LCOBOUND, Next: LEADZ, Prev: LBOUND, Up: Intrinsic Procedures
8.139 `LCOBOUND' -- Lower codimension bounds of an array
========================================================
_Description_:
Returns the lower bounds of a coarray, or a single lower cobound
along the DIM codimension.
_Standard_:
Fortran 2008 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])'
_Arguments_:
ARRAY Shall be an coarray, of any type.
DIM (Optional) Shall be a scalar `INTEGER'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind. If DIM is
absent, the result is an array of the lower cobounds of COARRAY.
If DIM is present, the result is a scalar corresponding to the
lower cobound of the array along that codimension.
_See also_:
*note UCOBOUND::, *note LBOUND::
File: gfortran.info, Node: LEADZ, Next: LEN, Prev: LCOBOUND, Up: Intrinsic Procedures
8.140 `LEADZ' -- Number of leading zero bits of an integer
==========================================================
_Description_:
`LEADZ' returns the number of leading zero bits of an integer.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = LEADZ(I)'
_Arguments_:
I Shall be of type `INTEGER'.
_Return value_:
The type of the return value is the default `INTEGER'. If all the
bits of `I' are zero, the result value is `BIT_SIZE(I)'.
_Example_:
PROGRAM test_leadz
WRITE (*,*) BIT_SIZE(1) ! prints 32
WRITE (*,*) LEADZ(1) ! prints 31
END PROGRAM
_See also_:
*note BIT_SIZE::, *note TRAILZ::, *note POPCNT::, *note POPPAR::
File: gfortran.info, Node: LEN, Next: LEN_TRIM, Prev: LEADZ, Up: Intrinsic Procedures
8.141 `LEN' -- Length of a character entity
===========================================
_Description_:
Returns the length of a character string. If STRING is an array,
the length of an element of STRING is returned. Note that STRING
need not be defined when this intrinsic is invoked, since only the
length, not the content, of STRING is needed.
_Standard_:
Fortran 77 and later, with KIND argument Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`L = LEN(STRING [, KIND])'
_Arguments_:
STRING Shall be a scalar or array of type
`CHARACTER', with `INTENT(IN)'
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind.
_Specific names_:
Name Argument Return type Standard
`LEN(STRING)' `CHARACTER' `INTEGER' Fortran 77 and
later
_See also_:
*note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR::
File: gfortran.info, Node: LEN_TRIM, Next: LGE, Prev: LEN, Up: Intrinsic Procedures
8.142 `LEN_TRIM' -- Length of a character entity without trailing blank characters
==================================================================================
_Description_:
Returns the length of a character string, ignoring any trailing
blanks.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = LEN_TRIM(STRING [, KIND])'
_Arguments_:
STRING Shall be a scalar of type `CHARACTER', with
`INTENT(IN)'
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind.
_See also_:
*note LEN::, *note ADJUSTL::, *note ADJUSTR::
File: gfortran.info, Node: LGE, Next: LGT, Prev: LEN_TRIM, Up: Intrinsic Procedures
8.143 `LGE' -- Lexical greater than or equal
============================================
_Description_:
Determines whether one string is lexically greater than or equal to
another string, where the two strings are interpreted as containing
ASCII character codes. If the String A and String B are not the
same length, the shorter is compared as if spaces were appended to
it to form a value that has the same length as the longer.
In general, the lexical comparison intrinsics `LGE', `LGT', `LLE',
and `LLT' differ from the corresponding intrinsic operators
`.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the
processor's character ordering (which is not ASCII on some
targets), whereas the former always use the ASCII ordering.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = LGE(STRING_A, STRING_B)'
_Arguments_:
STRING_A Shall be of default `CHARACTER' type.
STRING_B Shall be of default `CHARACTER' type.
_Return value_:
Returns `.TRUE.' if `STRING_A >= STRING_B', and `.FALSE.'
otherwise, based on the ASCII ordering.
_Specific names_:
Name Argument Return type Standard
`LGE(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and
STRING_B)' later
_See also_:
*note LGT::, *note LLE::, *note LLT::
File: gfortran.info, Node: LGT, Next: LINK, Prev: LGE, Up: Intrinsic Procedures
8.144 `LGT' -- Lexical greater than
===================================
_Description_:
Determines whether one string is lexically greater than another
string, where the two strings are interpreted as containing ASCII
character codes. If the String A and String B are not the same
length, the shorter is compared as if spaces were appended to it
to form a value that has the same length as the longer.
In general, the lexical comparison intrinsics `LGE', `LGT', `LLE',
and `LLT' differ from the corresponding intrinsic operators
`.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the
processor's character ordering (which is not ASCII on some
targets), whereas the former always use the ASCII ordering.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = LGT(STRING_A, STRING_B)'
_Arguments_:
STRING_A Shall be of default `CHARACTER' type.
STRING_B Shall be of default `CHARACTER' type.
_Return value_:
Returns `.TRUE.' if `STRING_A > STRING_B', and `.FALSE.'
otherwise, based on the ASCII ordering.
_Specific names_:
Name Argument Return type Standard
`LGT(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and
STRING_B)' later
_See also_:
*note LGE::, *note LLE::, *note LLT::
File: gfortran.info, Node: LINK, Next: LLE, Prev: LGT, Up: Intrinsic Procedures
8.145 `LINK' -- Create a hard link
==================================
_Description_:
Makes a (hard) link from file PATH1 to PATH2. A null character
(`CHAR(0)') can be used to mark the end of the names in PATH1 and
PATH2; otherwise, trailing blanks in the file names are ignored.
If the STATUS argument is supplied, it contains 0 on success or a
nonzero error code upon return; see `link(2)'.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL LINK(PATH1, PATH2 [, STATUS])'
`STATUS = LINK(PATH1, PATH2)'
_Arguments_:
PATH1 Shall be of default `CHARACTER' type.
PATH2 Shall be of default `CHARACTER' type.
STATUS (Optional) Shall be of default `INTEGER' type.
_See also_:
*note SYMLNK::, *note UNLINK::
File: gfortran.info, Node: LLE, Next: LLT, Prev: LINK, Up: Intrinsic Procedures
8.146 `LLE' -- Lexical less than or equal
=========================================
_Description_:
Determines whether one string is lexically less than or equal to
another string, where the two strings are interpreted as
containing ASCII character codes. If the String A and String B
are not the same length, the shorter is compared as if spaces were
appended to it to form a value that has the same length as the
longer.
In general, the lexical comparison intrinsics `LGE', `LGT', `LLE',
and `LLT' differ from the corresponding intrinsic operators
`.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the
processor's character ordering (which is not ASCII on some
targets), whereas the former always use the ASCII ordering.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = LLE(STRING_A, STRING_B)'
_Arguments_:
STRING_A Shall be of default `CHARACTER' type.
STRING_B Shall be of default `CHARACTER' type.
_Return value_:
Returns `.TRUE.' if `STRING_A <= STRING_B', and `.FALSE.'
otherwise, based on the ASCII ordering.
_Specific names_:
Name Argument Return type Standard
`LLE(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and
STRING_B)' later
_See also_:
*note LGE::, *note LGT::, *note LLT::
File: gfortran.info, Node: LLT, Next: LNBLNK, Prev: LLE, Up: Intrinsic Procedures
8.147 `LLT' -- Lexical less than
================================
_Description_:
Determines whether one string is lexically less than another
string, where the two strings are interpreted as containing ASCII
character codes. If the String A and String B are not the same
length, the shorter is compared as if spaces were appended to it
to form a value that has the same length as the longer.
In general, the lexical comparison intrinsics `LGE', `LGT', `LLE',
and `LLT' differ from the corresponding intrinsic operators
`.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the
processor's character ordering (which is not ASCII on some
targets), whereas the former always use the ASCII ordering.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = LLT(STRING_A, STRING_B)'
_Arguments_:
STRING_A Shall be of default `CHARACTER' type.
STRING_B Shall be of default `CHARACTER' type.
_Return value_:
Returns `.TRUE.' if `STRING_A < STRING_B', and `.FALSE.'
otherwise, based on the ASCII ordering.
_Specific names_:
Name Argument Return type Standard
`LLT(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and
STRING_B)' later
_See also_:
*note LGE::, *note LGT::, *note LLE::
File: gfortran.info, Node: LNBLNK, Next: LOC, Prev: LLT, Up: Intrinsic Procedures
8.148 `LNBLNK' -- Index of the last non-blank character in a string
===================================================================
_Description_:
Returns the length of a character string, ignoring any trailing
blanks. This is identical to the standard `LEN_TRIM' intrinsic,
and is only included for backwards compatibility.
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`RESULT = LNBLNK(STRING)'
_Arguments_:
STRING Shall be a scalar of type `CHARACTER', with
`INTENT(IN)'
_Return value_:
The return value is of `INTEGER(kind=4)' type.
_See also_:
*note INDEX intrinsic::, *note LEN_TRIM::
File: gfortran.info, Node: LOC, Next: LOG, Prev: LNBLNK, Up: Intrinsic Procedures
8.149 `LOC' -- Returns the address of a variable
================================================
_Description_:
`LOC(X)' returns the address of X as an integer.
_Standard_:
GNU extension
_Class_:
Inquiry function
_Syntax_:
`RESULT = LOC(X)'
_Arguments_:
X Variable of any type.
_Return value_:
The return value is of type `INTEGER', with a `KIND' corresponding
to the size (in bytes) of a memory address on the target machine.
_Example_:
program test_loc
integer :: i
real :: r
i = loc(r)
print *, i
end program test_loc
File: gfortran.info, Node: LOG, Next: LOG10, Prev: LOC, Up: Intrinsic Procedures
8.150 `LOG' -- Natural logarithm function
=========================================
_Description_:
`LOG(X)' computes the natural logarithm of X, i.e. the logarithm
to the base e.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = LOG(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value is of type `REAL' or `COMPLEX'. The kind type
parameter is the same as X. If X is `COMPLEX', the imaginary part
\omega is in the range -\pi \leq \omega \leq \pi.
_Example_:
program test_log
real(8) :: x = 2.7182818284590451_8
complex :: z = (1.0, 2.0)
x = log(x) ! will yield (approximately) 1
z = log(z)
end program test_log
_Specific names_:
Name Argument Return type Standard
`ALOG(X)' `REAL(4) X' `REAL(4)' f95, gnu
`DLOG(X)' `REAL(8) X' `REAL(8)' f95, gnu
`CLOG(X)' `COMPLEX(4) `COMPLEX(4)' f95, gnu
X'
`ZLOG(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu
X'
`CDLOG(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu
X'
File: gfortran.info, Node: LOG10, Next: LOG_GAMMA, Prev: LOG, Up: Intrinsic Procedures
8.151 `LOG10' -- Base 10 logarithm function
===========================================
_Description_:
`LOG10(X)' computes the base 10 logarithm of X.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = LOG10(X)'
_Arguments_:
X The type shall be `REAL'.
_Return value_:
The return value is of type `REAL' or `COMPLEX'. The kind type
parameter is the same as X.
_Example_:
program test_log10
real(8) :: x = 10.0_8
x = log10(x)
end program test_log10
_Specific names_:
Name Argument Return type Standard
`ALOG10(X)' `REAL(4) X' `REAL(4)' Fortran 95 and
later
`DLOG10(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
later
File: gfortran.info, Node: LOG_GAMMA, Next: LOGICAL, Prev: LOG10, Up: Intrinsic Procedures
8.152 `LOG_GAMMA' -- Logarithm of the Gamma function
====================================================
_Description_:
`LOG_GAMMA(X)' computes the natural logarithm of the absolute value
of the Gamma (\Gamma) function.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`X = LOG_GAMMA(X)'
_Arguments_:
X Shall be of type `REAL' and neither zero nor a
negative integer.
_Return value_:
The return value is of type `REAL' of the same kind as X.
_Example_:
program test_log_gamma
real :: x = 1.0
x = lgamma(x) ! returns 0.0
end program test_log_gamma
_Specific names_:
Name Argument Return type Standard
`LGAMMA(X)' `REAL(4) X' `REAL(4)' GNU Extension
`ALGAMA(X)' `REAL(4) X' `REAL(4)' GNU Extension
`DLGAMA(X)' `REAL(8) X' `REAL(8)' GNU Extension
_See also_:
Gamma function: *note GAMMA::
File: gfortran.info, Node: LOGICAL, Next: LONG, Prev: LOG_GAMMA, Up: Intrinsic Procedures
8.153 `LOGICAL' -- Convert to logical type
==========================================
_Description_:
Converts one kind of `LOGICAL' variable to another.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = LOGICAL(L [, KIND])'
_Arguments_:
L The type shall be `LOGICAL'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is a `LOGICAL' value equal to L, with a kind
corresponding to KIND, or of the default logical kind if KIND is
not given.
_See also_:
*note INT::, *note REAL::, *note CMPLX::
File: gfortran.info, Node: LONG, Next: LSHIFT, Prev: LOGICAL, Up: Intrinsic Procedures
8.154 `LONG' -- Convert to integer type
=======================================
_Description_:
Convert to a `KIND=4' integer type, which is the same size as a C
`long' integer. This is equivalent to the standard `INT'
intrinsic with an optional argument of `KIND=4', and is only
included for backwards compatibility.
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`RESULT = LONG(A)'
_Arguments_:
A Shall be of type `INTEGER', `REAL', or
`COMPLEX'.
_Return value_:
The return value is a `INTEGER(4)' variable.
_See also_:
*note INT::, *note INT2::, *note INT8::
File: gfortran.info, Node: LSHIFT, Next: LSTAT, Prev: LONG, Up: Intrinsic Procedures
8.155 `LSHIFT' -- Left shift bits
=================================
_Description_:
`LSHIFT' returns a value corresponding to I with all of the bits
shifted left by SHIFT places. If the absolute value of SHIFT is
greater than `BIT_SIZE(I)', the value is undefined. Bits shifted
out from the left end are lost; zeros are shifted in from the
opposite end.
This function has been superseded by the `ISHFT' intrinsic, which
is standard in Fortran 95 and later, and the `SHIFTL' intrinsic,
which is standard in Fortran 2008 and later.
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`RESULT = LSHIFT(I, SHIFT)'
_Arguments_:
I The type shall be `INTEGER'.
SHIFT The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note ISHFT::, *note ISHFTC::, *note RSHIFT::, *note SHIFTA::,
*note SHIFTL::, *note SHIFTR::
File: gfortran.info, Node: LSTAT, Next: LTIME, Prev: LSHIFT, Up: Intrinsic Procedures
8.156 `LSTAT' -- Get file status
================================
_Description_:
`LSTAT' is identical to *note STAT::, except that if path is a
symbolic link, then the link itself is statted, not the file that
it refers to.
The elements in `VALUES' are the same as described by *note STAT::.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL LSTAT(NAME, VALUES [, STATUS])'
`STATUS = LSTAT(NAME, VALUES)'
_Arguments_:
NAME The type shall be `CHARACTER' of the default
kind, a valid path within the file system.
VALUES The type shall be `INTEGER(4), DIMENSION(13)'.
STATUS (Optional) status flag of type `INTEGER(4)'.
Returns 0 on success and a system specific
error code otherwise.
_Example_:
See *note STAT:: for an example.
_See also_:
To stat an open file: *note FSTAT::, to stat a file: *note STAT::
File: gfortran.info, Node: LTIME, Next: MALLOC, Prev: LSTAT, Up: Intrinsic Procedures
8.157 `LTIME' -- Convert time to local time info
================================================
_Description_:
Given a system time value TIME (as provided by the `TIME8'
intrinsic), fills VALUES with values extracted from it appropriate
to the local time zone using `localtime(3)'.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL LTIME(TIME, VALUES)'
_Arguments_:
TIME An `INTEGER' scalar expression corresponding
to a system time, with `INTENT(IN)'.
VALUES A default `INTEGER' array with 9 elements,
with `INTENT(OUT)'.
_Return value_:
The elements of VALUES are assigned as follows:
1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
seconds
2. Minutes after the hour, range 0-59
3. Hours past midnight, range 0-23
4. Day of month, range 0-31
5. Number of months since January, range 0-12
6. Years since 1900
7. Number of days since Sunday, range 0-6
8. Days since January 1
9. Daylight savings indicator: positive if daylight savings is in
effect, zero if not, and negative if the information is not
available.
_See also_:
*note CTIME::, *note GMTIME::, *note TIME::, *note TIME8::
File: gfortran.info, Node: MALLOC, Next: MASKL, Prev: LTIME, Up: Intrinsic Procedures
8.158 `MALLOC' -- Allocate dynamic memory
=========================================
_Description_:
`MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns
the address of the allocated memory. The `MALLOC' intrinsic is an
extension intended to be used with Cray pointers, and is provided
in GNU Fortran to allow the user to compile legacy code. For new
code using Fortran 95 pointers, the memory allocation intrinsic is
`ALLOCATE'.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`PTR = MALLOC(SIZE)'
_Arguments_:
SIZE The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER(K)', with K such that
variables of type `INTEGER(K)' have the same size as C pointers
(`sizeof(void *)').
_Example_:
The following example demonstrates the use of `MALLOC' and `FREE'
with Cray pointers.
program test_malloc
implicit none
integer i
real*8 x(*), z
pointer(ptr_x,x)
ptr_x = malloc(20*8)
do i = 1, 20
x(i) = sqrt(1.0d0 / i)
end do
z = 0
do i = 1, 20
z = z + x(i)
print *, z
end do
call free(ptr_x)
end program test_malloc
_See also_:
*note FREE::
File: gfortran.info, Node: MASKL, Next: MASKR, Prev: MALLOC, Up: Intrinsic Procedures
8.159 `MASKL' -- Left justified mask
====================================
_Description_:
`MASKL(I[, KIND])' has its leftmost I bits set to 1, and the
remaining bits set to 0.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = MASKL(I[, KIND])'
_Arguments_:
I Shall be of type `INTEGER'.
KIND Shall be a scalar constant expression of type
`INTEGER'.
_Return value_:
The return value is of type `INTEGER'. If KIND is present, it
specifies the kind value of the return type; otherwise, it is of
the default integer kind.
_See also_:
*note MASKR::
File: gfortran.info, Node: MASKR, Next: MATMUL, Prev: MASKL, Up: Intrinsic Procedures
8.160 `MASKR' -- Right justified mask
=====================================
_Description_:
`MASKL(I[, KIND])' has its rightmost I bits set to 1, and the
remaining bits set to 0.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = MASKR(I[, KIND])'
_Arguments_:
I Shall be of type `INTEGER'.
KIND Shall be a scalar constant expression of type
`INTEGER'.
_Return value_:
The return value is of type `INTEGER'. If KIND is present, it
specifies the kind value of the return type; otherwise, it is of
the default integer kind.
_See also_:
*note MASKL::
File: gfortran.info, Node: MATMUL, Next: MAX, Prev: MASKR, Up: Intrinsic Procedures
8.161 `MATMUL' -- matrix multiplication
=======================================
_Description_:
Performs a matrix multiplication on numeric or logical arguments.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = MATMUL(MATRIX_A, MATRIX_B)'
_Arguments_:
MATRIX_A An array of `INTEGER', `REAL', `COMPLEX', or
`LOGICAL' type, with a rank of one or two.
MATRIX_B An array of `INTEGER', `REAL', or `COMPLEX'
type if MATRIX_A is of a numeric type;
otherwise, an array of `LOGICAL' type. The
rank shall be one or two, and the first (or
only) dimension of MATRIX_B shall be equal to
the last (or only) dimension of MATRIX_A.
_Return value_:
The matrix product of MATRIX_A and MATRIX_B. The type and kind of
the result follow the usual type and kind promotion rules, as for
the `*' or `.AND.' operators.
_See also_:
File: gfortran.info, Node: MAX, Next: MAXEXPONENT, Prev: MATMUL, Up: Intrinsic Procedures
8.162 `MAX' -- Maximum value of an argument list
================================================
_Description_:
Returns the argument with the largest (most positive) value.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = MAX(A1, A2 [, A3 [, ...]])'
_Arguments_:
A1 The type shall be `INTEGER' or `REAL'.
A2, A3, An expression of the same type and kind as A1.
... (As a GNU extension, arguments of different
kinds are permitted.)
_Return value_:
The return value corresponds to the maximum value among the
arguments, and has the same type and kind as the first argument.
_Specific names_:
Name Argument Return type Standard
`MAX0(A1)' `INTEGER(4) `INTEGER(4)' Fortran 77 and
A1' later
`AMAX0(A1)' `INTEGER(4) `REAL(MAX(X))'Fortran 77 and
A1' later
`MAX1(A1)' `REAL A1' `INT(MAX(X))' Fortran 77 and
later
`AMAX1(A1)' `REAL(4) A1' `REAL(4)' Fortran 77 and
later
`DMAX1(A1)' `REAL(8) A1' `REAL(8)' Fortran 77 and
later
_See also_:
*note MAXLOC:: *note MAXVAL::, *note MIN::
File: gfortran.info, Node: MAXEXPONENT, Next: MAXLOC, Prev: MAX, Up: Intrinsic Procedures
8.163 `MAXEXPONENT' -- Maximum exponent of a real kind
======================================================
_Description_:
`MAXEXPONENT(X)' returns the maximum exponent in the model of the
type of `X'.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = MAXEXPONENT(X)'
_Arguments_:
X Shall be of type `REAL'.
_Return value_:
The return value is of type `INTEGER' and of the default integer
kind.
_Example_:
program exponents
real(kind=4) :: x
real(kind=8) :: y
print *, minexponent(x), maxexponent(x)
print *, minexponent(y), maxexponent(y)
end program exponents
File: gfortran.info, Node: MAXLOC, Next: MAXVAL, Prev: MAXEXPONENT, Up: Intrinsic Procedures
8.164 `MAXLOC' -- Location of the maximum value within an array
===============================================================
_Description_:
Determines the location of the element in the array with the
maximum value, or, if the DIM argument is supplied, determines the
locations of the maximum element along each row of the array in the
DIM direction. If MASK is present, only the elements for which
MASK is `.TRUE.' are considered. If more than one element in the
array has the maximum value, the location returned is that of the
first such element in array element order. If the array has zero
size, or all of the elements of MASK are `.FALSE.', then the
result is an array of zeroes. Similarly, if DIM is supplied and
all of the elements of MASK along a given row are zero, the result
value for that row is zero.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = MAXLOC(ARRAY, DIM [, MASK])'
`RESULT = MAXLOC(ARRAY [, MASK])'
_Arguments_:
ARRAY Shall be an array of type `INTEGER' or `REAL'.
DIM (Optional) Shall be a scalar of type
`INTEGER', with a value between one and the
rank of ARRAY, inclusive. It may not be an
optional dummy argument.
MASK Shall be an array of type `LOGICAL', and
conformable with ARRAY.
_Return value_:
If DIM is absent, the result is a rank-one array with a length
equal to the rank of ARRAY. If DIM is present, the result is an
array with a rank one less than the rank of ARRAY, and a size
corresponding to the size of ARRAY with the DIM dimension removed.
If DIM is present and ARRAY has a rank of one, the result is a
scalar. In all cases, the result is of default `INTEGER' type.
_See also_:
*note MAX::, *note MAXVAL::
File: gfortran.info, Node: MAXVAL, Next: MCLOCK, Prev: MAXLOC, Up: Intrinsic Procedures
8.165 `MAXVAL' -- Maximum value of an array
===========================================
_Description_:
Determines the maximum value of the elements in an array value,
or, if the DIM argument is supplied, determines the maximum value
along each row of the array in the DIM direction. If MASK is
present, only the elements for which MASK is `.TRUE.' are
considered. If the array has zero size, or all of the elements of
MASK are `.FALSE.', then the result is `-HUGE(ARRAY)' if ARRAY is
numeric, or a string of nulls if ARRAY is of character type.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = MAXVAL(ARRAY, DIM [, MASK])'
`RESULT = MAXVAL(ARRAY [, MASK])'
_Arguments_:
ARRAY Shall be an array of type `INTEGER' or `REAL'.
DIM (Optional) Shall be a scalar of type
`INTEGER', with a value between one and the
rank of ARRAY, inclusive. It may not be an
optional dummy argument.
MASK Shall be an array of type `LOGICAL', and
conformable with ARRAY.
_Return value_:
If DIM is absent, or if ARRAY has a rank of one, the result is a
scalar. If DIM is present, the result is an array with a rank one
less than the rank of ARRAY, and a size corresponding to the size
of ARRAY with the DIM dimension removed. In all cases, the result
is of the same type and kind as ARRAY.
_See also_:
*note MAX::, *note MAXLOC::
File: gfortran.info, Node: MCLOCK, Next: MCLOCK8, Prev: MAXVAL, Up: Intrinsic Procedures
8.166 `MCLOCK' -- Time function
===============================
_Description_:
Returns the number of clock ticks since the start of the process,
based on the UNIX function `clock(3)'.
This intrinsic is not fully portable, such as to systems with
32-bit `INTEGER' types but supporting times wider than 32 bits.
Therefore, the values returned by this intrinsic might be, or
become, negative, or numerically less than previous values, during
a single run of the compiled program.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = MCLOCK()'
_Return value_:
The return value is a scalar of type `INTEGER(4)', equal to the
number of clock ticks since the start of the process, or `-1' if
the system does not support `clock(3)'.
_See also_:
*note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::,
*note TIME::
File: gfortran.info, Node: MCLOCK8, Next: MERGE, Prev: MCLOCK, Up: Intrinsic Procedures
8.167 `MCLOCK8' -- Time function (64-bit)
=========================================
_Description_:
Returns the number of clock ticks since the start of the process,
based on the UNIX function `clock(3)'.
_Warning:_ this intrinsic does not increase the range of the timing
values over that returned by `clock(3)'. On a system with a 32-bit
`clock(3)', `MCLOCK8' will return a 32-bit value, even though it
is converted to a 64-bit `INTEGER(8)' value. That means overflows
of the 32-bit value can still occur. Therefore, the values
returned by this intrinsic might be or become negative or
numerically less than previous values during a single run of the
compiled program.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = MCLOCK8()'
_Return value_:
The return value is a scalar of type `INTEGER(8)', equal to the
number of clock ticks since the start of the process, or `-1' if
the system does not support `clock(3)'.
_See also_:
*note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::,
*note TIME8::
File: gfortran.info, Node: MERGE, Next: MERGE_BITS, Prev: MCLOCK8, Up: Intrinsic Procedures
8.168 `MERGE' -- Merge variables
================================
_Description_:
Select values from two arrays according to a logical mask. The
result is equal to TSOURCE if MASK is `.TRUE.', or equal to
FSOURCE if it is `.FALSE.'.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = MERGE(TSOURCE, FSOURCE, MASK)'
_Arguments_:
TSOURCE May be of any type.
FSOURCE Shall be of the same type and type parameters
as TSOURCE.
MASK Shall be of type `LOGICAL'.
_Return value_:
The result is of the same type and type parameters as TSOURCE.
File: gfortran.info, Node: MERGE_BITS, Next: MIN, Prev: MERGE, Up: Intrinsic Procedures
8.169 `MERGE_BITS' -- Merge of bits under mask
==============================================
_Description_:
`MERGE_BITS(I, J, MASK)' merges the bits of I and J as determined
by the mask. The i-th bit of the result is equal to the i-th bit
of I if the i-th bit of MASK is 1; it is equal to the i-th bit of
J otherwise.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = MERGE_BITS(I, J, MASK)'
_Arguments_:
I Shall be of type `INTEGER'.
J Shall be of type `INTEGER' and of the same
kind as I.
MASK Shall be of type `INTEGER' and of the same
kind as I.
_Return value_:
The result is of the same type and kind as I.
File: gfortran.info, Node: MIN, Next: MINEXPONENT, Prev: MERGE_BITS, Up: Intrinsic Procedures
8.170 `MIN' -- Minimum value of an argument list
================================================
_Description_:
Returns the argument with the smallest (most negative) value.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = MIN(A1, A2 [, A3, ...])'
_Arguments_:
A1 The type shall be `INTEGER' or `REAL'.
A2, A3, An expression of the same type and kind as A1.
... (As a GNU extension, arguments of different
kinds are permitted.)
_Return value_:
The return value corresponds to the maximum value among the
arguments, and has the same type and kind as the first argument.
_Specific names_:
Name Argument Return type Standard
`MIN0(A1)' `INTEGER(4) `INTEGER(4)' Fortran 77 and
A1' later
`AMIN0(A1)' `INTEGER(4) `REAL(4)' Fortran 77 and
A1' later
`MIN1(A1)' `REAL A1' `INTEGER(4)' Fortran 77 and
later
`AMIN1(A1)' `REAL(4) A1' `REAL(4)' Fortran 77 and
later
`DMIN1(A1)' `REAL(8) A1' `REAL(8)' Fortran 77 and
later
_See also_:
*note MAX::, *note MINLOC::, *note MINVAL::
File: gfortran.info, Node: MINEXPONENT, Next: MINLOC, Prev: MIN, Up: Intrinsic Procedures
8.171 `MINEXPONENT' -- Minimum exponent of a real kind
======================================================
_Description_:
`MINEXPONENT(X)' returns the minimum exponent in the model of the
type of `X'.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = MINEXPONENT(X)'
_Arguments_:
X Shall be of type `REAL'.
_Return value_:
The return value is of type `INTEGER' and of the default integer
kind.
_Example_:
See `MAXEXPONENT' for an example.
File: gfortran.info, Node: MINLOC, Next: MINVAL, Prev: MINEXPONENT, Up: Intrinsic Procedures
8.172 `MINLOC' -- Location of the minimum value within an array
===============================================================
_Description_:
Determines the location of the element in the array with the
minimum value, or, if the DIM argument is supplied, determines the
locations of the minimum element along each row of the array in the
DIM direction. If MASK is present, only the elements for which
MASK is `.TRUE.' are considered. If more than one element in the
array has the minimum value, the location returned is that of the
first such element in array element order. If the array has zero
size, or all of the elements of MASK are `.FALSE.', then the
result is an array of zeroes. Similarly, if DIM is supplied and
all of the elements of MASK along a given row are zero, the result
value for that row is zero.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = MINLOC(ARRAY, DIM [, MASK])'
`RESULT = MINLOC(ARRAY [, MASK])'
_Arguments_:
ARRAY Shall be an array of type `INTEGER' or `REAL'.
DIM (Optional) Shall be a scalar of type
`INTEGER', with a value between one and the
rank of ARRAY, inclusive. It may not be an
optional dummy argument.
MASK Shall be an array of type `LOGICAL', and
conformable with ARRAY.
_Return value_:
If DIM is absent, the result is a rank-one array with a length
equal to the rank of ARRAY. If DIM is present, the result is an
array with a rank one less than the rank of ARRAY, and a size
corresponding to the size of ARRAY with the DIM dimension removed.
If DIM is present and ARRAY has a rank of one, the result is a
scalar. In all cases, the result is of default `INTEGER' type.
_See also_:
*note MIN::, *note MINVAL::
File: gfortran.info, Node: MINVAL, Next: MOD, Prev: MINLOC, Up: Intrinsic Procedures
8.173 `MINVAL' -- Minimum value of an array
===========================================
_Description_:
Determines the minimum value of the elements in an array value,
or, if the DIM argument is supplied, determines the minimum value
along each row of the array in the DIM direction. If MASK is
present, only the elements for which MASK is `.TRUE.' are
considered. If the array has zero size, or all of the elements of
MASK are `.FALSE.', then the result is `HUGE(ARRAY)' if ARRAY is
numeric, or a string of `CHAR(255)' characters if ARRAY is of
character type.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = MINVAL(ARRAY, DIM [, MASK])'
`RESULT = MINVAL(ARRAY [, MASK])'
_Arguments_:
ARRAY Shall be an array of type `INTEGER' or `REAL'.
DIM (Optional) Shall be a scalar of type
`INTEGER', with a value between one and the
rank of ARRAY, inclusive. It may not be an
optional dummy argument.
MASK Shall be an array of type `LOGICAL', and
conformable with ARRAY.
_Return value_:
If DIM is absent, or if ARRAY has a rank of one, the result is a
scalar. If DIM is present, the result is an array with a rank one
less than the rank of ARRAY, and a size corresponding to the size
of ARRAY with the DIM dimension removed. In all cases, the result
is of the same type and kind as ARRAY.
_See also_:
*note MIN::, *note MINLOC::
File: gfortran.info, Node: MOD, Next: MODULO, Prev: MINVAL, Up: Intrinsic Procedures
8.174 `MOD' -- Remainder function
=================================
_Description_:
`MOD(A,P)' computes the remainder of the division of A by P. It is
calculated as `A - (INT(A/P) * P)'.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = MOD(A, P)'
_Arguments_:
A Shall be a scalar of type `INTEGER' or `REAL'
P Shall be a scalar of the same type as A and not
equal to zero
_Return value_:
The kind of the return value is the result of cross-promoting the
kinds of the arguments.
_Example_:
program test_mod
print *, mod(17,3)
print *, mod(17.5,5.5)
print *, mod(17.5d0,5.5)
print *, mod(17.5,5.5d0)
print *, mod(-17,3)
print *, mod(-17.5,5.5)
print *, mod(-17.5d0,5.5)
print *, mod(-17.5,5.5d0)
print *, mod(17,-3)
print *, mod(17.5,-5.5)
print *, mod(17.5d0,-5.5)
print *, mod(17.5,-5.5d0)
end program test_mod
_Specific names_:
Name Arguments Return type Standard
`MOD(A,P)' `INTEGER `INTEGER' Fortran 95 and
A,P' later
`AMOD(A,P)' `REAL(4) `REAL(4)' Fortran 95 and
A,P' later
`DMOD(A,P)' `REAL(8) `REAL(8)' Fortran 95 and
A,P' later
File: gfortran.info, Node: MODULO, Next: MOVE_ALLOC, Prev: MOD, Up: Intrinsic Procedures
8.175 `MODULO' -- Modulo function
=================================
_Description_:
`MODULO(A,P)' computes the A modulo P.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = MODULO(A, P)'
_Arguments_:
A Shall be a scalar of type `INTEGER' or `REAL'
P Shall be a scalar of the same type and kind as
A
_Return value_:
The type and kind of the result are those of the arguments.
If A and P are of type `INTEGER':
`MODULO(A,P)' has the value R such that `A=Q*P+R', where Q is
an integer and R is between 0 (inclusive) and P (exclusive).
If A and P are of type `REAL':
`MODULO(A,P)' has the value of `A - FLOOR (A / P) * P'.
In all cases, if P is zero the result is processor-dependent.
_Example_:
program test_modulo
print *, modulo(17,3)
print *, modulo(17.5,5.5)
print *, modulo(-17,3)
print *, modulo(-17.5,5.5)
print *, modulo(17,-3)
print *, modulo(17.5,-5.5)
end program
File: gfortran.info, Node: MOVE_ALLOC, Next: MVBITS, Prev: MODULO, Up: Intrinsic Procedures
8.176 `MOVE_ALLOC' -- Move allocation from one object to another
================================================================
_Description_:
`MOVE_ALLOC(FROM, TO)' moves the allocation from FROM to TO. FROM
will become deallocated in the process.
_Standard_:
Fortran 2003 and later
_Class_:
Pure subroutine
_Syntax_:
`CALL MOVE_ALLOC(FROM, TO)'
_Arguments_:
FROM `ALLOCATABLE', `INTENT(INOUT)', may be of any
type and kind.
TO `ALLOCATABLE', `INTENT(OUT)', shall be of the
same type, kind and rank as FROM.
_Return value_:
None
_Example_:
program test_move_alloc
integer, allocatable :: a(:), b(:)
allocate(a(3))
a = [ 1, 2, 3 ]
call move_alloc(a, b)
print *, allocated(a), allocated(b)
print *, b
end program test_move_alloc
File: gfortran.info, Node: MVBITS, Next: NEAREST, Prev: MOVE_ALLOC, Up: Intrinsic Procedures
8.177 `MVBITS' -- Move bits from one integer to another
=======================================================
_Description_:
Moves LEN bits from positions FROMPOS through `FROMPOS+LEN-1' of
FROM to positions TOPOS through `TOPOS+LEN-1' of TO. The portion
of argument TO not affected by the movement of bits is unchanged.
The values of `FROMPOS+LEN-1' and `TOPOS+LEN-1' must be less than
`BIT_SIZE(FROM)'.
_Standard_:
Fortran 95 and later
_Class_:
Elemental subroutine
_Syntax_:
`CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)'
_Arguments_:
FROM The type shall be `INTEGER'.
FROMPOS The type shall be `INTEGER'.
LEN The type shall be `INTEGER'.
TO The type shall be `INTEGER', of the same kind
as FROM.
TOPOS The type shall be `INTEGER'.
_See also_:
*note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note
IOR::, *note IEOR::
File: gfortran.info, Node: NEAREST, Next: NEW_LINE, Prev: MVBITS, Up: Intrinsic Procedures
8.178 `NEAREST' -- Nearest representable number
===============================================
_Description_:
`NEAREST(X, S)' returns the processor-representable number nearest
to `X' in the direction indicated by the sign of `S'.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = NEAREST(X, S)'
_Arguments_:
X Shall be of type `REAL'.
S (Optional) shall be of type `REAL' and not
equal to zero.
_Return value_:
The return value is of the same type as `X'. If `S' is positive,
`NEAREST' returns the processor-representable number greater than
`X' and nearest to it. If `S' is negative, `NEAREST' returns the
processor-representable number smaller than `X' and nearest to it.
_Example_:
program test_nearest
real :: x, y
x = nearest(42.0, 1.0)
y = nearest(42.0, -1.0)
write (*,"(3(G20.15))") x, y, x - y
end program test_nearest
File: gfortran.info, Node: NEW_LINE, Next: NINT, Prev: NEAREST, Up: Intrinsic Procedures
8.179 `NEW_LINE' -- New line character
======================================
_Description_:
`NEW_LINE(C)' returns the new-line character.
_Standard_:
Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = NEW_LINE(C)'
_Arguments_:
C The argument shall be a scalar or array of the
type `CHARACTER'.
_Return value_:
Returns a CHARACTER scalar of length one with the new-line
character of the same kind as parameter C.
_Example_:
program newline
implicit none
write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
end program newline
File: gfortran.info, Node: NINT, Next: NORM2, Prev: NEW_LINE, Up: Intrinsic Procedures
8.180 `NINT' -- Nearest whole number
====================================
_Description_:
`NINT(A)' rounds its argument to the nearest whole number.
_Standard_:
Fortran 77 and later, with KIND argument Fortran 90 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = NINT(A [, KIND])'
_Arguments_:
A The type of the argument shall be `REAL'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
Returns A with the fractional portion of its magnitude eliminated
by rounding to the nearest whole number and with its sign
preserved, converted to an `INTEGER' of the default kind.
_Example_:
program test_nint
real(4) x4
real(8) x8
x4 = 1.234E0_4
x8 = 4.321_8
print *, nint(x4), idnint(x8)
end program test_nint
_Specific names_:
Name Argument Return Type Standard
`NINT(A)' `REAL(4) A' `INTEGER' Fortran 95 and
later
`IDNINT(A)' `REAL(8) A' `INTEGER' Fortran 95 and
later
_See also_:
*note CEILING::, *note FLOOR::
File: gfortran.info, Node: NORM2, Next: NOT, Prev: NINT, Up: Intrinsic Procedures
8.181 `NORM2' -- Euclidean vector norms
=======================================
_Description_:
Calculates the Euclidean vector norm (L_2 norm) of of ARRAY along
dimension DIM.
_Standard_:
Fortran 2008 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = NORM2(ARRAY[, DIM])'
_Arguments_:
ARRAY Shall be an array of type `REAL'
DIM (Optional) shall be a scalar of type `INTEGER'
with a value in the range from 1 to n, where n
equals the rank of ARRAY.
_Return value_:
The result is of the same type as ARRAY.
If DIM is absent, a scalar with the square root of the sum of all
elements in ARRAY squared is returned. Otherwise, an array of
rank n-1, where n equals the rank of ARRAY, and a shape similar to
that of ARRAY with dimension DIM dropped is returned.
_Example_:
PROGRAM test_sum
REAL :: x(5) = [ real :: 1, 2, 3, 4, 5 ]
print *, NORM2(x) ! = sqrt(55.) ~ 7.416
END PROGRAM
File: gfortran.info, Node: NOT, Next: NULL, Prev: NORM2, Up: Intrinsic Procedures
8.182 `NOT' -- Logical negation
===============================
_Description_:
`NOT' returns the bitwise Boolean inverse of I.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = NOT(I)'
_Arguments_:
I The type shall be `INTEGER'.
_Return value_:
The return type is `INTEGER', of the same kind as the argument.
_See also_:
*note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note
IBSET::, *note IBCLR::
File: gfortran.info, Node: NULL, Next: NUM_IMAGES, Prev: NOT, Up: Intrinsic Procedures
8.183 `NULL' -- Function that returns an disassociated pointer
==============================================================
_Description_:
Returns a disassociated pointer.
If MOLD is present, a disassociated pointer of the same type is
returned, otherwise the type is determined by context.
In Fortran 95, MOLD is optional. Please note that Fortran 2003
includes cases where it is required.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`PTR => NULL([MOLD])'
_Arguments_:
MOLD (Optional) shall be a pointer of any
association status and of any type.
_Return value_:
A disassociated pointer.
_Example_:
REAL, POINTER, DIMENSION(:) :: VEC => NULL ()
_See also_:
*note ASSOCIATED::
File: gfortran.info, Node: NUM_IMAGES, Next: OR, Prev: NULL, Up: Intrinsic Procedures
8.184 `NUM_IMAGES' -- Function that returns the number of images
================================================================
_Description_:
Returns the number of images.
_Standard_:
Fortran 2008 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = NUM_IMAGES()'
_Arguments_: None.
_Return value_:
Scalar default-kind integer.
_Example_:
INTEGER :: value[*]
INTEGER :: i
value = THIS_IMAGE()
SYNC ALL
IF (THIS_IMAGE() == 1) THEN
DO i = 1, NUM_IMAGES()
WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
END DO
END IF
_See also_:
*note THIS_IMAGE::, *note IMAGE_INDEX::
File: gfortran.info, Node: OR, Next: PACK, Prev: NUM_IMAGES, Up: Intrinsic Procedures
8.185 `OR' -- Bitwise logical OR
================================
_Description_:
Bitwise logical `OR'.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. For integer arguments, programmers should consider
the use of the *note IOR:: intrinsic defined by the Fortran
standard.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = OR(I, J)'
_Arguments_:
I The type shall be either a scalar `INTEGER'
type or a scalar `LOGICAL' type.
J The type shall be the same as the type of J.
_Return value_:
The return type is either a scalar `INTEGER' or a scalar
`LOGICAL'. If the kind type parameters differ, then the smaller
kind type is implicitly converted to larger kind, and the return
has the larger kind.
_Example_:
PROGRAM test_or
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z'F' /, b / Z'3' /
WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
WRITE (*,*) OR(a, b)
END PROGRAM
_See also_:
Fortran 95 elemental function: *note IOR::
File: gfortran.info, Node: PACK, Next: PARITY, Prev: OR, Up: Intrinsic Procedures
8.186 `PACK' -- Pack an array into an array of rank one
=======================================================
_Description_:
Stores the elements of ARRAY in an array of rank one.
The beginning of the resulting array is made up of elements whose
MASK equals `TRUE'. Afterwards, positions are filled with elements
taken from VECTOR.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = PACK(ARRAY, MASK[,VECTOR]'
_Arguments_:
ARRAY Shall be an array of any type.
MASK Shall be an array of type `LOGICAL' and of the
same size as ARRAY. Alternatively, it may be a
`LOGICAL' scalar.
VECTOR (Optional) shall be an array of the same type
as ARRAY and of rank one. If present, the
number of elements in VECTOR shall be equal to
or greater than the number of true elements in
MASK. If MASK is scalar, the number of
elements in VECTOR shall be equal to or
greater than the number of elements in ARRAY.
_Return value_:
The result is an array of rank one and the same type as that of
ARRAY. If VECTOR is present, the result size is that of VECTOR,
the number of `TRUE' values in MASK otherwise.
_Example_:
Gathering nonzero elements from an array:
PROGRAM test_pack_1
INTEGER :: m(6)
m = (/ 1, 0, 0, 0, 5, 0 /)
WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0) ! "1 5"
END PROGRAM
Gathering nonzero elements from an array and appending elements
from VECTOR:
PROGRAM test_pack_2
INTEGER :: m(4)
m = (/ 1, 0, 0, 2 /)
WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /)) ! "1 2 3 4"
END PROGRAM
_See also_:
*note UNPACK::
File: gfortran.info, Node: PARITY, Next: PERROR, Prev: PACK, Up: Intrinsic Procedures
8.187 `PARITY' -- Reduction with exclusive OR
=============================================
_Description_:
Calculates the parity, i.e. the reduction using `.XOR.', of MASK
along dimension DIM.
_Standard_:
Fortran 2008 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = PARITY(MASK[, DIM])'
_Arguments_:
LOGICAL Shall be an array of type `LOGICAL'
DIM (Optional) shall be a scalar of type `INTEGER'
with a value in the range from 1 to n, where n
equals the rank of MASK.
_Return value_:
The result is of the same type as MASK.
If DIM is absent, a scalar with the parity of all elements in MASK
is returned, i.e. true if an odd number of elements is `.true.'
and false otherwise. If DIM is present, an array of rank n-1,
where n equals the rank of ARRAY, and a shape similar to that of
MASK with dimension DIM dropped is returned.
_Example_:
PROGRAM test_sum
LOGICAL :: x(2) = [ .true., .false. ]
print *, PARITY(x) ! prints "T" (true).
END PROGRAM
File: gfortran.info, Node: PERROR, Next: POPCNT, Prev: PARITY, Up: Intrinsic Procedures
8.188 `PERROR' -- Print system error message
============================================
_Description_:
Prints (on the C `stderr' stream) a newline-terminated error
message corresponding to the last system error. This is prefixed by
STRING, a colon and a space. See `perror(3)'.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL PERROR(STRING)'
_Arguments_:
STRING A scalar of type `CHARACTER' and of the
default kind.
_See also_:
*note IERRNO::
File: gfortran.info, Node: PRECISION, Next: PRESENT, Prev: POPPAR, Up: Intrinsic Procedures
8.189 `PRECISION' -- Decimal precision of a real kind
=====================================================
_Description_:
`PRECISION(X)' returns the decimal precision in the model of the
type of `X'.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = PRECISION(X)'
_Arguments_:
X Shall be of type `REAL' or `COMPLEX'.
_Return value_:
The return value is of type `INTEGER' and of the default integer
kind.
_See also_:
*note SELECTED_REAL_KIND::, *note RANGE::
_Example_:
program prec_and_range
real(kind=4) :: x(2)
complex(kind=8) :: y
print *, precision(x), range(x)
print *, precision(y), range(y)
end program prec_and_range
File: gfortran.info, Node: POPCNT, Next: POPPAR, Prev: PERROR, Up: Intrinsic Procedures
8.190 `POPCNT' -- Number of bits set
====================================
_Description_:
`POPCNT(I)' returns the number of bits set ('1' bits) in the binary
representation of `I'.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = POPCNT(I)'
_Arguments_:
I Shall be of type `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the default integer
kind.
_See also_:
*note POPPAR::, *note LEADZ::, *note TRAILZ::
_Example_:
program test_population
print *, popcnt(127), poppar(127)
print *, popcnt(huge(0_4)), poppar(huge(0_4))
print *, popcnt(huge(0_8)), poppar(huge(0_8))
end program test_population
File: gfortran.info, Node: POPPAR, Next: PRECISION, Prev: POPCNT, Up: Intrinsic Procedures
8.191 `POPPAR' -- Parity of the number of bits set
==================================================
_Description_:
`POPPAR(I)' returns parity of the integer `I', i.e. the parity of
the number of bits set ('1' bits) in the binary representation of
`I'. It is equal to 0 if `I' has an even number of bits set, and 1
for an odd number of '1' bits.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = POPPAR(I)'
_Arguments_:
I Shall be of type `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the default integer
kind.
_See also_:
*note POPCNT::, *note LEADZ::, *note TRAILZ::
_Example_:
program test_population
print *, popcnt(127), poppar(127)
print *, popcnt(huge(0_4)), poppar(huge(0_4))
print *, popcnt(huge(0_8)), poppar(huge(0_8))
end program test_population
File: gfortran.info, Node: PRESENT, Next: PRODUCT, Prev: PRECISION, Up: Intrinsic Procedures
8.192 `PRESENT' -- Determine whether an optional dummy argument is specified
============================================================================
_Description_:
Determines whether an optional dummy argument is present.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = PRESENT(A)'
_Arguments_:
A May be of any type and may be a pointer,
scalar or array value, or a dummy procedure.
It shall be the name of an optional dummy
argument accessible within the current
subroutine or function.
_Return value_:
Returns either `TRUE' if the optional argument A is present, or
`FALSE' otherwise.
_Example_:
PROGRAM test_present
WRITE(*,*) f(), f(42) ! "F T"
CONTAINS
LOGICAL FUNCTION f(x)
INTEGER, INTENT(IN), OPTIONAL :: x
f = PRESENT(x)
END FUNCTION
END PROGRAM
File: gfortran.info, Node: PRODUCT, Next: RADIX, Prev: PRESENT, Up: Intrinsic Procedures
8.193 `PRODUCT' -- Product of array elements
============================================
_Description_:
Multiplies the elements of ARRAY along dimension DIM if the
corresponding element in MASK is `TRUE'.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = PRODUCT(ARRAY[, MASK])'
`RESULT = PRODUCT(ARRAY, DIM[, MASK])'
_Arguments_:
ARRAY Shall be an array of type `INTEGER', `REAL' or
`COMPLEX'.
DIM (Optional) shall be a scalar of type `INTEGER'
with a value in the range from 1 to n, where n
equals the rank of ARRAY.
MASK (Optional) shall be of type `LOGICAL' and
either be a scalar or an array of the same
shape as ARRAY.
_Return value_:
The result is of the same type as ARRAY.
If DIM is absent, a scalar with the product of all elements in
ARRAY is returned. Otherwise, an array of rank n-1, where n equals
the rank of ARRAY, and a shape similar to that of ARRAY with
dimension DIM dropped is returned.
_Example_:
PROGRAM test_product
INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
print *, PRODUCT(x) ! all elements, product = 120
print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
END PROGRAM
_See also_:
*note SUM::
File: gfortran.info, Node: RADIX, Next: RANDOM_NUMBER, Prev: PRODUCT, Up: Intrinsic Procedures
8.194 `RADIX' -- Base of a model number
=======================================
_Description_:
`RADIX(X)' returns the base of the model representing the entity X.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = RADIX(X)'
_Arguments_:
X Shall be of type `INTEGER' or `REAL'
_Return value_:
The return value is a scalar of type `INTEGER' and of the default
integer kind.
_See also_:
*note SELECTED_REAL_KIND::
_Example_:
program test_radix
print *, "The radix for the default integer kind is", radix(0)
print *, "The radix for the default real kind is", radix(0.0)
end program test_radix
File: gfortran.info, Node: RAN, Next: REAL, Prev: RANGE, Up: Intrinsic Procedures
8.195 `RAN' -- Real pseudo-random number
========================================
_Description_:
For compatibility with HP FORTRAN 77/iX, the `RAN' intrinsic is
provided as an alias for `RAND'. See *note RAND:: for complete
documentation.
_Standard_:
GNU extension
_Class_:
Function
_See also_:
*note RAND::, *note RANDOM_NUMBER::
File: gfortran.info, Node: RAND, Next: RANGE, Prev: RANDOM_SEED, Up: Intrinsic Procedures
8.196 `RAND' -- Real pseudo-random number
=========================================
_Description_:
`RAND(FLAG)' returns a pseudo-random number from a uniform
distribution between 0 and 1. If FLAG is 0, the next number in the
current sequence is returned; if FLAG is 1, the generator is
restarted by `CALL SRAND(0)'; if FLAG has any other value, it is
used as a new seed with `SRAND'.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. It implements a simple modulo generator as provided
by `g77'. For new code, one should consider the use of *note
RANDOM_NUMBER:: as it implements a superior algorithm.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = RAND(I)'
_Arguments_:
I Shall be a scalar `INTEGER' of kind 4.
_Return value_:
The return value is of `REAL' type and the default kind.
_Example_:
program test_rand
integer,parameter :: seed = 86456
call srand(seed)
print *, rand(), rand(), rand(), rand()
print *, rand(seed), rand(), rand(), rand()
end program test_rand
_See also_:
*note SRAND::, *note RANDOM_NUMBER::
File: gfortran.info, Node: RANDOM_NUMBER, Next: RANDOM_SEED, Prev: RADIX, Up: Intrinsic Procedures
8.197 `RANDOM_NUMBER' -- Pseudo-random number
=============================================
_Description_:
Returns a single pseudorandom number or an array of pseudorandom
numbers from the uniform distribution over the range 0 \leq x < 1.
The runtime-library implements George Marsaglia's KISS (Keep It
Simple Stupid) random number generator (RNG). This RNG combines:
1. The congruential generator x(n) = 69069 \cdot x(n-1) +
1327217885 with a period of 2^32,
2. A 3-shift shift-register generator with a period of 2^32 - 1,
3. Two 16-bit multiply-with-carry generators with a period of
597273182964842497 > 2^59.
The overall period exceeds 2^123.
Please note, this RNG is thread safe if used within OpenMP
directives, i.e., its state will be consistent while called from
multiple threads. However, the KISS generator does not create
random numbers in parallel from multiple sources, but in sequence
from a single source. If an OpenMP-enabled application heavily
relies on random numbers, one should consider employing a
dedicated parallel random number generator instead.
_Standard_:
Fortran 95 and later
_Class_:
Subroutine
_Syntax_:
`RANDOM_NUMBER(HARVEST)'
_Arguments_:
HARVEST Shall be a scalar or an array of type `REAL'.
_Example_:
program test_random_number
REAL :: r(5,5)
CALL init_random_seed() ! see example of RANDOM_SEED
CALL RANDOM_NUMBER(r)
end program
_See also_:
*note RANDOM_SEED::
File: gfortran.info, Node: RANDOM_SEED, Next: RAND, Prev: RANDOM_NUMBER, Up: Intrinsic Procedures
8.198 `RANDOM_SEED' -- Initialize a pseudo-random number sequence
=================================================================
_Description_:
Restarts or queries the state of the pseudorandom number generator
used by `RANDOM_NUMBER'.
If `RANDOM_SEED' is called without arguments, it is initialized to
a default state. The example below shows how to initialize the
random seed based on the system's time.
_Standard_:
Fortran 95 and later
_Class_:
Subroutine
_Syntax_:
`CALL RANDOM_SEED([SIZE, PUT, GET])'
_Arguments_:
SIZE (Optional) Shall be a scalar and of type
default `INTEGER', with `INTENT(OUT)'. It
specifies the minimum size of the arrays used
with the PUT and GET arguments.
PUT (Optional) Shall be an array of type default
`INTEGER' and rank one. It is `INTENT(IN)' and
the size of the array must be larger than or
equal to the number returned by the SIZE
argument.
GET (Optional) Shall be an array of type default
`INTEGER' and rank one. It is `INTENT(OUT)'
and the size of the array must be larger than
or equal to the number returned by the SIZE
argument.
_Example_:
SUBROUTINE init_random_seed()
INTEGER :: i, n, clock
INTEGER, DIMENSION(:), ALLOCATABLE :: seed
CALL RANDOM_SEED(size = n)
ALLOCATE(seed(n))
CALL SYSTEM_CLOCK(COUNT=clock)
seed = clock + 37 * (/ (i - 1, i = 1, n) /)
CALL RANDOM_SEED(PUT = seed)
DEALLOCATE(seed)
END SUBROUTINE
_See also_:
*note RANDOM_NUMBER::
File: gfortran.info, Node: RANGE, Next: RAN, Prev: RAND, Up: Intrinsic Procedures
8.199 `RANGE' -- Decimal exponent range
=======================================
_Description_:
`RANGE(X)' returns the decimal exponent range in the model of the
type of `X'.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = RANGE(X)'
_Arguments_:
X Shall be of type `INTEGER', `REAL' or
`COMPLEX'.
_Return value_:
The return value is of type `INTEGER' and of the default integer
kind.
_See also_:
*note SELECTED_REAL_KIND::, *note PRECISION::
_Example_:
See `PRECISION' for an example.
File: gfortran.info, Node: REAL, Next: RENAME, Prev: RAN, Up: Intrinsic Procedures
8.200 `REAL' -- Convert to real type
====================================
_Description_:
`REAL(A [, KIND])' converts its argument A to a real type. The
`REALPART' function is provided for compatibility with `g77', and
its use is strongly discouraged.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = REAL(A [, KIND])'
`RESULT = REALPART(Z)'
_Arguments_:
A Shall be `INTEGER', `REAL', or `COMPLEX'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
These functions return a `REAL' variable or array under the
following rules:
(A)
`REAL(A)' is converted to a default real type if A is an
integer or real variable.
(B)
`REAL(A)' is converted to a real type with the kind type
parameter of A if A is a complex variable.
(C)
`REAL(A, KIND)' is converted to a real type with kind type
parameter KIND if A is a complex, integer, or real variable.
_Example_:
program test_real
complex :: x = (1.0, 2.0)
print *, real(x), real(x,8), realpart(x)
end program test_real
_Specific names_:
Name Argument Return type Standard
`FLOAT(A)' `INTEGER(4)' `REAL(4)' Fortran 77 and
later
`DFLOAT(A)' `INTEGER(4)' `REAL(8)' GNU extension
`SNGL(A)' `INTEGER(8)' `REAL(4)' Fortran 77 and
later
_See also_:
*note DBLE::
File: gfortran.info, Node: RENAME, Next: REPEAT, Prev: REAL, Up: Intrinsic Procedures
8.201 `RENAME' -- Rename a file
===============================
_Description_:
Renames a file from file PATH1 to PATH2. A null character
(`CHAR(0)') can be used to mark the end of the names in PATH1 and
PATH2; otherwise, trailing blanks in the file names are ignored.
If the STATUS argument is supplied, it contains 0 on success or a
nonzero error code upon return; see `rename(2)'.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL RENAME(PATH1, PATH2 [, STATUS])'
`STATUS = RENAME(PATH1, PATH2)'
_Arguments_:
PATH1 Shall be of default `CHARACTER' type.
PATH2 Shall be of default `CHARACTER' type.
STATUS (Optional) Shall be of default `INTEGER' type.
_See also_:
*note LINK::
File: gfortran.info, Node: REPEAT, Next: RESHAPE, Prev: RENAME, Up: Intrinsic Procedures
8.202 `REPEAT' -- Repeated string concatenation
===============================================
_Description_:
Concatenates NCOPIES copies of a string.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = REPEAT(STRING, NCOPIES)'
_Arguments_:
STRING Shall be scalar and of type `CHARACTER'.
NCOPIES Shall be scalar and of type `INTEGER'.
_Return value_:
A new scalar of type `CHARACTER' built up from NCOPIES copies of
STRING.
_Example_:
program test_repeat
write(*,*) repeat("x", 5) ! "xxxxx"
end program
File: gfortran.info, Node: RESHAPE, Next: RRSPACING, Prev: REPEAT, Up: Intrinsic Procedures
8.203 `RESHAPE' -- Function to reshape an array
===============================================
_Description_:
Reshapes SOURCE to correspond to SHAPE. If necessary, the new
array may be padded with elements from PAD or permuted as defined
by ORDER.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])'
_Arguments_:
SOURCE Shall be an array of any type.
SHAPE Shall be of type `INTEGER' and an array of
rank one. Its values must be positive or zero.
PAD (Optional) shall be an array of the same type
as SOURCE.
ORDER (Optional) shall be of type `INTEGER' and an
array of the same shape as SHAPE. Its values
shall be a permutation of the numbers from 1
to n, where n is the size of SHAPE. If ORDER
is absent, the natural ordering shall be
assumed.
_Return value_:
The result is an array of shape SHAPE with the same type as SOURCE.
_Example_:
PROGRAM test_reshape
INTEGER, DIMENSION(4) :: x
WRITE(*,*) SHAPE(x) ! prints "4"
WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/))) ! prints "2 2"
END PROGRAM
_See also_:
*note SHAPE::
File: gfortran.info, Node: RRSPACING, Next: RSHIFT, Prev: RESHAPE, Up: Intrinsic Procedures
8.204 `RRSPACING' -- Reciprocal of the relative spacing
=======================================================
_Description_:
`RRSPACING(X)' returns the reciprocal of the relative spacing of
model numbers near X.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = RRSPACING(X)'
_Arguments_:
X Shall be of type `REAL'.
_Return value_:
The return value is of the same type and kind as X. The value
returned is equal to `ABS(FRACTION(X)) *
FLOAT(RADIX(X))**DIGITS(X)'.
_See also_:
*note SPACING::
File: gfortran.info, Node: RSHIFT, Next: SAME_TYPE_AS, Prev: RRSPACING, Up: Intrinsic Procedures
8.205 `RSHIFT' -- Right shift bits
==================================
_Description_:
`RSHIFT' returns a value corresponding to I with all of the bits
shifted right by SHIFT places. If the absolute value of SHIFT is
greater than `BIT_SIZE(I)', the value is undefined. Bits shifted
out from the right end are lost. The fill is arithmetic: the bits
shifted in from the left end are equal to the leftmost bit, which
in two's complement representation is the sign bit.
This function has been superseded by the `SHIFTA' intrinsic, which
is standard in Fortran 2008 and later.
_Standard_:
GNU extension
_Class_:
Elemental function
_Syntax_:
`RESULT = RSHIFT(I, SHIFT)'
_Arguments_:
I The type shall be `INTEGER'.
SHIFT The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note ISHFT::, *note ISHFTC::, *note LSHIFT::, *note SHIFTA::,
*note SHIFTR::, *note SHIFTL::
File: gfortran.info, Node: SAME_TYPE_AS, Next: SCALE, Prev: RSHIFT, Up: Intrinsic Procedures
8.206 `SAME_TYPE_AS' -- Query dynamic types for equality
=========================================================
_Description_:
Query dynamic types for equality.
_Standard_:
Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = SAME_TYPE_AS(A, B)'
_Arguments_:
A Shall be an object of extensible declared type
or unlimited polymorphic.
B Shall be an object of extensible declared type
or unlimited polymorphic.
_Return value_:
The return value is a scalar of type default logical. It is true
if and only if the dynamic type of A is the same as the dynamic
type of B.
_See also_:
*note EXTENDS_TYPE_OF::
File: gfortran.info, Node: SCALE, Next: SCAN, Prev: SAME_TYPE_AS, Up: Intrinsic Procedures
8.207 `SCALE' -- Scale a real value
===================================
_Description_:
`SCALE(X,I)' returns `X * RADIX(X)**I'.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SCALE(X, I)'
_Arguments_:
X The type of the argument shall be a `REAL'.
I The type of the argument shall be a `INTEGER'.
_Return value_:
The return value is of the same type and kind as X. Its value is
`X * RADIX(X)**I'.
_Example_:
program test_scale
real :: x = 178.1387e-4
integer :: i = 5
print *, scale(x,i), x*radix(x)**i
end program test_scale
File: gfortran.info, Node: SCAN, Next: SECNDS, Prev: SCALE, Up: Intrinsic Procedures
8.208 `SCAN' -- Scan a string for the presence of a set of characters
=====================================================================
_Description_:
Scans a STRING for any of the characters in a SET of characters.
If BACK is either absent or equals `FALSE', this function returns
the position of the leftmost character of STRING that is in SET.
If BACK equals `TRUE', the rightmost position is returned. If no
character of SET is found in STRING, the result is zero.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SCAN(STRING, SET[, BACK [, KIND]])'
_Arguments_:
STRING Shall be of type `CHARACTER'.
SET Shall be of type `CHARACTER'.
BACK (Optional) shall be of type `LOGICAL'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind.
_Example_:
PROGRAM test_scan
WRITE(*,*) SCAN("FORTRAN", "AO") ! 2, found 'O'
WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.) ! 6, found 'A'
WRITE(*,*) SCAN("FORTRAN", "C++") ! 0, found none
END PROGRAM
_See also_:
*note INDEX intrinsic::, *note VERIFY::
File: gfortran.info, Node: SECNDS, Next: SECOND, Prev: SCAN, Up: Intrinsic Procedures
8.209 `SECNDS' -- Time function
===============================
_Description_:
`SECNDS(X)' gets the time in seconds from the real-time system
clock. X is a reference time, also in seconds. If this is zero,
the time in seconds from midnight is returned. This function is
non-standard and its use is discouraged.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = SECNDS (X)'
_Arguments_:
T Shall be of type `REAL(4)'.
X Shall be of type `REAL(4)'.
_Return value_:
None
_Example_:
program test_secnds
integer :: i
real(4) :: t1, t2
print *, secnds (0.0) ! seconds since midnight
t1 = secnds (0.0) ! reference time
do i = 1, 10000000 ! do something
end do
t2 = secnds (t1) ! elapsed time
print *, "Something took ", t2, " seconds."
end program test_secnds
File: gfortran.info, Node: SECOND, Next: SELECTED_CHAR_KIND, Prev: SECNDS, Up: Intrinsic Procedures
8.210 `SECOND' -- CPU time function
===================================
_Description_:
Returns a `REAL(4)' value representing the elapsed CPU time in
seconds. This provides the same functionality as the standard
`CPU_TIME' intrinsic, and is only included for backwards
compatibility.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL SECOND(TIME)'
`TIME = SECOND()'
_Arguments_:
TIME Shall be of type `REAL(4)'.
_Return value_:
In either syntax, TIME is set to the process's current runtime in
seconds.
_See also_:
*note CPU_TIME::
File: gfortran.info, Node: SELECTED_CHAR_KIND, Next: SELECTED_INT_KIND, Prev: SECOND, Up: Intrinsic Procedures
8.211 `SELECTED_CHAR_KIND' -- Choose character kind
===================================================
_Description_:
`SELECTED_CHAR_KIND(NAME)' returns the kind value for the character
set named NAME, if a character set with such a name is supported,
or -1 otherwise. Currently, supported character sets include
"ASCII" and "DEFAULT", which are equivalent, and "ISO_10646"
(Universal Character Set, UCS-4) which is commonly known as
Unicode.
_Standard_:
Fortran 2003 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = SELECTED_CHAR_KIND(NAME)'
_Arguments_:
NAME Shall be a scalar and of the default character
type.
_Example_:
program character_kind
use iso_fortran_env
implicit none
integer, parameter :: ascii = selected_char_kind ("ascii")
integer, parameter :: ucs4 = selected_char_kind ('ISO_10646')
character(kind=ascii, len=26) :: alphabet
character(kind=ucs4, len=30) :: hello_world
alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
hello_world = ucs4_'Hello World and Ni Hao -- ' &
// char (int (z'4F60'), ucs4) &
// char (int (z'597D'), ucs4)
write (*,*) alphabet
open (output_unit, encoding='UTF-8')
write (*,*) trim (hello_world)
end program character_kind
File: gfortran.info, Node: SELECTED_INT_KIND, Next: SELECTED_REAL_KIND, Prev: SELECTED_CHAR_KIND, Up: Intrinsic Procedures
8.212 `SELECTED_INT_KIND' -- Choose integer kind
================================================
_Description_:
`SELECTED_INT_KIND(R)' return the kind value of the smallest
integer type that can represent all values ranging from -10^R
(exclusive) to 10^R (exclusive). If there is no integer kind that
accommodates this range, `SELECTED_INT_KIND' returns -1.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = SELECTED_INT_KIND(R)'
_Arguments_:
R Shall be a scalar and of type `INTEGER'.
_Example_:
program large_integers
integer,parameter :: k5 = selected_int_kind(5)
integer,parameter :: k15 = selected_int_kind(15)
integer(kind=k5) :: i5
integer(kind=k15) :: i15
print *, huge(i5), huge(i15)
! The following inequalities are always true
print *, huge(i5) >= 10_k5**5-1
print *, huge(i15) >= 10_k15**15-1
end program large_integers
File: gfortran.info, Node: SELECTED_REAL_KIND, Next: SET_EXPONENT, Prev: SELECTED_INT_KIND, Up: Intrinsic Procedures
8.213 `SELECTED_REAL_KIND' -- Choose real kind
==============================================
_Description_:
`SELECTED_REAL_KIND(P,R)' returns the kind value of a real data
type with decimal precision of at least `P' digits, exponent range
of at least `R', and with a radix of `RADIX'.
_Standard_:
Fortran 95 and later, with `RADIX' Fortran 2008 or later
_Class_:
Transformational function
_Syntax_:
`RESULT = SELECTED_REAL_KIND([P, R, RADIX])'
_Arguments_:
P (Optional) shall be a scalar and of type
`INTEGER'.
R (Optional) shall be a scalar and of type
`INTEGER'.
RADIX (Optional) shall be a scalar and of type
`INTEGER'.
Before Fortran 2008, at least one of the arguments R or P shall be
present; since Fortran 2008, they are assumed to be zero if absent.
_Return value_:
`SELECTED_REAL_KIND' returns the value of the kind type parameter
of a real data type with decimal precision of at least `P' digits,
a decimal exponent range of at least `R', and with the requested
`RADIX'. If the `RADIX' parameter is absent, real kinds with any
radix can be returned. If more than one real data type meet the
criteria, the kind of the data type with the smallest decimal
precision is returned. If no real data type matches the criteria,
the result is
-1 if the processor does not support a real data type with a
precision greater than or equal to `P', but the `R' and
`RADIX' requirements can be fulfilled
-2 if the processor does not support a real type with an exponent
range greater than or equal to `R', but `P' and `RADIX' are
fulfillable
-3 if `RADIX' but not `P' and `R' requirements
are fulfillable
-4 if `RADIX' and either `P' or `R' requirements
are fulfillable
-5 if there is no real type with the given `RADIX'
_See also_:
*note PRECISION::, *note RANGE::, *note RADIX::
_Example_:
program real_kinds
integer,parameter :: p6 = selected_real_kind(6)
integer,parameter :: p10r100 = selected_real_kind(10,100)
integer,parameter :: r400 = selected_real_kind(r=400)
real(kind=p6) :: x
real(kind=p10r100) :: y
real(kind=r400) :: z
print *, precision(x), range(x)
print *, precision(y), range(y)
print *, precision(z), range(z)
end program real_kinds
File: gfortran.info, Node: SET_EXPONENT, Next: SHAPE, Prev: SELECTED_REAL_KIND, Up: Intrinsic Procedures
8.214 `SET_EXPONENT' -- Set the exponent of the model
=====================================================
_Description_:
`SET_EXPONENT(X, I)' returns the real number whose fractional part
is that that of X and whose exponent part is I.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SET_EXPONENT(X, I)'
_Arguments_:
X Shall be of type `REAL'.
I Shall be of type `INTEGER'.
_Return value_:
The return value is of the same type and kind as X. The real
number whose fractional part is that that of X and whose exponent
part if I is returned; it is `FRACTION(X) * RADIX(X)**I'.
_Example_:
PROGRAM test_setexp
REAL :: x = 178.1387e-4
INTEGER :: i = 17
PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
END PROGRAM
File: gfortran.info, Node: SHAPE, Next: SHIFTA, Prev: SET_EXPONENT, Up: Intrinsic Procedures
8.215 `SHAPE' -- Determine the shape of an array
================================================
_Description_:
Determines the shape of an array.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = SHAPE(SOURCE [, KIND])'
_Arguments_:
SOURCE Shall be an array or scalar of any type. If
SOURCE is a pointer it must be associated and
allocatable arrays must be allocated.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
An `INTEGER' array of rank one with as many elements as SOURCE has
dimensions. The elements of the resulting array correspond to the
extend of SOURCE along the respective dimensions. If SOURCE is a
scalar, the result is the rank one array of size zero. If KIND is
absent, the return value has the default integer kind otherwise
the specified kind.
_Example_:
PROGRAM test_shape
INTEGER, DIMENSION(-1:1, -1:2) :: A
WRITE(*,*) SHAPE(A) ! (/ 3, 4 /)
WRITE(*,*) SIZE(SHAPE(42)) ! (/ /)
END PROGRAM
_See also_:
*note RESHAPE::, *note SIZE::
File: gfortran.info, Node: SHIFTA, Next: SHIFTL, Prev: SHAPE, Up: Intrinsic Procedures
8.216 `SHIFTA' -- Right shift with fill
=======================================
_Description_:
`SHIFTA' returns a value corresponding to I with all of the bits
shifted right by SHIFT places. If the absolute value of SHIFT is
greater than `BIT_SIZE(I)', the value is undefined. Bits shifted
out from the right end are lost. The fill is arithmetic: the bits
shifted in from the left end are equal to the leftmost bit, which
in two's complement representation is the sign bit.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SHIFTA(I, SHIFT)'
_Arguments_:
I The type shall be `INTEGER'.
SHIFT The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note SHIFTL::, *note SHIFTR::
File: gfortran.info, Node: SHIFTL, Next: SHIFTR, Prev: SHIFTA, Up: Intrinsic Procedures
8.217 `SHIFTL' -- Left shift
============================
_Description_:
`SHIFTL' returns a value corresponding to I with all of the bits
shifted left by SHIFT places. If the absolute value of SHIFT is
greater than `BIT_SIZE(I)', the value is undefined. Bits shifted
out from the left end are lost, and bits shifted in from the right
end are set to 0.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SHIFTL(I, SHIFT)'
_Arguments_:
I The type shall be `INTEGER'.
SHIFT The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note SHIFTA::, *note SHIFTR::
File: gfortran.info, Node: SHIFTR, Next: SIGN, Prev: SHIFTL, Up: Intrinsic Procedures
8.218 `SHIFTR' -- Right shift
=============================
_Description_:
`SHIFTR' returns a value corresponding to I with all of the bits
shifted right by SHIFT places. If the absolute value of SHIFT is
greater than `BIT_SIZE(I)', the value is undefined. Bits shifted
out from the right end are lost, and bits shifted in from the left
end are set to 0.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SHIFTR(I, SHIFT)'
_Arguments_:
I The type shall be `INTEGER'.
SHIFT The type shall be `INTEGER'.
_Return value_:
The return value is of type `INTEGER' and of the same kind as I.
_See also_:
*note SHIFTA::, *note SHIFTL::
File: gfortran.info, Node: SIGN, Next: SIGNAL, Prev: SHIFTR, Up: Intrinsic Procedures
8.219 `SIGN' -- Sign copying function
=====================================
_Description_:
`SIGN(A,B)' returns the value of A with the sign of B.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SIGN(A, B)'
_Arguments_:
A Shall be of type `INTEGER' or `REAL'
B Shall be of the same type and kind as A
_Return value_:
The kind of the return value is that of A and B. If B\ge 0 then
the result is `ABS(A)', else it is `-ABS(A)'.
_Example_:
program test_sign
print *, sign(-12,1)
print *, sign(-12,0)
print *, sign(-12,-1)
print *, sign(-12.,1.)
print *, sign(-12.,0.)
print *, sign(-12.,-1.)
end program test_sign
_Specific names_:
Name Arguments Return type Standard
`SIGN(A,B)' `REAL(4) A, `REAL(4)' f77, gnu
B'
`ISIGN(A,B)' `INTEGER(4) `INTEGER(4)' f77, gnu
A, B'
`DSIGN(A,B)' `REAL(8) A, `REAL(8)' f77, gnu
B'
File: gfortran.info, Node: SIGNAL, Next: SIN, Prev: SIGN, Up: Intrinsic Procedures
8.220 `SIGNAL' -- Signal handling subroutine (or function)
==========================================================
_Description_:
`SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine
HANDLER to be executed with a single integer argument when signal
NUMBER occurs. If HANDLER is an integer, it can be used to turn
off handling of signal NUMBER or revert to its default action.
See `signal(2)'.
If `SIGNAL' is called as a subroutine and the STATUS argument is
supplied, it is set to the value returned by `signal(2)'.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL SIGNAL(NUMBER, HANDLER [, STATUS])'
`STATUS = SIGNAL(NUMBER, HANDLER)'
_Arguments_:
NUMBER Shall be a scalar integer, with `INTENT(IN)'
HANDLER Signal handler (`INTEGER FUNCTION' or
`SUBROUTINE') or dummy/global `INTEGER' scalar.
`INTEGER'. It is `INTENT(IN)'.
STATUS (Optional) STATUS shall be a scalar integer.
It has `INTENT(OUT)'.
_Return value_:
The `SIGNAL' function returns the value returned by `signal(2)'.
_Example_:
program test_signal
intrinsic signal
external handler_print
call signal (12, handler_print)
call signal (10, 1)
call sleep (30)
end program test_signal
File: gfortran.info, Node: SIN, Next: SINH, Prev: SIGNAL, Up: Intrinsic Procedures
8.221 `SIN' -- Sine function
============================
_Description_:
`SIN(X)' computes the sine of X.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SIN(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value has same type and kind as X.
_Example_:
program test_sin
real :: x = 0.0
x = sin(x)
end program test_sin
_Specific names_:
Name Argument Return type Standard
`SIN(X)' `REAL(4) X' `REAL(4)' f77, gnu
`DSIN(X)' `REAL(8) X' `REAL(8)' f95, gnu
`CSIN(X)' `COMPLEX(4) `COMPLEX(4)' f95, gnu
X'
`ZSIN(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu
X'
`CDSIN(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu
X'
_See also_:
*note ASIN::
File: gfortran.info, Node: SINH, Next: SIZE, Prev: SIN, Up: Intrinsic Procedures
8.222 `SINH' -- Hyperbolic sine function
========================================
_Description_:
`SINH(X)' computes the hyperbolic sine of X.
_Standard_:
Fortran 95 and later, for a complex argument Fortran 2008 or later
_Class_:
Elemental function
_Syntax_:
`RESULT = SINH(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value has same type and kind as X.
_Example_:
program test_sinh
real(8) :: x = - 1.0_8
x = sinh(x)
end program test_sinh
_Specific names_:
Name Argument Return type Standard
`SINH(X)' `REAL(4) X' `REAL(4)' Fortran 95 and
later
`DSINH(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
later
_See also_:
*note ASINH::
File: gfortran.info, Node: SIZE, Next: SIZEOF, Prev: SINH, Up: Intrinsic Procedures
8.223 `SIZE' -- Determine the size of an array
==============================================
_Description_:
Determine the extent of ARRAY along a specified dimension DIM, or
the total number of elements in ARRAY if DIM is absent.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = SIZE(ARRAY[, DIM [, KIND]])'
_Arguments_:
ARRAY Shall be an array of any type. If ARRAY is a
pointer it must be associated and allocatable
arrays must be allocated.
DIM (Optional) shall be a scalar of type `INTEGER'
and its value shall be in the range from 1 to
n, where n equals the rank of ARRAY.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind.
_Example_:
PROGRAM test_size
WRITE(*,*) SIZE((/ 1, 2 /)) ! 2
END PROGRAM
_See also_:
*note SHAPE::, *note RESHAPE::
File: gfortran.info, Node: SIZEOF, Next: SLEEP, Prev: SIZE, Up: Intrinsic Procedures
8.224 `SIZEOF' -- Size in bytes of an expression
================================================
_Description_:
`SIZEOF(X)' calculates the number of bytes of storage the
expression `X' occupies.
_Standard_:
GNU extension
_Class_:
Intrinsic function
_Syntax_:
`N = SIZEOF(X)'
_Arguments_:
X The argument shall be of any type, rank or
shape.
_Return value_:
The return value is of type integer and of the system-dependent
kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the
number of bytes occupied by the argument. If the argument has the
`POINTER' attribute, the number of bytes of the storage area
pointed to is returned. If the argument is of a derived type with
`POINTER' or `ALLOCATABLE' components, the return value doesn't
account for the sizes of the data pointed to by these components.
If the argument is polymorphic, the size according to the declared
type is returned.
_Example_:
integer :: i
real :: r, s(5)
print *, (sizeof(s)/sizeof(r) == 5)
end
The example will print `.TRUE.' unless you are using a platform
where default `REAL' variables are unusually padded.
_See also_:
*note C_SIZEOF::, *note STORAGE_SIZE::
File: gfortran.info, Node: SLEEP, Next: SPACING, Prev: SIZEOF, Up: Intrinsic Procedures
8.225 `SLEEP' -- Sleep for the specified number of seconds
==========================================================
_Description_:
Calling this subroutine causes the process to pause for SECONDS
seconds.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL SLEEP(SECONDS)'
_Arguments_:
SECONDS The type shall be of default `INTEGER'.
_Example_:
program test_sleep
call sleep(5)
end
File: gfortran.info, Node: SPACING, Next: SPREAD, Prev: SLEEP, Up: Intrinsic Procedures
8.226 `SPACING' -- Smallest distance between two numbers of a given type
========================================================================
_Description_:
Determines the distance between the argument X and the nearest
adjacent number of the same type.
_Standard_:
Fortran 95 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SPACING(X)'
_Arguments_:
X Shall be of type `REAL'.
_Return value_:
The result is of the same type as the input argument X.
_Example_:
PROGRAM test_spacing
INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
WRITE(*,*) spacing(1.0_SGL) ! "1.1920929E-07" on i686
WRITE(*,*) spacing(1.0_DBL) ! "2.220446049250313E-016" on i686
END PROGRAM
_See also_:
*note RRSPACING::
File: gfortran.info, Node: SPREAD, Next: SQRT, Prev: SPACING, Up: Intrinsic Procedures
8.227 `SPREAD' -- Add a dimension to an array
=============================================
_Description_:
Replicates a SOURCE array NCOPIES times along a specified
dimension DIM.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = SPREAD(SOURCE, DIM, NCOPIES)'
_Arguments_:
SOURCE Shall be a scalar or an array of any type and
a rank less than seven.
DIM Shall be a scalar of type `INTEGER' with a
value in the range from 1 to n+1, where n
equals the rank of SOURCE.
NCOPIES Shall be a scalar of type `INTEGER'.
_Return value_:
The result is an array of the same type as SOURCE and has rank n+1
where n equals the rank of SOURCE.
_Example_:
PROGRAM test_spread
INTEGER :: a = 1, b(2) = (/ 1, 2 /)
WRITE(*,*) SPREAD(A, 1, 2) ! "1 1"
WRITE(*,*) SPREAD(B, 1, 2) ! "1 1 2 2"
END PROGRAM
_See also_:
*note UNPACK::
File: gfortran.info, Node: SQRT, Next: SRAND, Prev: SPREAD, Up: Intrinsic Procedures
8.228 `SQRT' -- Square-root function
====================================
_Description_:
`SQRT(X)' computes the square root of X.
_Standard_:
Fortran 77 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = SQRT(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value is of type `REAL' or `COMPLEX'. The kind type
parameter is the same as X.
_Example_:
program test_sqrt
real(8) :: x = 2.0_8
complex :: z = (1.0, 2.0)
x = sqrt(x)
z = sqrt(z)
end program test_sqrt
_Specific names_:
Name Argument Return type Standard
`SQRT(X)' `REAL(4) X' `REAL(4)' Fortran 95 and
later
`DSQRT(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
later
`CSQRT(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 95 and
X' later
`ZSQRT(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
X'
`CDSQRT(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension
X'
File: gfortran.info, Node: SRAND, Next: STAT, Prev: SQRT, Up: Intrinsic Procedures
8.229 `SRAND' -- Reinitialize the random number generator
=========================================================
_Description_:
`SRAND' reinitializes the pseudo-random number generator called by
`RAND' and `IRAND'. The new seed used by the generator is
specified by the required argument SEED.
_Standard_:
GNU extension
_Class_:
Subroutine
_Syntax_:
`CALL SRAND(SEED)'
_Arguments_:
SEED Shall be a scalar `INTEGER(kind=4)'.
_Return value_:
Does not return anything.
_Example_:
See `RAND' and `IRAND' for examples.
_Notes_:
The Fortran 2003 standard specifies the intrinsic `RANDOM_SEED' to
initialize the pseudo-random numbers generator and `RANDOM_NUMBER'
to generate pseudo-random numbers. Please note that in GNU
Fortran, these two sets of intrinsics (`RAND', `IRAND' and `SRAND'
on the one hand, `RANDOM_NUMBER' and `RANDOM_SEED' on the other
hand) access two independent pseudo-random number generators.
_See also_:
*note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER::
File: gfortran.info, Node: STAT, Next: STORAGE_SIZE, Prev: SRAND, Up: Intrinsic Procedures
8.230 `STAT' -- Get file status
===============================
_Description_:
This function returns information about a file. No permissions are
required on the file itself, but execute (search) permission is
required on all of the directories in path that lead to the file.
The elements that are obtained and stored in the array `VALUES':
`VALUES(1)'Device ID
`VALUES(2)'Inode number
`VALUES(3)'File mode
`VALUES(4)'Number of links
`VALUES(5)'Owner's uid
`VALUES(6)'Owner's gid
`VALUES(7)'ID of device containing directory entry for
file (0 if not available)
`VALUES(8)'File size (bytes)
`VALUES(9)'Last access time
`VALUES(10)'Last modification time
`VALUES(11)'Last file status change time
`VALUES(12)'Preferred I/O block size (-1 if not available)
`VALUES(13)'Number of blocks allocated (-1 if not
available)
Not all these elements are relevant on all systems. If an element
is not relevant, it is returned as 0.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL STAT(NAME, VALUES [, STATUS])'
`STATUS = STAT(NAME, VALUES)'
_Arguments_:
NAME The type shall be `CHARACTER', of the default
kind and a valid path within the file system.
VALUES The type shall be `INTEGER(4), DIMENSION(13)'.
STATUS (Optional) status flag of type `INTEGER(4)'.
Returns 0 on success and a system specific
error code otherwise.
_Example_:
PROGRAM test_stat
INTEGER, DIMENSION(13) :: buff
INTEGER :: status
CALL STAT("/etc/passwd", buff, status)
IF (status == 0) THEN
WRITE (*, FMT="('Device ID:', T30, I19)") buff(1)
WRITE (*, FMT="('Inode number:', T30, I19)") buff(2)
WRITE (*, FMT="('File mode (octal):', T30, O19)") buff(3)
WRITE (*, FMT="('Number of links:', T30, I19)") buff(4)
WRITE (*, FMT="('Owner''s uid:', T30, I19)") buff(5)
WRITE (*, FMT="('Owner''s gid:', T30, I19)") buff(6)
WRITE (*, FMT="('Device where located:', T30, I19)") buff(7)
WRITE (*, FMT="('File size:', T30, I19)") buff(8)
WRITE (*, FMT="('Last access time:', T30, A19)") CTIME(buff(9))
WRITE (*, FMT="('Last modification time', T30, A19)") CTIME(buff(10))
WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
WRITE (*, FMT="('Preferred block size:', T30, I19)") buff(12)
WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
END IF
END PROGRAM
_See also_:
To stat an open file: *note FSTAT::, to stat a link: *note LSTAT::
File: gfortran.info, Node: STORAGE_SIZE, Next: SUM, Prev: STAT, Up: Intrinsic Procedures
8.231 `STORAGE_SIZE' -- Storage size in bits
============================================
_Description_:
Returns the storage size of argument A in bits.
_Standard_:
Fortran 2008 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = STORAGE_SIZE(A [, KIND])'
_Arguments_:
A Shall be a scalar or array of any type.
KIND (Optional) shall be a scalar integer constant
expression.
_Return Value_:
The result is a scalar integer with the kind type parameter
specified by KIND (or default integer type if KIND is missing).
The result value is the size expressed in bits for an element of
an array that has the dynamic type and type parameters of A.
_See also_:
*note C_SIZEOF::, *note SIZEOF::
File: gfortran.info, Node: SUM, Next: SYMLNK, Prev: STORAGE_SIZE, Up: Intrinsic Procedures
8.232 `SUM' -- Sum of array elements
====================================
_Description_:
Adds the elements of ARRAY along dimension DIM if the
corresponding element in MASK is `TRUE'.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = SUM(ARRAY[, MASK])'
`RESULT = SUM(ARRAY, DIM[, MASK])'
_Arguments_:
ARRAY Shall be an array of type `INTEGER', `REAL' or
`COMPLEX'.
DIM (Optional) shall be a scalar of type `INTEGER'
with a value in the range from 1 to n, where n
equals the rank of ARRAY.
MASK (Optional) shall be of type `LOGICAL' and
either be a scalar or an array of the same
shape as ARRAY.
_Return value_:
The result is of the same type as ARRAY.
If DIM is absent, a scalar with the sum of all elements in ARRAY
is returned. Otherwise, an array of rank n-1, where n equals the
rank of ARRAY, and a shape similar to that of ARRAY with dimension
DIM dropped is returned.
_Example_:
PROGRAM test_sum
INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
print *, SUM(x) ! all elements, sum = 15
print *, SUM(x, MASK=MOD(x, 2)==1) ! odd elements, sum = 9
END PROGRAM
_See also_:
*note PRODUCT::
File: gfortran.info, Node: SYMLNK, Next: SYSTEM, Prev: SUM, Up: Intrinsic Procedures
8.233 `SYMLNK' -- Create a symbolic link
========================================
_Description_:
Makes a symbolic link from file PATH1 to PATH2. A null character
(`CHAR(0)') can be used to mark the end of the names in PATH1 and
PATH2; otherwise, trailing blanks in the file names are ignored.
If the STATUS argument is supplied, it contains 0 on success or a
nonzero error code upon return; see `symlink(2)'. If the system
does not supply `symlink(2)', `ENOSYS' is returned.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL SYMLNK(PATH1, PATH2 [, STATUS])'
`STATUS = SYMLNK(PATH1, PATH2)'
_Arguments_:
PATH1 Shall be of default `CHARACTER' type.
PATH2 Shall be of default `CHARACTER' type.
STATUS (Optional) Shall be of default `INTEGER' type.
_See also_:
*note LINK::, *note UNLINK::
File: gfortran.info, Node: SYSTEM, Next: SYSTEM_CLOCK, Prev: SYMLNK, Up: Intrinsic Procedures
8.234 `SYSTEM' -- Execute a shell command
=========================================
_Description_:
Passes the command COMMAND to a shell (see `system(3)'). If
argument STATUS is present, it contains the value returned by
`system(3)', which is presumably 0 if the shell command succeeded.
Note that which shell is used to invoke the command is
system-dependent and environment-dependent.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
Note that the `system' function need not be thread-safe. It is the
responsibility of the user to ensure that `system' is not called
concurrently.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL SYSTEM(COMMAND [, STATUS])'
`STATUS = SYSTEM(COMMAND)'
_Arguments_:
COMMAND Shall be of default `CHARACTER' type.
STATUS (Optional) Shall be of default `INTEGER' type.
_See also_:
*note EXECUTE_COMMAND_LINE::, which is part of the Fortran 2008
standard and should considered in new code for future portability.
File: gfortran.info, Node: SYSTEM_CLOCK, Next: TAN, Prev: SYSTEM, Up: Intrinsic Procedures
8.235 `SYSTEM_CLOCK' -- Time function
=====================================
_Description_:
Determines the COUNT of a processor clock since an unspecified
time in the past modulo COUNT_MAX, COUNT_RATE determines the
number of clock ticks per second. If the platform supports a high
resolution monotonic clock, that clock is used and can provide up
to nanosecond resolution. If a high resolution monotonic clock is
not available, the implementation falls back to a potentially lower
resolution realtime clock.
COUNT_RATE and COUNT_MAX vary depending on the kind of the
arguments. For KIND=8 arguments, COUNT represents nanoseconds,
and for KIND=4 arguments, COUNT represents milliseconds. Other
than the kind dependency, COUNT_RATE and COUNT_MAX are constant,
however the particular values are specific to `gfortran'.
If there is no clock, COUNT is set to `-HUGE(COUNT)', and
COUNT_RATE and COUNT_MAX are set to zero.
When running on a platform using the GNU C library (glibc), or a
derivative thereof, the high resolution monotonic clock is
available only when linking with the RT library. This can be done
explicitly by adding the `-lrt' flag when linking the application,
but is also done implicitly when using OpenMP.
_Standard_:
Fortran 95 and later
_Class_:
Subroutine
_Syntax_:
`CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])'
_Arguments_:
COUNT (Optional) shall be a scalar of type `INTEGER'
with `INTENT(OUT)'.
COUNT_RATE (Optional) shall be a scalar of type `INTEGER'
with `INTENT(OUT)'.
COUNT_MAX (Optional) shall be a scalar of type `INTEGER'
with `INTENT(OUT)'.
_Example_:
PROGRAM test_system_clock
INTEGER :: count, count_rate, count_max
CALL SYSTEM_CLOCK(count, count_rate, count_max)
WRITE(*,*) count, count_rate, count_max
END PROGRAM
_See also_:
*note DATE_AND_TIME::, *note CPU_TIME::
File: gfortran.info, Node: TAN, Next: TANH, Prev: SYSTEM_CLOCK, Up: Intrinsic Procedures
8.236 `TAN' -- Tangent function
===============================
_Description_:
`TAN(X)' computes the tangent of X.
_Standard_:
Fortran 77 and later, for a complex argument Fortran 2008 or later
_Class_:
Elemental function
_Syntax_:
`RESULT = TAN(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value has same type and kind as X.
_Example_:
program test_tan
real(8) :: x = 0.165_8
x = tan(x)
end program test_tan
_Specific names_:
Name Argument Return type Standard
`TAN(X)' `REAL(4) X' `REAL(4)' Fortran 95 and
later
`DTAN(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
later
_See also_:
*note ATAN::
File: gfortran.info, Node: TANH, Next: THIS_IMAGE, Prev: TAN, Up: Intrinsic Procedures
8.237 `TANH' -- Hyperbolic tangent function
===========================================
_Description_:
`TANH(X)' computes the hyperbolic tangent of X.
_Standard_:
Fortran 77 and later, for a complex argument Fortran 2008 or later
_Class_:
Elemental function
_Syntax_:
`X = TANH(X)'
_Arguments_:
X The type shall be `REAL' or `COMPLEX'.
_Return value_:
The return value has same type and kind as X. If X is complex, the
imaginary part of the result is in radians. If X is `REAL', the
return value lies in the range - 1 \leq tanh(x) \leq 1 .
_Example_:
program test_tanh
real(8) :: x = 2.1_8
x = tanh(x)
end program test_tanh
_Specific names_:
Name Argument Return type Standard
`TANH(X)' `REAL(4) X' `REAL(4)' Fortran 95 and
later
`DTANH(X)' `REAL(8) X' `REAL(8)' Fortran 95 and
later
_See also_:
*note ATANH::
File: gfortran.info, Node: THIS_IMAGE, Next: TIME, Prev: TANH, Up: Intrinsic Procedures
8.238 `THIS_IMAGE' -- Function that returns the cosubscript index of this image
===============================================================================
_Description_:
Returns the cosubscript for this image.
_Standard_:
Fortran 2008 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = THIS_IMAGE()'
`RESULT = THIS_IMAGE(COARRAY [, DIM])'
_Arguments_:
COARRAY Coarray of any type (optional; if DIM
present, required).
DIM default integer scalar (optional). If present,
DIM shall be between one and the corank of
COARRAY.
_Return value_:
Default integer. If COARRAY is not present, it is scalar and its
value is the index of the invoking image. Otherwise, if DIM is not
present, a rank-1 array with corank elements is returned,
containing the cosubscripts for COARRAY specifying the invoking
image. If DIM is present, a scalar is returned, with the value of
the DIM element of `THIS_IMAGE(COARRAY)'.
_Example_:
INTEGER :: value[*]
INTEGER :: i
value = THIS_IMAGE()
SYNC ALL
IF (THIS_IMAGE() == 1) THEN
DO i = 1, NUM_IMAGES()
WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
END DO
END IF
_See also_:
*note NUM_IMAGES::, *note IMAGE_INDEX::
File: gfortran.info, Node: TIME, Next: TIME8, Prev: THIS_IMAGE, Up: Intrinsic Procedures
8.239 `TIME' -- Time function
=============================
_Description_:
Returns the current time encoded as an integer (in the manner of
the UNIX function `time(3)'). This value is suitable for passing to
`CTIME', `GMTIME', and `LTIME'.
This intrinsic is not fully portable, such as to systems with
32-bit `INTEGER' types but supporting times wider than 32 bits.
Therefore, the values returned by this intrinsic might be, or
become, negative, or numerically less than previous values, during
a single run of the compiled program.
See *note TIME8::, for information on a similar intrinsic that
might be portable to more GNU Fortran implementations, though to
fewer Fortran compilers.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = TIME()'
_Return value_:
The return value is a scalar of type `INTEGER(4)'.
_See also_:
*note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::,
*note TIME8::
File: gfortran.info, Node: TIME8, Next: TINY, Prev: TIME, Up: Intrinsic Procedures
8.240 `TIME8' -- Time function (64-bit)
=======================================
_Description_:
Returns the current time encoded as an integer (in the manner of
the UNIX function `time(3)'). This value is suitable for passing to
`CTIME', `GMTIME', and `LTIME'.
_Warning:_ this intrinsic does not increase the range of the timing
values over that returned by `time(3)'. On a system with a 32-bit
`time(3)', `TIME8' will return a 32-bit value, even though it is
converted to a 64-bit `INTEGER(8)' value. That means overflows of
the 32-bit value can still occur. Therefore, the values returned
by this intrinsic might be or become negative or numerically less
than previous values during a single run of the compiled program.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = TIME8()'
_Return value_:
The return value is a scalar of type `INTEGER(8)'.
_See also_:
*note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK8::,
*note TIME::
File: gfortran.info, Node: TINY, Next: TRAILZ, Prev: TIME8, Up: Intrinsic Procedures
8.241 `TINY' -- Smallest positive number of a real kind
=======================================================
_Description_:
`TINY(X)' returns the smallest positive (non zero) number in the
model of the type of `X'.
_Standard_:
Fortran 95 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = TINY(X)'
_Arguments_:
X Shall be of type `REAL'.
_Return value_:
The return value is of the same type and kind as X
_Example_:
See `HUGE' for an example.
File: gfortran.info, Node: TRAILZ, Next: TRANSFER, Prev: TINY, Up: Intrinsic Procedures
8.242 `TRAILZ' -- Number of trailing zero bits of an integer
============================================================
_Description_:
`TRAILZ' returns the number of trailing zero bits of an integer.
_Standard_:
Fortran 2008 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = TRAILZ(I)'
_Arguments_:
I Shall be of type `INTEGER'.
_Return value_:
The type of the return value is the default `INTEGER'. If all the
bits of `I' are zero, the result value is `BIT_SIZE(I)'.
_Example_:
PROGRAM test_trailz
WRITE (*,*) TRAILZ(8) ! prints 3
END PROGRAM
_See also_:
*note BIT_SIZE::, *note LEADZ::, *note POPPAR::, *note POPCNT::
File: gfortran.info, Node: TRANSFER, Next: TRANSPOSE, Prev: TRAILZ, Up: Intrinsic Procedures
8.243 `TRANSFER' -- Transfer bit patterns
=========================================
_Description_:
Interprets the bitwise representation of SOURCE in memory as if it
is the representation of a variable or array of the same type and
type parameters as MOLD.
This is approximately equivalent to the C concept of _casting_ one
type to another.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = TRANSFER(SOURCE, MOLD[, SIZE])'
_Arguments_:
SOURCE Shall be a scalar or an array of any type.
MOLD Shall be a scalar or an array of any type.
SIZE (Optional) shall be a scalar of type `INTEGER'.
_Return value_:
The result has the same type as MOLD, with the bit level
representation of SOURCE. If SIZE is present, the result is a
one-dimensional array of length SIZE. If SIZE is absent but MOLD
is an array (of any size or shape), the result is a one-
dimensional array of the minimum length needed to contain the
entirety of the bitwise representation of SOURCE. If SIZE is
absent and MOLD is a scalar, the result is a scalar.
If the bitwise representation of the result is longer than that of
SOURCE, then the leading bits of the result correspond to those of
SOURCE and any trailing bits are filled arbitrarily.
When the resulting bit representation does not correspond to a
valid representation of a variable of the same type as MOLD, the
results are undefined, and subsequent operations on the result
cannot be guaranteed to produce sensible behavior. For example,
it is possible to create `LOGICAL' variables for which `VAR' and
`.NOT.VAR' both appear to be true.
_Example_:
PROGRAM test_transfer
integer :: x = 2143289344
print *, transfer(x, 1.0) ! prints "NaN" on i686
END PROGRAM
File: gfortran.info, Node: TRANSPOSE, Next: TRIM, Prev: TRANSFER, Up: Intrinsic Procedures
8.244 `TRANSPOSE' -- Transpose an array of rank two
===================================================
_Description_:
Transpose an array of rank two. Element (i, j) of the result has
the value `MATRIX(j, i)', for all i, j.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = TRANSPOSE(MATRIX)'
_Arguments_:
MATRIX Shall be an array of any type and have a rank
of two.
_Return value_:
The result has the same type as MATRIX, and has shape `(/ m, n /)'
if MATRIX has shape `(/ n, m /)'.
File: gfortran.info, Node: TRIM, Next: TTYNAM, Prev: TRANSPOSE, Up: Intrinsic Procedures
8.245 `TRIM' -- Remove trailing blank characters of a string
============================================================
_Description_:
Removes trailing blank characters of a string.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = TRIM(STRING)'
_Arguments_:
STRING Shall be a scalar of type `CHARACTER'.
_Return value_:
A scalar of type `CHARACTER' which length is that of STRING less
the number of trailing blanks.
_Example_:
PROGRAM test_trim
CHARACTER(len=10), PARAMETER :: s = "GFORTRAN "
WRITE(*,*) LEN(s), LEN(TRIM(s)) ! "10 8", with/without trailing blanks
END PROGRAM
_See also_:
*note ADJUSTL::, *note ADJUSTR::
File: gfortran.info, Node: TTYNAM, Next: UBOUND, Prev: TRIM, Up: Intrinsic Procedures
8.246 `TTYNAM' -- Get the name of a terminal device.
====================================================
_Description_:
Get the name of a terminal device. For more information, see
`ttyname(3)'.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL TTYNAM(UNIT, NAME)'
`NAME = TTYNAM(UNIT)'
_Arguments_:
UNIT Shall be a scalar `INTEGER'.
NAME Shall be of type `CHARACTER'.
_Example_:
PROGRAM test_ttynam
INTEGER :: unit
DO unit = 1, 10
IF (isatty(unit=unit)) write(*,*) ttynam(unit)
END DO
END PROGRAM
_See also_:
*note ISATTY::
File: gfortran.info, Node: UBOUND, Next: UCOBOUND, Prev: TTYNAM, Up: Intrinsic Procedures
8.247 `UBOUND' -- Upper dimension bounds of an array
====================================================
_Description_:
Returns the upper bounds of an array, or a single upper bound
along the DIM dimension.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = UBOUND(ARRAY [, DIM [, KIND]])'
_Arguments_:
ARRAY Shall be an array, of any type.
DIM (Optional) Shall be a scalar `INTEGER'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind. If DIM is
absent, the result is an array of the upper bounds of ARRAY. If
DIM is present, the result is a scalar corresponding to the upper
bound of the array along that dimension. If ARRAY is an
expression rather than a whole array or array structure component,
or if it has a zero extent along the relevant dimension, the upper
bound is taken to be the number of elements along the relevant
dimension.
_See also_:
*note LBOUND::, *note LCOBOUND::
File: gfortran.info, Node: UCOBOUND, Next: UMASK, Prev: UBOUND, Up: Intrinsic Procedures
8.248 `UCOBOUND' -- Upper codimension bounds of an array
========================================================
_Description_:
Returns the upper cobounds of a coarray, or a single upper cobound
along the DIM codimension.
_Standard_:
Fortran 2008 and later
_Class_:
Inquiry function
_Syntax_:
`RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])'
_Arguments_:
ARRAY Shall be an coarray, of any type.
DIM (Optional) Shall be a scalar `INTEGER'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind. If DIM is
absent, the result is an array of the lower cobounds of COARRAY.
If DIM is present, the result is a scalar corresponding to the
lower cobound of the array along that codimension.
_See also_:
*note LCOBOUND::, *note LBOUND::
File: gfortran.info, Node: UMASK, Next: UNLINK, Prev: UCOBOUND, Up: Intrinsic Procedures
8.249 `UMASK' -- Set the file creation mask
===========================================
_Description_:
Sets the file creation mask to MASK. If called as a function, it
returns the old value. If called as a subroutine and argument OLD
if it is supplied, it is set to the old value. See `umask(2)'.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL UMASK(MASK [, OLD])'
`OLD = UMASK(MASK)'
_Arguments_:
MASK Shall be a scalar of type `INTEGER'.
OLD (Optional) Shall be a scalar of type `INTEGER'.
File: gfortran.info, Node: UNLINK, Next: UNPACK, Prev: UMASK, Up: Intrinsic Procedures
8.250 `UNLINK' -- Remove a file from the file system
====================================================
_Description_:
Unlinks the file PATH. A null character (`CHAR(0)') can be used to
mark the end of the name in PATH; otherwise, trailing blanks in
the file name are ignored. If the STATUS argument is supplied, it
contains 0 on success or a nonzero error code upon return; see
`unlink(2)'.
This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
_Standard_:
GNU extension
_Class_:
Subroutine, function
_Syntax_:
`CALL UNLINK(PATH [, STATUS])'
`STATUS = UNLINK(PATH)'
_Arguments_:
PATH Shall be of default `CHARACTER' type.
STATUS (Optional) Shall be of default `INTEGER' type.
_See also_:
*note LINK::, *note SYMLNK::
File: gfortran.info, Node: UNPACK, Next: VERIFY, Prev: UNLINK, Up: Intrinsic Procedures
8.251 `UNPACK' -- Unpack an array of rank one into an array
===========================================================
_Description_:
Store the elements of VECTOR in an array of higher rank.
_Standard_:
Fortran 95 and later
_Class_:
Transformational function
_Syntax_:
`RESULT = UNPACK(VECTOR, MASK, FIELD)'
_Arguments_:
VECTOR Shall be an array of any type and rank one. It
shall have at least as many elements as MASK
has `TRUE' values.
MASK Shall be an array of type `LOGICAL'.
FIELD Shall be of the same type as VECTOR and have
the same shape as MASK.
_Return value_:
The resulting array corresponds to FIELD with `TRUE' elements of
MASK replaced by values from VECTOR in array element order.
_Example_:
PROGRAM test_unpack
integer :: vector(2) = (/1,1/)
logical :: mask(4) = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
integer :: field(2,2) = 0, unity(2,2)
! result: unity matrix
unity = unpack(vector, reshape(mask, (/2,2/)), field)
END PROGRAM
_See also_:
*note PACK::, *note SPREAD::
File: gfortran.info, Node: VERIFY, Next: XOR, Prev: UNPACK, Up: Intrinsic Procedures
8.252 `VERIFY' -- Scan a string for characters not a given set
==============================================================
_Description_:
Verifies that all the characters in STRING belong to the set of
characters in SET.
If BACK is either absent or equals `FALSE', this function returns
the position of the leftmost character of STRING that is not in
SET. If BACK equals `TRUE', the rightmost position is returned. If
all characters of STRING are found in SET, the result is zero.
_Standard_:
Fortran 95 and later, with KIND argument Fortran 2003 and later
_Class_:
Elemental function
_Syntax_:
`RESULT = VERIFY(STRING, SET[, BACK [, KIND]])'
_Arguments_:
STRING Shall be of type `CHARACTER'.
SET Shall be of type `CHARACTER'.
BACK (Optional) shall be of type `LOGICAL'.
KIND (Optional) An `INTEGER' initialization
expression indicating the kind parameter of
the result.
_Return value_:
The return value is of type `INTEGER' and of kind KIND. If KIND is
absent, the return value is of default integer kind.
_Example_:
PROGRAM test_verify
WRITE(*,*) VERIFY("FORTRAN", "AO") ! 1, found 'F'
WRITE(*,*) VERIFY("FORTRAN", "FOO") ! 3, found 'R'
WRITE(*,*) VERIFY("FORTRAN", "C++") ! 1, found 'F'
WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.) ! 7, found 'N'
WRITE(*,*) VERIFY("FORTRAN", "FORTRAN") ! 0' found none
END PROGRAM
_See also_:
*note SCAN::, *note INDEX intrinsic::
File: gfortran.info, Node: XOR, Prev: VERIFY, Up: Intrinsic Procedures
8.253 `XOR' -- Bitwise logical exclusive OR
===========================================
_Description_:
Bitwise logical exclusive or.
This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. For integer arguments, programmers should consider
the use of the *note IEOR:: intrinsic and for logical arguments the
`.NEQV.' operator, which are both defined by the Fortran standard.
_Standard_:
GNU extension
_Class_:
Function
_Syntax_:
`RESULT = XOR(I, J)'
_Arguments_:
I The type shall be either a scalar `INTEGER'
type or a scalar `LOGICAL' type.
J The type shall be the same as the type of I.
_Return value_:
The return type is either a scalar `INTEGER' or a scalar
`LOGICAL'. If the kind type parameters differ, then the smaller
kind type is implicitly converted to larger kind, and the return
has the larger kind.
_Example_:
PROGRAM test_xor
LOGICAL :: T = .TRUE., F = .FALSE.
INTEGER :: a, b
DATA a / Z'F' /, b / Z'3' /
WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
WRITE (*,*) XOR(a, b)
END PROGRAM
_See also_:
Fortran 95 elemental function: *note IEOR::
File: gfortran.info, Node: Intrinsic Modules, Next: Contributing, Prev: Intrinsic Procedures, Up: Top
9 Intrinsic Modules
*******************
* Menu:
* ISO_FORTRAN_ENV::
* ISO_C_BINDING::
* OpenMP Modules OMP_LIB and OMP_LIB_KINDS::
File: gfortran.info, Node: ISO_FORTRAN_ENV, Next: ISO_C_BINDING, Up: Intrinsic Modules
9.1 `ISO_FORTRAN_ENV'
=====================
_Standard_:
Fortran 2003 and later, except when otherwise noted
The `ISO_FORTRAN_ENV' module provides the following scalar
default-integer named constants:
`ATOMIC_INT_KIND':
Default-kind integer constant to be used as kind parameter when
defining integer variables used in atomic operations. (Fortran
2008 or later.)
`ATOMIC_LOGICAL_KIND':
Default-kind integer constant to be used as kind parameter when
defining logical variables used in atomic operations. (Fortran
2008 or later.)
`CHARACTER_KINDS':
Default-kind integer constant array of rank one containing the
supported kind parameters of the `CHARACTER' type. (Fortran 2008
or later.)
`CHARACTER_STORAGE_SIZE':
Size in bits of the character storage unit.
`ERROR_UNIT':
Identifies the preconnected unit used for error reporting.
`FILE_STORAGE_SIZE':
Size in bits of the file-storage unit.
`INPUT_UNIT':
Identifies the preconnected unit identified by the asterisk (`*')
in `READ' statement.
`INT8', `INT16', `INT32', `INT64':
Kind type parameters to specify an INTEGER type with a storage
size of 16, 32, and 64 bits. It is negative if a target platform
does not support the particular kind. (Fortran 2008 or later.)
`INTEGER_KINDS':
Default-kind integer constant array of rank one containing the
supported kind parameters of the `INTEGER' type. (Fortran 2008 or
later.)
`IOSTAT_END':
The value assigned to the variable passed to the `IOSTAT='
specifier of an input/output statement if an end-of-file condition
occurred.
`IOSTAT_EOR':
The value assigned to the variable passed to the `IOSTAT='
specifier of an input/output statement if an end-of-record
condition occurred.
`IOSTAT_INQUIRE_INTERNAL_UNIT':
Scalar default-integer constant, used by `INQUIRE' for the
`IOSTAT=' specifier to denote an that a unit number identifies an
internal unit. (Fortran 2008 or later.)
`NUMERIC_STORAGE_SIZE':
The size in bits of the numeric storage unit.
`LOGICAL_KINDS':
Default-kind integer constant array of rank one containing the
supported kind parameters of the `LOGICAL' type. (Fortran 2008 or
later.)
`OUTPUT_UNIT':
Identifies the preconnected unit identified by the asterisk (`*')
in `WRITE' statement.
`REAL32', `REAL64', `REAL128':
Kind type parameters to specify a REAL type with a storage size of
32, 64, and 128 bits. It is negative if a target platform does not
support the particular kind. (Fortran 2008 or later.)
`REAL_KINDS':
Default-kind integer constant array of rank one containing the
supported kind parameters of the `REAL' type. (Fortran 2008 or
later.)
`STAT_LOCKED':
Scalar default-integer constant used as STAT= return value by
`LOCK' to denote that the lock variable is locked by the executing
image. (Fortran 2008 or later.)
`STAT_LOCKED_OTHER_IMAGE':
Scalar default-integer constant used as STAT= return value by
`UNLOCK' to denote that the lock variable is locked by another
image. (Fortran 2008 or later.)
`STAT_STOPPED_IMAGE':
Positive, scalar default-integer constant used as STAT= return
value if the argument in the statement requires synchronisation
with an image, which has initiated the termination of the
execution. (Fortran 2008 or later.)
`STAT_UNLOCKED':
Scalar default-integer constant used as STAT= return value by
`UNLOCK' to denote that the lock variable is unlocked. (Fortran
2008 or later.)
The module also provides the following intrinsic procedures: *note
COMPILER_OPTIONS:: and *note COMPILER_VERSION::.
File: gfortran.info, Node: ISO_C_BINDING, Next: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_FORTRAN_ENV, Up: Intrinsic Modules
9.2 `ISO_C_BINDING'
===================
_Standard_:
Fortran 2003 and later, GNU extensions
The following intrinsic procedures are provided by the module; their
definition can be found in the section Intrinsic Procedures of this
manual.
`C_ASSOCIATED'
`C_F_POINTER'
`C_F_PROCPOINTER'
`C_FUNLOC'
`C_LOC'
`C_SIZEOF'
The `ISO_C_BINDING' module provides the following named constants of
type default integer, which can be used as KIND type parameters.
In addition to the integer named constants required by the Fortran
2003 standard, GNU Fortran provides as an extension named constants for
the 128-bit integer types supported by the C compiler: `C_INT128_T,
C_INT_LEAST128_T, C_INT_FAST128_T'.
Fortran Named constant C type Extension
Type
`INTEGER' `C_INT' `int'
`INTEGER' `C_SHORT' `short int'
`INTEGER' `C_LONG' `long int'
`INTEGER' `C_LONG_LONG' `long long int'
`INTEGER' `C_SIGNED_CHAR' `signed char'/`unsigned
char'
`INTEGER' `C_SIZE_T' `size_t'
`INTEGER' `C_INT8_T' `int8_t'
`INTEGER' `C_INT16_T' `int16_t'
`INTEGER' `C_INT32_T' `int32_t'
`INTEGER' `C_INT64_T' `int64_t'
`INTEGER' `C_INT128_T' `int128_t' Ext.
`INTEGER' `C_INT_LEAST8_T' `int_least8_t'
`INTEGER' `C_INT_LEAST16_T' `int_least16_t'
`INTEGER' `C_INT_LEAST32_T' `int_least32_t'
`INTEGER' `C_INT_LEAST64_T' `int_least64_t'
`INTEGER' `C_INT_LEAST128_T' `int_least128_t' Ext.
`INTEGER' `C_INT_FAST8_T' `int_fast8_t'
`INTEGER' `C_INT_FAST16_T' `int_fast16_t'
`INTEGER' `C_INT_FAST32_T' `int_fast32_t'
`INTEGER' `C_INT_FAST64_T' `int_fast64_t'
`INTEGER' `C_INT_FAST128_T' `int_fast128_t' Ext.
`INTEGER' `C_INTMAX_T' `intmax_t'
`INTEGER' `C_INTPTR_T' `intptr_t'
`REAL' `C_FLOAT' `float'
`REAL' `C_DOUBLE' `double'
`REAL' `C_LONG_DOUBLE' `long double'
`COMPLEX' `C_FLOAT_COMPLEX' `float _Complex'
`COMPLEX' `C_DOUBLE_COMPLEX' `double _Complex'
`COMPLEX' `C_LONG_DOUBLE_COMPLEX' `long double _Complex'
`LOGICAL' `C_BOOL' `_Bool'
`CHARACTER' `C_CHAR' `char'
Additionally, the following parameters of type
`CHARACTER(KIND=C_CHAR)' are defined.
Name C definition Value
`C_NULL_CHAR' null character `'\0''
`C_ALERT' alert `'\a''
`C_BACKSPACE' backspace `'\b''
`C_FORM_FEED' form feed `'\f''
`C_NEW_LINE' new line `'\n''
`C_CARRIAGE_RETURN'carriage return `'\r''
`C_HORIZONTAL_TAB'horizontal tab `'\t''
`C_VERTICAL_TAB'vertical tab `'\v''
Moreover, the following two named constants are defined:
Name Type
`C_NULL_PTR' `C_PTR'
`C_NULL_FUNPTR'`C_FUNPTR'
Both are equivalent to the value `NULL' in C.
File: gfortran.info, Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_C_BINDING, Up: Intrinsic Modules
9.3 OpenMP Modules `OMP_LIB' and `OMP_LIB_KINDS'
================================================
_Standard_:
OpenMP Application Program Interface v3.0
The OpenMP Fortran runtime library routines are provided both in a
form of two Fortran 90 modules, named `OMP_LIB' and `OMP_LIB_KINDS',
and in a form of a Fortran `include' file named `omp_lib.h'. The
procedures provided by `OMP_LIB' can be found in the *note
Introduction: (libgomp)Top. manual, the named constants defined in the
modules are listed below.
For details refer to the actual OpenMP Application Program Interface
v3.0 (http://www.openmp.org/mp-documents/spec30.pdf).
`OMP_LIB_KINDS' provides the following scalar default-integer named
constants:
`omp_integer_kind'
`omp_logical_kind'
`omp_lock_kind'
`omp_nest_lock_kind'
`omp_sched_kind'
`OMP_LIB' provides the scalar default-integer named constant
`openmp_version' with a value of the form YYYYMM, where `yyyy' is the
year and MM the month of the OpenMP version; for OpenMP v3.0 the value
is `200805'.
And the following scalar integer named constants of the kind
`omp_sched_kind':
`omp_sched_static'
`omp_sched_dynamic'
`omp_sched_guided'
`omp_sched_auto'
File: gfortran.info, Node: Contributing, Next: Copying, Prev: Intrinsic Modules, Up: Top
Contributing
************
Free software is only possible if people contribute to efforts to
create it. We're always in need of more people helping out with ideas
and comments, writing documentation and contributing code.
If you want to contribute to GNU Fortran, have a look at the long
lists of projects you can take on. Some of these projects are small,
some of them are large; some are completely orthogonal to the rest of
what is happening on GNU Fortran, but others are "mainstream" projects
in need of enthusiastic hackers. All of these projects are important!
We'll eventually get around to the things here, but they are also
things doable by someone who is willing and able.
* Menu:
* Contributors::
* Projects::
* Proposed Extensions::
File: gfortran.info, Node: Contributors, Next: Projects, Up: Contributing
Contributors to GNU Fortran
===========================
Most of the parser was hand-crafted by _Andy Vaught_, who is also the
initiator of the whole project. Thanks Andy! Most of the interface
with GCC was written by _Paul Brook_.
The following individuals have contributed code and/or ideas and
significant help to the GNU Fortran project (in alphabetical order):
- Janne Blomqvist
- Steven Bosscher
- Paul Brook
- Tobias Burnus
- Franc,ois-Xavier Coudert
- Bud Davis
- Jerry DeLisle
- Erik Edelmann
- Bernhard Fischer
- Daniel Franke
- Richard Guenther
- Richard Henderson
- Katherine Holcomb
- Jakub Jelinek
- Niels Kristian Bech Jensen
- Steven Johnson
- Steven G. Kargl
- Thomas Koenig
- Asher Langton
- H. J. Lu
- Toon Moene
- Brooks Moses
- Andrew Pinski
- Tim Prince
- Christopher D. Rickett
- Richard Sandiford
- Tobias Schlu"ter
- Roger Sayle
- Paul Thomas
- Andy Vaught
- Feng Wang
- Janus Weil
- Daniel Kraft
The following people have contributed bug reports, smaller or larger
patches, and much needed feedback and encouragement for the GNU Fortran
project:
- Bill Clodius
- Dominique d'Humie`res
- Kate Hedstrom
- Erik Schnetter
- Joost VandeVondele
Many other individuals have helped debug, test and improve the GNU
Fortran compiler over the past few years, and we welcome you to do the
same! If you already have done so, and you would like to see your name
listed in the list above, please contact us.
File: gfortran.info, Node: Projects, Next: Proposed Extensions, Prev: Contributors, Up: Contributing
Projects
========
_Help build the test suite_
Solicit more code for donation to the test suite: the more
extensive the testsuite, the smaller the risk of breaking things
in the future! We can keep code private on request.
_Bug hunting/squishing_
Find bugs and write more test cases! Test cases are especially very
welcome, because it allows us to concentrate on fixing bugs
instead of isolating them. Going through the bugzilla database at
`http://gcc.gnu.org/bugzilla/' to reduce testcases posted there and
add more information (for example, for which version does the
testcase work, for which versions does it fail?) is also very
helpful.
File: gfortran.info, Node: Proposed Extensions, Prev: Projects, Up: Contributing
Proposed Extensions
===================
Here's a list of proposed extensions for the GNU Fortran compiler, in
no particular order. Most of these are necessary to be fully
compatible with existing Fortran compilers, but they are not part of
the official J3 Fortran 95 standard.
Compiler extensions:
--------------------
* User-specified alignment rules for structures.
* Automatically extend single precision constants to double.
* Compile code that conserves memory by dynamically allocating
common and module storage either on stack or heap.
* Compile flag to generate code for array conformance checking
(suggest -CC).
* User control of symbol names (underscores, etc).
* Compile setting for maximum size of stack frame size before
spilling parts to static or heap.
* Flag to force local variables into static space.
* Flag to force local variables onto stack.
Environment Options
-------------------
* Pluggable library modules for random numbers, linear algebra. LA
should use BLAS calling conventions.
* Environment variables controlling actions on arithmetic exceptions
like overflow, underflow, precision loss--Generate NaN, abort,
default. action.
* Set precision for fp units that support it (i387).
* Variable for setting fp rounding mode.
* Variable to fill uninitialized variables with a user-defined bit
pattern.
* Environment variable controlling filename that is opened for that
unit number.
* Environment variable to clear/trash memory being freed.
* Environment variable to control tracing of allocations and frees.
* Environment variable to display allocated memory at normal program
end.
* Environment variable for filename for * IO-unit.
* Environment variable for temporary file directory.
* Environment variable forcing standard output to be line buffered
(unix).
File: gfortran.info, Node: Copying, Next: GNU Free Documentation License, Prev: Contributing, Up: Top
GNU General Public License
**************************
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/'
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
Preamble
========
The GNU General Public License is a free, copyleft license for software
and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program-to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the software,
or if you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those domains
in future versions of the GPL, as needed to protect the freedom of
users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
====================
0. Definitions.
"This License" refers to version 3 of the GNU General Public
License.
"Copyright" also means copyright-like laws that apply to other
kinds of works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the
work in a fashion requiring copyright permission, other than the
making of an exact copy. The resulting work is called a "modified
version" of the earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work
based on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it
on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making
available to the public, and in some countries other activities as
well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this
License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this
criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any
non-source form of a work.
A "Standard Interface" means an interface that either is an
official standard defined by a recognized standards body, or, in
the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that
language.
The "System Libraries" of an executable work include anything,
other than the work as a whole, that (a) is included in the normal
form of packaging a Major Component, but which is not part of that
Major Component, and (b) serves only to enable use of the work
with that Major Component, or to implement a Standard Interface
for which an implementation is available to the public in source
code form. A "Major Component", in this context, means a major
essential component (kernel, window system, and so on) of the
specific operating system (if any) on which the executable work
runs, or a compiler used to produce the work, or an object code
interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including
scripts to control those activities. However, it does not include
the work's System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing
those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files
associated with source files for the work, and the source code for
shared libraries and dynamically linked subprograms that the work
is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other
parts of the work.
The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running
a covered work is covered by this License only if the output,
given its content, constitutes a covered work. This License
acknowledges your rights of fair use or other equivalent, as
provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise
remains in force. You may convey covered works to others for the
sole purpose of having them make modifications exclusively for
you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in
conveying all material for which you do not control copyright.
Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on
terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section
10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under
article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of
such measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License
with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of
enforcing, against the work's users, your or third parties' legal
rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the
code; keep intact all notices of the absence of any warranty; and
give all recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
a. The work must carry prominent notices stating that you
modified it, and giving a relevant date.
b. The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in
section 4 to "keep intact all notices".
c. You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but
it does not invalidate such permission if you have separately
received it.
d. If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has
interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered
work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is
called an "aggregate" if the compilation and its resulting
copyright are not used to limit the access or legal rights of the
compilation's users beyond what the individual works permit.
Inclusion of a covered work in an aggregate does not cause this
License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this
License, in one of these ways:
a. Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b. Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for
as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code
either (1) a copy of the Corresponding Source for all the
software in the product that is covered by this License, on a
durable physical medium customarily used for software
interchange, for a price no more than your reasonable cost of
physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no
charge.
c. Convey individual copies of the object code with a copy of
the written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer,
in accord with subsection 6b.
d. Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access
to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code.
If the place to copy the object code is a network server, the
Corresponding Source may be on a different server (operated
by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to
the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you
remain obligated to ensure that it is available for as long
as needed to satisfy these requirements.
e. Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.
A separable portion of the object code, whose source code is
excluded from the Corresponding Source as a System Library, need
not be included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means
any tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product
is a consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
"normally used" refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the
way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product
regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that
User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or
interfered with solely because modification has been made.
If you convey an object code work under this section in, or with,
or specifically for use in, a User Product, and the conveying
occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this
section must be accompanied by the Installation Information. But
this requirement does not apply if neither you nor any third party
retains the ability to install modified object code on the User
Product (for example, the work has been installed in ROM).
The requirement to provide Installation Information does not
include a requirement to continue to provide support service,
warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it
has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for
communication across the network.
Corresponding Source conveyed, and Installation Information
provided, in accord with this section must be in a format that is
publicly documented (and with an implementation available to the
public in source code form), and must require no special password
or key for unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of
this License by making exceptions from one or more of its
conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in
this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program,
that part may be used separately under those permissions, but the
entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material
you add to a covered work, you may (if authorized by the copyright
holders of that material) supplement the terms of this License
with terms:
a. Disclaiming warranty or limiting liability differently from
the terms of sections 15 and 16 of this License; or
b. Requiring preservation of specified reasonable legal notices
or author attributions in that material or in the Appropriate
Legal Notices displayed by works containing it; or
c. Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be
marked in reasonable ways as different from the original
version; or
d. Limiting the use for publicity purposes of names of licensors
or authors of the material; or
e. Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f. Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified
versions of it) with contractual assumptions of liability to
the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as
you received it, or any part of it, contains a notice stating that
it is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or
conveying under this License, you may add to a covered work
material governed by the terms of that license document, provided
that the further restriction does not survive such relicensing or
conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in
the form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights
under this License (including any patent licenses granted under
the third paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.
Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from
you under this License. If your rights have been terminated and
not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require
acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore,
by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this
License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or
could give under the previous paragraph, plus a right to
possession of the Corresponding Source of the work from the
predecessor in interest, if the predecessor has it or can get it
with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you
may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any
portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based.
The work thus licensed is called the contributor's "contributor
version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its
contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, "control"
includes the right to grant patent sublicenses in a manner
consistent with the requirements of this License.
Each contributor grants you a non-exclusive, worldwide,
royalty-free patent license under the contributor's essential
patent claims, to make, use, sell, offer for sale, import and
otherwise run, modify and propagate the contents of its
contributor version.
In the following three paragraphs, a "patent license" is any
express agreement or commitment, however denominated, not to
enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To
"grant" such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent
license, and the Corresponding Source of the work is not available
for anyone to copy, free of charge and under the terms of this
License, through a publicly available network server or other
readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this particular
work, or (3) arrange, in a manner consistent with the requirements
of this License, to extend the patent license to downstream
recipients. "Knowingly relying" means you have actual knowledge
that, but for the patent license, your conveying the covered work
in a country, or your recipient's use of the covered work in a
country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the
patent license you grant is automatically extended to all
recipients of the covered work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a
covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under
which you make payment to the third party based on the extent of
your activity of conveying the work, and under which the third
party grants, to any of the parties who would receive the covered
work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made
from those copies), or (b) primarily for and in connection with
specific products or compilations that contain the covered work,
unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it
at all. For example, if you agree to terms that obligate you to
collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those
terms and this License would be to refrain entirely from conveying
the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a
single combined work, and to convey the resulting work. The terms
of this License will continue to apply to the part which is the
covered work, but the special requirements of the GNU Affero
General Public License, section 13, concerning interaction through
a network will apply to the combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new
versions of the GNU General Public License from time to time.
Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or
concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU
General Public License "or any later version" applies to it, you
have the option of following the terms and conditions either of
that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a
version number of the GNU General Public License, you may choose
any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that
proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in
connection with the Program, unless a warranty or assumption of
liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
===========================
How to Apply These Terms to Your New Programs
=============================================
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
Copyright (C) YEAR NAME OF AUTHOR
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see `http://www.gnu.org/licenses/'.
Also add information on how to contact you by electronic and paper
mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
PROGRAM Copyright (C) YEAR NAME OF AUTHOR
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the
appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you would
use an "about box".
You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. For more information on this, and how to apply and follow
the GNU GPL, see `http://www.gnu.org/licenses/'.
The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first,
please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.
File: gfortran.info, Node: GNU Free Documentation License, Next: Funding, Prev: Copying, Up: Top
GNU Free Documentation License
******************************
Version 1.3, 3 November 2008
Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
`http://fsf.org/'
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense.
It complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for
free software, because free software needs free documentation: a
free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is
instruction or reference.
1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as "you". You
accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political position
regarding them.
The "Invariant Sections" are certain Secondary Sections whose
titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this
License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.
The "Cover Texts" are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.
The "publisher" means any person or entity that distributes copies
of the Document to the public.
A section "Entitled XYZ" means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses
following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".)
To "Preserve the Title" of such a section when you modify the
Document means that it remains a section "Entitled XYZ" according
to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These
Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.
2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow
the conditions in section 3.
You may also lend copies, under the same conditions stated above,
and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly
have printed covers) of the Document, numbering more than 100, and
the Document's license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the
title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in
other respects.
If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download
using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of
that version gives permission.
B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the
principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you
from this requirement.
C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in
the Addendum below.
G. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document's
license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title,
and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in
the previous sentence.
J. Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for
previous versions it was based on. These may be placed in
the "History" section. You may omit a network location for a
work that was published at least four years before the
Document itself, or if the original publisher of the version
it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section
titles.
M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled
"Endorsements" or to conflict in title with any Invariant
Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any
other section titles.
You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end
of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous
publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this
License give permission to use their names for publicity for or to
assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for
modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the
combined work.
In the combination, you must combine any sections Entitled
"History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements."
6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the
documents in all other respects.
You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert
a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of
that document.
7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume of
a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual
works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half
of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket
the whole aggregate.
8. TRANSLATION
Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section
4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the
original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the
actual title.
9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.
Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from
you under this License. If your rights have been terminated and
not permanently reinstated, receipt of a copy of some or all of
the same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
`http://www.gnu.org/copyleft/'.
Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of
that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the
Free Software Foundation. If the Document specifies that a proxy
can decide which future versions of this License can be used, that
proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.
11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server.
A "Massive Multiauthor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus published on the MMC
site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.
"Incorporate" means to publish or republish a Document, in whole or
in part, as part of another Document.
An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this
License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover
texts or invariant sections, and (2) were thus incorporated prior
to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents
====================================================
To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:
Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.
If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to
permit their use in free software.
File: gfortran.info, Node: Funding, Next: Option Index, Prev: GNU Free Documentation License, Up: Top
Funding Free Software
*********************
If you want to have more free software a few years from now, it makes
sense for you to help encourage people to contribute funds for its
development. The most effective approach known is to encourage
commercial redistributors to donate.
Users of free software systems can boost the pace of development by
encouraging for-a-fee distributors to donate part of their selling price
to free software developers--the Free Software Foundation, and others.
The way to convince distributors to do this is to demand it and
expect it from them. So when you compare distributors, judge them
partly by how much they give to free software development. Show
distributors they must compete to be the one who gives the most.
To make this approach work, you must insist on numbers that you can
compare, such as, "We will donate ten dollars to the Frobnitz project
for each disk sold." Don't be satisfied with a vague promise, such as
"A portion of the profits are donated," since it doesn't give a basis
for comparison.
Even a precise fraction "of the profits from this disk" is not very
meaningful, since creative accounting and unrelated business decisions
can greatly alter what fraction of the sales price counts as profit.
If the price you pay is $50, ten percent of the profit is probably less
than a dollar; it might be a few cents, or nothing at all.
Some redistributors do development work themselves. This is useful
too; but to keep everyone honest, you need to inquire how much they do,
and what kind. Some kinds of development make much more long-term
difference than others. For example, maintaining a separate version of
a program contributes very little; maintaining the standard version of a
program for the whole community contributes much. Easy new ports
contribute little, since someone else would surely do them; difficult
ports such as adding a new CPU to the GNU Compiler Collection
contribute more; major new features or packages contribute the most.
By establishing the idea that supporting further development is "the
proper thing to do" when distributing free software for a fee, we can
assure a steady flow of resources into making more free software.
Copyright (C) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.
File: gfortran.info, Node: Option Index, Next: Keyword Index, Prev: Funding, Up: Top
Option Index
************
`gfortran''s command line options are indexed here without any initial
`-' or `--'. Where an option has both positive and negative forms
(such as -foption and -fno-option), relevant entries in the manual are
indexed under the most appropriate form; it may sometimes be useful to
look up both forms.
[index ]
* Menu:
* A-PREDICATE=ANSWER: Preprocessing Options.
(line 120)
* APREDICATE=ANSWER: Preprocessing Options.
(line 114)
* backslash: Fortran Dialect Options.
(line 60)
* C: Preprocessing Options.
(line 123)
* CC: Preprocessing Options.
(line 138)
* cpp: Preprocessing Options.
(line 12)
* dD: Preprocessing Options.
(line 35)
* dI: Preprocessing Options.
(line 51)
* dM: Preprocessing Options.
(line 26)
* dN: Preprocessing Options.
(line 41)
* DNAME: Preprocessing Options.
(line 153)
* DNAME=DEFINITION: Preprocessing Options.
(line 156)
* dU: Preprocessing Options.
(line 44)
* falign-commons: Code Gen Options. (line 318)
* fall-intrinsics: Fortran Dialect Options.
(line 17)
* fbacktrace: Debugging Options. (line 41)
* fblas-matmul-limit: Code Gen Options. (line 274)
* fbounds-check: Code Gen Options. (line 206)
* fcheck: Code Gen Options. (line 157)
* fcheck-array-temporaries: Code Gen Options. (line 209)
* fcoarray: Code Gen Options. (line 147)
* fconvert=CONVERSION: Runtime Options. (line 10)
* fcray-pointer: Fortran Dialect Options.
(line 106)
* fd-lines-as-code: Fortran Dialect Options.
(line 27)
* fd-lines-as-comments: Fortran Dialect Options.
(line 27)
* fdefault-double-8: Fortran Dialect Options.
(line 34)
* fdefault-integer-8: Fortran Dialect Options.
(line 42)
* fdefault-real-8: Fortran Dialect Options.
(line 47)
* fdollar-ok: Fortran Dialect Options.
(line 54)
* fdump-core: Debugging Options. (line 48)
* fdump-fortran-optimized: Debugging Options. (line 15)
* fdump-fortran-original: Debugging Options. (line 10)
* fdump-parse-tree: Debugging Options. (line 18)
* fexternal-blas: Code Gen Options. (line 266)
* ff2c: Code Gen Options. (line 25)
* ffixed-line-length-N: Fortran Dialect Options.
(line 77)
* ffpe-trap=LIST: Debugging Options. (line 24)
* ffree-form: Fortran Dialect Options.
(line 11)
* ffree-line-length-N: Fortran Dialect Options.
(line 90)
* fimplicit-none: Fortran Dialect Options.
(line 101)
* finit-character: Code Gen Options. (line 294)
* finit-integer: Code Gen Options. (line 294)
* finit-local-zero: Code Gen Options. (line 294)
* finit-logical: Code Gen Options. (line 294)
* finit-real: Code Gen Options. (line 294)
* fintrinsic-modules-path DIR: Directory Options. (line 36)
* fmax-array-constructor: Code Gen Options. (line 212)
* fmax-errors=N: Error and Warning Options.
(line 27)
* fmax-identifier-length=N: Fortran Dialect Options.
(line 97)
* fmax-stack-var-size: Code Gen Options. (line 230)
* fmax-subrecord-length=LENGTH: Runtime Options. (line 37)
* fmodule-private: Fortran Dialect Options.
(line 72)
* fno-automatic: Code Gen Options. (line 15)
* fno-fixed-form: Fortran Dialect Options.
(line 11)
* fno-protect-parens: Code Gen Options. (line 330)
* fno-range-check: Runtime Options. (line 21)
* fno-underscoring: Code Gen Options. (line 54)
* fno-whole-file: Code Gen Options. (line 113)
* fopenmp: Fortran Dialect Options.
(line 110)
* fpack-derived: Code Gen Options. (line 244)
* fpp: Preprocessing Options.
(line 12)
* frange-check: Fortran Dialect Options.
(line 118)
* frealloc-lhs: Code Gen Options. (line 338)
* frecord-marker=LENGTH: Runtime Options. (line 29)
* frecursive: Code Gen Options. (line 285)
* frepack-arrays: Code Gen Options. (line 250)
* fsecond-underscore: Code Gen Options. (line 130)
* fshort-enums <1>: Fortran 2003 status. (line 83)
* fshort-enums: Code Gen Options. (line 260)
* fsign-zero: Runtime Options. (line 42)
* fsyntax-only: Error and Warning Options.
(line 33)
* fworking-directory: Preprocessing Options.
(line 55)
* H: Preprocessing Options.
(line 176)
* IDIR: Directory Options. (line 14)
* idirafter DIR: Preprocessing Options.
(line 70)
* imultilib DIR: Preprocessing Options.
(line 77)
* iprefix PREFIX: Preprocessing Options.
(line 81)
* iquote DIR: Preprocessing Options.
(line 90)
* isysroot DIR: Preprocessing Options.
(line 86)
* isystem DIR: Preprocessing Options.
(line 97)
* JDIR: Directory Options. (line 29)
* MDIR: Directory Options. (line 29)
* nostdinc: Preprocessing Options.
(line 105)
* P: Preprocessing Options.
(line 181)
* pedantic: Error and Warning Options.
(line 38)
* pedantic-errors: Error and Warning Options.
(line 57)
* static-libgfortran: Link Options. (line 11)
* std=STD option: Fortran Dialect Options.
(line 130)
* UNAME: Preprocessing Options.
(line 187)
* undef: Preprocessing Options.
(line 110)
* Waliasing: Error and Warning Options.
(line 69)
* Walign-commons: Error and Warning Options.
(line 184)
* Wall: Error and Warning Options.
(line 61)
* Wampersand: Error and Warning Options.
(line 86)
* Warray-temporaries: Error and Warning Options.
(line 94)
* Wcharacter-truncation: Error and Warning Options.
(line 99)
* Wconversion: Error and Warning Options.
(line 105)
* Wconversion-extra: Error and Warning Options.
(line 109)
* Werror: Error and Warning Options.
(line 190)
* Wimplicit-interface: Error and Warning Options.
(line 112)
* Wimplicit-procedure: Error and Warning Options.
(line 118)
* Wintrinsic-shadow: Error and Warning Options.
(line 167)
* Wintrinsics-std: Error and Warning Options.
(line 122)
* Wline-truncation: Error and Warning Options.
(line 102)
* Wreal-q-constant: Error and Warning Options.
(line 129)
* Wsurprising: Error and Warning Options.
(line 133)
* Wtabs: Error and Warning Options.
(line 155)
* Wunderflow: Error and Warning Options.
(line 163)
* Wunused-dummy-argument: Error and Warning Options.
(line 173)
* Wunused-parameter: Error and Warning Options.
(line 177)
File: gfortran.info, Node: Keyword Index, Prev: Option Index, Up: Top
Keyword Index
*************
[index ]
* Menu:
* $: Fortran Dialect Options.
(line 54)
* %LOC: Argument list functions.
(line 6)
* %REF: Argument list functions.
(line 6)
* %VAL: Argument list functions.
(line 6)
* &: Error and Warning Options.
(line 86)
* [...]: Fortran 2003 status. (line 68)
* _gfortran_set_args: _gfortran_set_args. (line 6)
* _gfortran_set_convert: _gfortran_set_convert.
(line 6)
* _gfortran_set_fpe: _gfortran_set_fpe. (line 6)
* _gfortran_set_max_subrecord_length: _gfortran_set_max_subrecord_length.
(line 6)
* _gfortran_set_options: _gfortran_set_options.
(line 6)
* _gfortran_set_record_marker: _gfortran_set_record_marker.
(line 6)
* ABORT: ABORT. (line 6)
* ABS: ABS. (line 6)
* absolute value: ABS. (line 6)
* ACCESS: ACCESS. (line 6)
* ACCESS='STREAM' I/O: Fortran 2003 status. (line 95)
* ACHAR: ACHAR. (line 6)
* ACOS: ACOS. (line 6)
* ACOSH: ACOSH. (line 6)
* adjust string <1>: ADJUSTR. (line 6)
* adjust string: ADJUSTL. (line 6)
* ADJUSTL: ADJUSTL. (line 6)
* ADJUSTR: ADJUSTR. (line 6)
* AIMAG: AIMAG. (line 6)
* AINT: AINT. (line 6)
* ALARM: ALARM. (line 6)
* ALGAMA: LOG_GAMMA. (line 6)
* aliasing: Error and Warning Options.
(line 69)
* alignment of COMMON blocks <1>: Code Gen Options. (line 318)
* alignment of COMMON blocks: Error and Warning Options.
(line 184)
* ALL: ALL. (line 6)
* all warnings: Error and Warning Options.
(line 61)
* ALLOCATABLE components of derived types: Fortran 2003 status.
(line 93)
* ALLOCATABLE dummy arguments: Fortran 2003 status. (line 89)
* ALLOCATABLE function results: Fortran 2003 status. (line 91)
* ALLOCATED: ALLOCATED. (line 6)
* allocation, moving: MOVE_ALLOC. (line 6)
* allocation, status: ALLOCATED. (line 6)
* ALOG: LOG. (line 6)
* ALOG10: LOG10. (line 6)
* AMAX0: MAX. (line 6)
* AMAX1: MAX. (line 6)
* AMIN0: MIN. (line 6)
* AMIN1: MIN. (line 6)
* AMOD: MOD. (line 6)
* AND: AND. (line 6)
* ANINT: ANINT. (line 6)
* ANY: ANY. (line 6)
* area hyperbolic cosine: ACOSH. (line 6)
* area hyperbolic sine: ASINH. (line 6)
* area hyperbolic tangent: ATANH. (line 6)
* argument list functions: Argument list functions.
(line 6)
* arguments, to program <1>: IARGC. (line 6)
* arguments, to program <2>: GET_COMMAND_ARGUMENT.
(line 6)
* arguments, to program <3>: GET_COMMAND. (line 6)
* arguments, to program <4>: GETARG. (line 6)
* arguments, to program: COMMAND_ARGUMENT_COUNT.
(line 6)
* array, add elements: SUM. (line 6)
* array, AND: IALL. (line 6)
* array, apply condition <1>: ANY. (line 6)
* array, apply condition: ALL. (line 6)
* array, bounds checking: Code Gen Options. (line 157)
* array, change dimensions: RESHAPE. (line 6)
* array, combine arrays: MERGE. (line 6)
* array, condition testing <1>: ANY. (line 6)
* array, condition testing: ALL. (line 6)
* array, conditionally add elements: SUM. (line 6)
* array, conditionally count elements: COUNT. (line 6)
* array, conditionally multiply elements: PRODUCT. (line 6)
* array, constructors: Fortran 2003 status. (line 68)
* array, count elements: SIZE. (line 6)
* array, duplicate dimensions: SPREAD. (line 6)
* array, duplicate elements: SPREAD. (line 6)
* array, element counting: COUNT. (line 6)
* array, gather elements: PACK. (line 6)
* array, increase dimension <1>: UNPACK. (line 6)
* array, increase dimension: SPREAD. (line 6)
* array, indices of type real: Real array indices. (line 6)
* array, location of maximum element: MAXLOC. (line 6)
* array, location of minimum element: MINLOC. (line 6)
* array, lower bound: LBOUND. (line 6)
* array, maximum value: MAXVAL. (line 6)
* array, merge arrays: MERGE. (line 6)
* array, minimum value: MINVAL. (line 6)
* array, multiply elements: PRODUCT. (line 6)
* array, number of elements <1>: SIZE. (line 6)
* array, number of elements: COUNT. (line 6)
* array, OR: IANY. (line 6)
* array, packing: PACK. (line 6)
* array, parity: IPARITY. (line 6)
* array, permutation: CSHIFT. (line 6)
* array, product: PRODUCT. (line 6)
* array, reduce dimension: PACK. (line 6)
* array, rotate: CSHIFT. (line 6)
* array, scatter elements: UNPACK. (line 6)
* array, shape: SHAPE. (line 6)
* array, shift: EOSHIFT. (line 6)
* array, shift circularly: CSHIFT. (line 6)
* array, size: SIZE. (line 6)
* array, sum: SUM. (line 6)
* array, transmogrify: RESHAPE. (line 6)
* array, transpose: TRANSPOSE. (line 6)
* array, unpacking: UNPACK. (line 6)
* array, upper bound: UBOUND. (line 6)
* array, XOR: IPARITY. (line 6)
* ASCII collating sequence <1>: IACHAR. (line 6)
* ASCII collating sequence: ACHAR. (line 6)
* ASIN: ASIN. (line 6)
* ASINH: ASINH. (line 6)
* ASSOCIATED: ASSOCIATED. (line 6)
* association status: ASSOCIATED. (line 6)
* association status, C pointer: C_ASSOCIATED. (line 6)
* ATAN: ATAN. (line 6)
* ATAN2: ATAN2. (line 6)
* ATANH: ATANH. (line 6)
* Authors: Contributors. (line 6)
* backslash: Fortran Dialect Options.
(line 60)
* backtrace: Debugging Options. (line 41)
* base 10 logarithm function: LOG10. (line 6)
* BESJ0: BESSEL_J0. (line 6)
* BESJ1: BESSEL_J1. (line 6)
* BESJN: BESSEL_JN. (line 6)
* Bessel function, first kind <1>: BESSEL_JN. (line 6)
* Bessel function, first kind <2>: BESSEL_J1. (line 6)
* Bessel function, first kind: BESSEL_J0. (line 6)
* Bessel function, second kind <1>: BESSEL_YN. (line 6)
* Bessel function, second kind <2>: BESSEL_Y1. (line 6)
* Bessel function, second kind: BESSEL_Y0. (line 6)
* BESSEL_J0: BESSEL_J0. (line 6)
* BESSEL_J1: BESSEL_J1. (line 6)
* BESSEL_JN: BESSEL_JN. (line 6)
* BESSEL_Y0: BESSEL_Y0. (line 6)
* BESSEL_Y1: BESSEL_Y1. (line 6)
* BESSEL_YN: BESSEL_YN. (line 6)
* BESY0: BESSEL_Y0. (line 6)
* BESY1: BESSEL_Y1. (line 6)
* BESYN: BESSEL_YN. (line 6)
* BGE: BGE. (line 6)
* BGT: BGT. (line 6)
* binary representation <1>: POPPAR. (line 6)
* binary representation: POPCNT. (line 6)
* BIT_SIZE: BIT_SIZE. (line 6)
* bits set: POPCNT. (line 6)
* bits, AND of array elements: IALL. (line 6)
* bits, clear: IBCLR. (line 6)
* bits, extract: IBITS. (line 6)
* bits, get: IBITS. (line 6)
* bits, merge: MERGE_BITS. (line 6)
* bits, move <1>: TRANSFER. (line 6)
* bits, move: MVBITS. (line 6)
* bits, negate: NOT. (line 6)
* bits, number of: BIT_SIZE. (line 6)
* bits, OR of array elements: IANY. (line 6)
* bits, set: IBSET. (line 6)
* bits, shift: ISHFT. (line 6)
* bits, shift circular: ISHFTC. (line 6)
* bits, shift left <1>: SHIFTL. (line 6)
* bits, shift left: LSHIFT. (line 6)
* bits, shift right <1>: SHIFTR. (line 6)
* bits, shift right <2>: SHIFTA. (line 6)
* bits, shift right: RSHIFT. (line 6)
* bits, testing: BTEST. (line 6)
* bits, unset: IBCLR. (line 6)
* bits, XOR of array elements: IPARITY. (line 6)
* bitwise comparison <1>: BLT. (line 6)
* bitwise comparison <2>: BLE. (line 6)
* bitwise comparison <3>: BGT. (line 6)
* bitwise comparison: BGE. (line 6)
* bitwise logical and <1>: IAND. (line 6)
* bitwise logical and: AND. (line 6)
* bitwise logical exclusive or <1>: XOR. (line 6)
* bitwise logical exclusive or: IEOR. (line 6)
* bitwise logical not: NOT. (line 6)
* bitwise logical or <1>: OR. (line 6)
* bitwise logical or: IOR. (line 6)
* BLE: BLE. (line 6)
* BLT: BLT. (line 6)
* bounds checking: Code Gen Options. (line 157)
* BOZ literal constants: BOZ literal constants.
(line 6)
* BTEST: BTEST. (line 6)
* C_ASSOCIATED: C_ASSOCIATED. (line 6)
* C_F_POINTER: C_F_POINTER. (line 6)
* C_F_PROCPOINTER: C_F_PROCPOINTER. (line 6)
* C_FUNLOC: C_FUNLOC. (line 6)
* C_LOC: C_LOC. (line 6)
* C_SIZEOF: C_SIZEOF. (line 6)
* CABS: ABS. (line 6)
* calling convention: Code Gen Options. (line 25)
* CCOS: COS. (line 6)
* CDABS: ABS. (line 6)
* CDCOS: COS. (line 6)
* CDEXP: EXP. (line 6)
* CDLOG: LOG. (line 6)
* CDSIN: SIN. (line 6)
* CDSQRT: SQRT. (line 6)
* ceiling: CEILING. (line 6)
* CEILING: CEILING. (line 6)
* ceiling: ANINT. (line 6)
* CEXP: EXP. (line 6)
* CHAR: CHAR. (line 6)
* character kind: SELECTED_CHAR_KIND. (line 6)
* character set: Fortran Dialect Options.
(line 54)
* CHDIR: CHDIR. (line 6)
* checking array temporaries: Code Gen Options. (line 157)
* checking subscripts: Code Gen Options. (line 157)
* CHMOD: CHMOD. (line 6)
* clock ticks <1>: SYSTEM_CLOCK. (line 6)
* clock ticks <2>: MCLOCK8. (line 6)
* clock ticks: MCLOCK. (line 6)
* CLOG: LOG. (line 6)
* CMPLX: CMPLX. (line 6)
* coarray, IMAGE_INDEX: IMAGE_INDEX. (line 6)
* coarray, lower bound: LCOBOUND. (line 6)
* coarray, NUM_IMAGES: NUM_IMAGES. (line 6)
* coarray, THIS_IMAGE: THIS_IMAGE. (line 6)
* coarray, upper bound: UCOBOUND. (line 6)
* coarrays: Code Gen Options. (line 147)
* code generation, conventions: Code Gen Options. (line 6)
* collating sequence, ASCII <1>: IACHAR. (line 6)
* collating sequence, ASCII: ACHAR. (line 6)
* command line: EXECUTE_COMMAND_LINE.
(line 6)
* command options: Invoking GNU Fortran.
(line 6)
* command-line arguments <1>: IARGC. (line 6)
* command-line arguments <2>: GET_COMMAND_ARGUMENT.
(line 6)
* command-line arguments <3>: GET_COMMAND. (line 6)
* command-line arguments <4>: GETARG. (line 6)
* command-line arguments: COMMAND_ARGUMENT_COUNT.
(line 6)
* command-line arguments, number of <1>: IARGC. (line 6)
* command-line arguments, number of: COMMAND_ARGUMENT_COUNT.
(line 6)
* COMMAND_ARGUMENT_COUNT: COMMAND_ARGUMENT_COUNT.
(line 6)
* compiler flags inquiry function: COMPILER_OPTIONS. (line 6)
* compiler, name and version: COMPILER_VERSION. (line 6)
* COMPILER_OPTIONS: COMPILER_OPTIONS. (line 6)
* COMPILER_VERSION: COMPILER_VERSION. (line 6)
* COMPLEX: COMPLEX. (line 6)
* complex conjugate: CONJG. (line 6)
* Complex function: Alternate complex function syntax.
(line 6)
* complex numbers, conversion to <1>: DCMPLX. (line 6)
* complex numbers, conversion to <2>: COMPLEX. (line 6)
* complex numbers, conversion to: CMPLX. (line 6)
* complex numbers, imaginary part: AIMAG. (line 6)
* complex numbers, real part <1>: REAL. (line 6)
* complex numbers, real part: DREAL. (line 6)
* Conditional compilation: Preprocessing and conditional compilation.
(line 6)
* CONJG: CONJG. (line 6)
* Contributing: Contributing. (line 6)
* Contributors: Contributors. (line 6)
* conversion: Error and Warning Options.
(line 105)
* conversion, to character: CHAR. (line 6)
* conversion, to complex <1>: DCMPLX. (line 6)
* conversion, to complex <2>: COMPLEX. (line 6)
* conversion, to complex: CMPLX. (line 6)
* conversion, to integer <1>: LONG. (line 6)
* conversion, to integer <2>: INT8. (line 6)
* conversion, to integer <3>: INT2. (line 6)
* conversion, to integer <4>: INT. (line 6)
* conversion, to integer <5>: ICHAR. (line 6)
* conversion, to integer <6>: IACHAR. (line 6)
* conversion, to integer: Implicitly convert LOGICAL and INTEGER values.
(line 6)
* conversion, to logical <1>: LOGICAL. (line 6)
* conversion, to logical: Implicitly convert LOGICAL and INTEGER values.
(line 6)
* conversion, to real <1>: REAL. (line 6)
* conversion, to real: DBLE. (line 6)
* conversion, to string: CTIME. (line 6)
* CONVERT specifier: CONVERT specifier. (line 6)
* core, dump <1>: ABORT. (line 6)
* core, dump: Debugging Options. (line 48)
* COS: COS. (line 6)
* COSH: COSH. (line 6)
* cosine: COS. (line 6)
* cosine, hyperbolic: COSH. (line 6)
* cosine, hyperbolic, inverse: ACOSH. (line 6)
* cosine, inverse: ACOS. (line 6)
* COUNT: COUNT. (line 6)
* CPP <1>: Preprocessing Options.
(line 6)
* CPP: Preprocessing and conditional compilation.
(line 6)
* CPU_TIME: CPU_TIME. (line 6)
* Credits: Contributors. (line 6)
* CSHIFT: CSHIFT. (line 6)
* CSIN: SIN. (line 6)
* CSQRT: SQRT. (line 6)
* CTIME: CTIME. (line 6)
* current date <1>: IDATE. (line 6)
* current date <2>: FDATE. (line 6)
* current date: DATE_AND_TIME. (line 6)
* current time <1>: TIME8. (line 6)
* current time <2>: TIME. (line 6)
* current time <3>: ITIME. (line 6)
* current time <4>: FDATE. (line 6)
* current time: DATE_AND_TIME. (line 6)
* DABS: ABS. (line 6)
* DACOS: ACOS. (line 6)
* DACOSH: ACOSH. (line 6)
* DASIN: ASIN. (line 6)
* DASINH: ASINH. (line 6)
* DATAN: ATAN. (line 6)
* DATAN2: ATAN2. (line 6)
* DATANH: ATANH. (line 6)
* date, current <1>: IDATE. (line 6)
* date, current <2>: FDATE. (line 6)
* date, current: DATE_AND_TIME. (line 6)
* DATE_AND_TIME: DATE_AND_TIME. (line 6)
* DBESJ0: BESSEL_J0. (line 6)
* DBESJ1: BESSEL_J1. (line 6)
* DBESJN: BESSEL_JN. (line 6)
* DBESY0: BESSEL_Y0. (line 6)
* DBESY1: BESSEL_Y1. (line 6)
* DBESYN: BESSEL_YN. (line 6)
* DBLE: DBLE. (line 6)
* DCMPLX: DCMPLX. (line 6)
* DCONJG: CONJG. (line 6)
* DCOS: COS. (line 6)
* DCOSH: COSH. (line 6)
* DDIM: DIM. (line 6)
* debugging information options: Debugging Options. (line 6)
* debugging, preprocessor: Preprocessing Options.
(line 26)
* DECODE: ENCODE and DECODE statements.
(line 6)
* delayed execution <1>: SLEEP. (line 6)
* delayed execution: ALARM. (line 6)
* DEXP: EXP. (line 6)
* DFLOAT: REAL. (line 6)
* DGAMMA: GAMMA. (line 6)
* dialect options: Fortran Dialect Options.
(line 6)
* DIGITS: DIGITS. (line 6)
* DIM: DIM. (line 6)
* DIMAG: AIMAG. (line 6)
* DINT: AINT. (line 6)
* directive, INCLUDE: Directory Options. (line 6)
* directory, options: Directory Options. (line 6)
* directory, search paths for inclusion: Directory Options. (line 14)
* division, modulo: MODULO. (line 6)
* division, remainder: MOD. (line 6)
* DLGAMA: LOG_GAMMA. (line 6)
* DLOG: LOG. (line 6)
* DLOG10: LOG10. (line 6)
* DMAX1: MAX. (line 6)
* DMIN1: MIN. (line 6)
* DMOD: MOD. (line 6)
* DNINT: ANINT. (line 6)
* dot product: DOT_PRODUCT. (line 6)
* DOT_PRODUCT: DOT_PRODUCT. (line 6)
* DPROD: DPROD. (line 6)
* DREAL: DREAL. (line 6)
* DSHIFTL: DSHIFTL. (line 6)
* DSHIFTR: DSHIFTR. (line 6)
* DSIGN: SIGN. (line 6)
* DSIN: SIN. (line 6)
* DSINH: SINH. (line 6)
* DSQRT: SQRT. (line 6)
* DTAN: TAN. (line 6)
* DTANH: TANH. (line 6)
* DTIME: DTIME. (line 6)
* dummy argument, unused: Error and Warning Options.
(line 173)
* elapsed time <1>: SECOND. (line 6)
* elapsed time <2>: SECNDS. (line 6)
* elapsed time: DTIME. (line 6)
* ENCODE: ENCODE and DECODE statements.
(line 6)
* ENUM statement: Fortran 2003 status. (line 83)
* ENUMERATOR statement: Fortran 2003 status. (line 83)
* environment variable <1>: GET_ENVIRONMENT_VARIABLE.
(line 6)
* environment variable <2>: GETENV. (line 6)
* environment variable <3>: Runtime. (line 6)
* environment variable: Environment Variables.
(line 6)
* EOSHIFT: EOSHIFT. (line 6)
* EPSILON: EPSILON. (line 6)
* ERF: ERF. (line 6)
* ERFC: ERFC. (line 6)
* ERFC_SCALED: ERFC_SCALED. (line 6)
* error function: ERF. (line 6)
* error function, complementary: ERFC. (line 6)
* error function, complementary, exponentially-scaled: ERFC_SCALED.
(line 6)
* errors, limiting: Error and Warning Options.
(line 27)
* escape characters: Fortran Dialect Options.
(line 60)
* ETIME: ETIME. (line 6)
* Euclidean distance: HYPOT. (line 6)
* Euclidean vector norm: NORM2. (line 6)
* EXECUTE_COMMAND_LINE: EXECUTE_COMMAND_LINE.
(line 6)
* EXIT: EXIT. (line 6)
* EXP: EXP. (line 6)
* EXPONENT: EXPONENT. (line 6)
* exponential function: EXP. (line 6)
* exponential function, inverse <1>: LOG10. (line 6)
* exponential function, inverse: LOG. (line 6)
* expression size <1>: SIZEOF. (line 6)
* expression size: C_SIZEOF. (line 6)
* EXTENDS_TYPE_OF: EXTENDS_TYPE_OF. (line 6)
* extensions: Extensions. (line 6)
* extensions, implemented: Extensions implemented in GNU Fortran.
(line 6)
* extensions, not implemented: Extensions not implemented in GNU Fortran.
(line 6)
* f2c calling convention: Code Gen Options. (line 25)
* Factorial function: GAMMA. (line 6)
* FDATE: FDATE. (line 6)
* FDL, GNU Free Documentation License: GNU Free Documentation License.
(line 6)
* FGET: FGET. (line 6)
* FGETC: FGETC. (line 6)
* file format, fixed: Fortran Dialect Options.
(line 11)
* file format, free: Fortran Dialect Options.
(line 11)
* file operation, file number: FNUM. (line 6)
* file operation, flush: FLUSH. (line 6)
* file operation, position <1>: FTELL. (line 6)
* file operation, position: FSEEK. (line 6)
* file operation, read character <1>: FGETC. (line 6)
* file operation, read character: FGET. (line 6)
* file operation, seek: FSEEK. (line 6)
* file operation, write character <1>: FPUTC. (line 6)
* file operation, write character: FPUT. (line 6)
* file system, access mode: ACCESS. (line 6)
* file system, change access mode: CHMOD. (line 6)
* file system, create link <1>: SYMLNK. (line 6)
* file system, create link: LINK. (line 6)
* file system, file creation mask: UMASK. (line 6)
* file system, file status <1>: STAT. (line 6)
* file system, file status <2>: LSTAT. (line 6)
* file system, file status: FSTAT. (line 6)
* file system, hard link: LINK. (line 6)
* file system, remove file: UNLINK. (line 6)
* file system, rename file: RENAME. (line 6)
* file system, soft link: SYMLNK. (line 6)
* flags inquiry function: COMPILER_OPTIONS. (line 6)
* FLOAT: REAL. (line 6)
* floating point, exponent: EXPONENT. (line 6)
* floating point, fraction: FRACTION. (line 6)
* floating point, nearest different: NEAREST. (line 6)
* floating point, relative spacing <1>: SPACING. (line 6)
* floating point, relative spacing: RRSPACING. (line 6)
* floating point, scale: SCALE. (line 6)
* floating point, set exponent: SET_EXPONENT. (line 6)
* floor: FLOOR. (line 6)
* FLOOR: FLOOR. (line 6)
* floor: AINT. (line 6)
* FLUSH: FLUSH. (line 6)
* FLUSH statement: Fortran 2003 status. (line 79)
* FNUM: FNUM. (line 6)
* FORMAT: Variable FORMAT expressions.
(line 6)
* Fortran 77: GNU Fortran and G77. (line 6)
* FPP: Preprocessing and conditional compilation.
(line 6)
* FPUT: FPUT. (line 6)
* FPUTC: FPUTC. (line 6)
* FRACTION: FRACTION. (line 6)
* FREE: FREE. (line 6)
* FSEEK: FSEEK. (line 6)
* FSTAT: FSTAT. (line 6)
* FTELL: FTELL. (line 6)
* g77: GNU Fortran and G77. (line 6)
* g77 calling convention: Code Gen Options. (line 25)
* GAMMA: GAMMA. (line 6)
* Gamma function: GAMMA. (line 6)
* Gamma function, logarithm of: LOG_GAMMA. (line 6)
* GCC: GNU Fortran and GCC. (line 6)
* GERROR: GERROR. (line 6)
* GET_COMMAND: GET_COMMAND. (line 6)
* GET_COMMAND_ARGUMENT: GET_COMMAND_ARGUMENT.
(line 6)
* GET_ENVIRONMENT_VARIABLE: GET_ENVIRONMENT_VARIABLE.
(line 6)
* GETARG: GETARG. (line 6)
* GETCWD: GETCWD. (line 6)
* GETENV: GETENV. (line 6)
* GETGID: GETGID. (line 6)
* GETLOG: GETLOG. (line 6)
* GETPID: GETPID. (line 6)
* GETUID: GETUID. (line 6)
* GMTIME: GMTIME. (line 6)
* GNU Compiler Collection: GNU Fortran and GCC. (line 6)
* GNU Fortran command options: Invoking GNU Fortran.
(line 6)
* Hollerith constants: Hollerith constants support.
(line 6)
* HOSTNM: HOSTNM. (line 6)
* HUGE: HUGE. (line 6)
* hyperbolic cosine: COSH. (line 6)
* hyperbolic function, cosine: COSH. (line 6)
* hyperbolic function, cosine, inverse: ACOSH. (line 6)
* hyperbolic function, sine: SINH. (line 6)
* hyperbolic function, sine, inverse: ASINH. (line 6)
* hyperbolic function, tangent: TANH. (line 6)
* hyperbolic function, tangent, inverse: ATANH. (line 6)
* hyperbolic sine: SINH. (line 6)
* hyperbolic tangent: TANH. (line 6)
* HYPOT: HYPOT. (line 6)
* I/O item lists: I/O item lists. (line 6)
* IABS: ABS. (line 6)
* IACHAR: IACHAR. (line 6)
* IALL: IALL. (line 6)
* IAND: IAND. (line 6)
* IANY: IANY. (line 6)
* IARGC: IARGC. (line 6)
* IBCLR: IBCLR. (line 6)
* IBITS: IBITS. (line 6)
* IBSET: IBSET. (line 6)
* ICHAR: ICHAR. (line 6)
* IDATE: IDATE. (line 6)
* IDIM: DIM. (line 6)
* IDINT: INT. (line 6)
* IDNINT: NINT. (line 6)
* IEEE, ISNAN: ISNAN. (line 6)
* IEOR: IEOR. (line 6)
* IERRNO: IERRNO. (line 6)
* IFIX: INT. (line 6)
* IMAG: AIMAG. (line 6)
* IMAGE_INDEX: IMAGE_INDEX. (line 6)
* images, cosubscript to image index conversion: IMAGE_INDEX. (line 6)
* images, index of this image: THIS_IMAGE. (line 6)
* images, number of: NUM_IMAGES. (line 6)
* IMAGPART: AIMAG. (line 6)
* IMPORT statement: Fortran 2003 status. (line 110)
* INCLUDE directive: Directory Options. (line 6)
* inclusion, directory search paths for: Directory Options. (line 14)
* INDEX: INDEX intrinsic. (line 6)
* INT: INT. (line 6)
* INT2: INT2. (line 6)
* INT8: INT8. (line 6)
* integer kind: SELECTED_INT_KIND. (line 6)
* Interoperability: Mixed-Language Programming.
(line 6)
* intrinsic: Error and Warning Options.
(line 167)
* intrinsic Modules: Intrinsic Modules. (line 6)
* intrinsic procedures: Intrinsic Procedures.
(line 6)
* Introduction: Top. (line 6)
* inverse hyperbolic cosine: ACOSH. (line 6)
* inverse hyperbolic sine: ASINH. (line 6)
* inverse hyperbolic tangent: ATANH. (line 6)
* IOMSG= specifier: Fortran 2003 status. (line 81)
* IOR: IOR. (line 6)
* IOSTAT, end of file: IS_IOSTAT_END. (line 6)
* IOSTAT, end of record: IS_IOSTAT_EOR. (line 6)
* IPARITY: IPARITY. (line 6)
* IRAND: IRAND. (line 6)
* IS_IOSTAT_END: IS_IOSTAT_END. (line 6)
* IS_IOSTAT_EOR: IS_IOSTAT_EOR. (line 6)
* ISATTY: ISATTY. (line 6)
* ISHFT: ISHFT. (line 6)
* ISHFTC: ISHFTC. (line 6)
* ISIGN: SIGN. (line 6)
* ISNAN: ISNAN. (line 6)
* ISO_FORTRAN_ENV statement: Fortran 2003 status. (line 118)
* ITIME: ITIME. (line 6)
* KILL: KILL. (line 6)
* kind: KIND. (line 6)
* KIND: KIND. (line 6)
* kind: KIND Type Parameters.
(line 6)
* kind, character: SELECTED_CHAR_KIND. (line 6)
* kind, integer: SELECTED_INT_KIND. (line 6)
* kind, old-style: Old-style kind specifications.
(line 6)
* kind, real: SELECTED_REAL_KIND. (line 6)
* L2 vector norm: NORM2. (line 6)
* language, dialect options: Fortran Dialect Options.
(line 6)
* LBOUND: LBOUND. (line 6)
* LCOBOUND: LCOBOUND. (line 6)
* LEADZ: LEADZ. (line 6)
* left shift, combined: DSHIFTL. (line 6)
* LEN: LEN. (line 6)
* LEN_TRIM: LEN_TRIM. (line 6)
* lexical comparison of strings <1>: LLT. (line 6)
* lexical comparison of strings <2>: LLE. (line 6)
* lexical comparison of strings <3>: LGT. (line 6)
* lexical comparison of strings: LGE. (line 6)
* LGAMMA: LOG_GAMMA. (line 6)
* LGE: LGE. (line 6)
* LGT: LGT. (line 6)
* libf2c calling convention: Code Gen Options. (line 25)
* libgfortran initialization, set_args: _gfortran_set_args. (line 6)
* libgfortran initialization, set_convert: _gfortran_set_convert.
(line 6)
* libgfortran initialization, set_fpe: _gfortran_set_fpe. (line 6)
* libgfortran initialization, set_max_subrecord_length: _gfortran_set_max_subrecord_length.
(line 6)
* libgfortran initialization, set_options: _gfortran_set_options.
(line 6)
* libgfortran initialization, set_record_marker: _gfortran_set_record_marker.
(line 6)
* limits, largest number: HUGE. (line 6)
* limits, smallest number: TINY. (line 6)
* LINK: LINK. (line 6)
* linking, static: Link Options. (line 6)
* LLE: LLE. (line 6)
* LLT: LLT. (line 6)
* LNBLNK: LNBLNK. (line 6)
* LOC: LOC. (line 6)
* location of a variable in memory: LOC. (line 6)
* LOG: LOG. (line 6)
* LOG10: LOG10. (line 6)
* LOG_GAMMA: LOG_GAMMA. (line 6)
* logarithm function: LOG. (line 6)
* logarithm function with base 10: LOG10. (line 6)
* logarithm function, inverse: EXP. (line 6)
* LOGICAL: LOGICAL. (line 6)
* logical and, bitwise <1>: IAND. (line 6)
* logical and, bitwise: AND. (line 6)
* logical exclusive or, bitwise <1>: XOR. (line 6)
* logical exclusive or, bitwise: IEOR. (line 6)
* logical not, bitwise: NOT. (line 6)
* logical or, bitwise <1>: OR. (line 6)
* logical or, bitwise: IOR. (line 6)
* logical, variable representation: Internal representation of LOGICAL variables.
(line 6)
* login name: GETLOG. (line 6)
* LONG: LONG. (line 6)
* LSHIFT: LSHIFT. (line 6)
* LSTAT: LSTAT. (line 6)
* LTIME: LTIME. (line 6)
* MALLOC: MALLOC. (line 6)
* mask, left justified: MASKL. (line 6)
* mask, right justified: MASKR. (line 6)
* MASKL: MASKL. (line 6)
* MASKR: MASKR. (line 6)
* MATMUL: MATMUL. (line 6)
* matrix multiplication: MATMUL. (line 6)
* matrix, transpose: TRANSPOSE. (line 6)
* MAX: MAX. (line 6)
* MAX0: MAX. (line 6)
* MAX1: MAX. (line 6)
* MAXEXPONENT: MAXEXPONENT. (line 6)
* maximum value <1>: MAXVAL. (line 6)
* maximum value: MAX. (line 6)
* MAXLOC: MAXLOC. (line 6)
* MAXVAL: MAXVAL. (line 6)
* MCLOCK: MCLOCK. (line 6)
* MCLOCK8: MCLOCK8. (line 6)
* memory checking: Code Gen Options. (line 157)
* MERGE: MERGE. (line 6)
* MERGE_BITS: MERGE_BITS. (line 6)
* messages, error: Error and Warning Options.
(line 6)
* messages, warning: Error and Warning Options.
(line 6)
* MIN: MIN. (line 6)
* MIN0: MIN. (line 6)
* MIN1: MIN. (line 6)
* MINEXPONENT: MINEXPONENT. (line 6)
* minimum value <1>: MINVAL. (line 6)
* minimum value: MIN. (line 6)
* MINLOC: MINLOC. (line 6)
* MINVAL: MINVAL. (line 6)
* Mixed-language programming: Mixed-Language Programming.
(line 6)
* MOD: MOD. (line 6)
* model representation, base: RADIX. (line 6)
* model representation, epsilon: EPSILON. (line 6)
* model representation, largest number: HUGE. (line 6)
* model representation, maximum exponent: MAXEXPONENT. (line 6)
* model representation, minimum exponent: MINEXPONENT. (line 6)
* model representation, precision: PRECISION. (line 6)
* model representation, radix: RADIX. (line 6)
* model representation, range: RANGE. (line 6)
* model representation, significant digits: DIGITS. (line 6)
* model representation, smallest number: TINY. (line 6)
* module entities: Fortran Dialect Options.
(line 72)
* module search path: Directory Options. (line 14)
* modulo: MODULO. (line 6)
* MODULO: MODULO. (line 6)
* MOVE_ALLOC: MOVE_ALLOC. (line 6)
* moving allocation: MOVE_ALLOC. (line 6)
* multiply array elements: PRODUCT. (line 6)
* MVBITS: MVBITS. (line 6)
* Namelist: Extensions to namelist.
(line 6)
* natural logarithm function: LOG. (line 6)
* NEAREST: NEAREST. (line 6)
* NEW_LINE: NEW_LINE. (line 6)
* newline: NEW_LINE. (line 6)
* NINT: NINT. (line 6)
* norm, Euclidean: NORM2. (line 6)
* NORM2: NORM2. (line 6)
* NOT: NOT. (line 6)
* NULL: NULL. (line 6)
* NUM_IMAGES: NUM_IMAGES. (line 6)
* OpenMP <1>: OpenMP. (line 6)
* OpenMP: Fortran Dialect Options.
(line 110)
* operators, unary: Unary operators. (line 6)
* options inquiry function: COMPILER_OPTIONS. (line 6)
* options, code generation: Code Gen Options. (line 6)
* options, debugging: Debugging Options. (line 6)
* options, dialect: Fortran Dialect Options.
(line 6)
* options, directory search: Directory Options. (line 6)
* options, errors: Error and Warning Options.
(line 6)
* options, fortran dialect: Fortran Dialect Options.
(line 11)
* options, gfortran command: Invoking GNU Fortran.
(line 6)
* options, linking: Link Options. (line 6)
* options, negative forms: Invoking GNU Fortran.
(line 13)
* options, preprocessor: Preprocessing Options.
(line 6)
* options, run-time: Code Gen Options. (line 6)
* options, runtime: Runtime Options. (line 6)
* options, warnings: Error and Warning Options.
(line 6)
* OR: OR. (line 6)
* output, newline: NEW_LINE. (line 6)
* PACK: PACK. (line 6)
* parity: POPPAR. (line 6)
* Parity: PARITY. (line 6)
* PARITY: PARITY. (line 6)
* paths, search: Directory Options. (line 14)
* PERROR: PERROR. (line 6)
* pointer checking: Code Gen Options. (line 157)
* pointer, C address of pointers: C_F_PROCPOINTER. (line 6)
* pointer, C address of procedures: C_FUNLOC. (line 6)
* pointer, C association status: C_ASSOCIATED. (line 6)
* pointer, convert C to Fortran: C_F_POINTER. (line 6)
* pointer, cray <1>: MALLOC. (line 6)
* pointer, cray: FREE. (line 6)
* pointer, Cray: Cray pointers. (line 6)
* pointer, disassociated: NULL. (line 6)
* pointer, status <1>: NULL. (line 6)
* pointer, status: ASSOCIATED. (line 6)
* POPCNT: POPCNT. (line 6)
* POPPAR: POPPAR. (line 6)
* positive difference: DIM. (line 6)
* PRECISION: PRECISION. (line 6)
* Preprocessing: Preprocessing and conditional compilation.
(line 6)
* preprocessing, assertion: Preprocessing Options.
(line 114)
* preprocessing, define macros: Preprocessing Options.
(line 153)
* preprocessing, include path: Preprocessing Options.
(line 70)
* preprocessing, keep comments: Preprocessing Options.
(line 123)
* preprocessing, no linemarkers: Preprocessing Options.
(line 181)
* preprocessing, undefine macros: Preprocessing Options.
(line 187)
* preprocessor: Preprocessing Options.
(line 6)
* preprocessor, debugging: Preprocessing Options.
(line 26)
* preprocessor, disable: Preprocessing Options.
(line 12)
* preprocessor, enable: Preprocessing Options.
(line 12)
* preprocessor, include file handling: Preprocessing and conditional compilation.
(line 6)
* preprocessor, working directory: Preprocessing Options.
(line 55)
* PRESENT: PRESENT. (line 6)
* private: Fortran Dialect Options.
(line 72)
* procedure pointer, convert C to Fortran: C_LOC. (line 6)
* process ID: GETPID. (line 6)
* PRODUCT: PRODUCT. (line 6)
* product, double-precision: DPROD. (line 6)
* product, matrix: MATMUL. (line 6)
* product, vector: DOT_PRODUCT. (line 6)
* program termination: EXIT. (line 6)
* program termination, with core dump: ABORT. (line 6)
* PROTECTED statement: Fortran 2003 status. (line 104)
* Q exponent-letter: Q exponent-letter. (line 6)
* RADIX: RADIX. (line 6)
* radix, real: SELECTED_REAL_KIND. (line 6)
* RAN: RAN. (line 6)
* RAND: RAND. (line 6)
* random number generation <1>: RANDOM_NUMBER. (line 6)
* random number generation <2>: RAND. (line 6)
* random number generation <3>: RAN. (line 6)
* random number generation: IRAND. (line 6)
* random number generation, seeding <1>: SRAND. (line 6)
* random number generation, seeding: RANDOM_SEED. (line 6)
* RANDOM_NUMBER: RANDOM_NUMBER. (line 6)
* RANDOM_SEED: RANDOM_SEED. (line 6)
* RANGE: RANGE. (line 6)
* range checking: Code Gen Options. (line 157)
* re-association of parenthesized expressions: Code Gen Options.
(line 330)
* read character, stream mode <1>: FGETC. (line 6)
* read character, stream mode: FGET. (line 6)
* REAL: REAL. (line 6)
* real kind: SELECTED_REAL_KIND. (line 6)
* real number, exponent: EXPONENT. (line 6)
* real number, fraction: FRACTION. (line 6)
* real number, nearest different: NEAREST. (line 6)
* real number, relative spacing <1>: SPACING. (line 6)
* real number, relative spacing: RRSPACING. (line 6)
* real number, scale: SCALE. (line 6)
* real number, set exponent: SET_EXPONENT. (line 6)
* Reallocate the LHS in assignments: Code Gen Options. (line 338)
* REALPART: REAL. (line 6)
* RECORD: STRUCTURE and RECORD.
(line 6)
* Reduction, XOR: PARITY. (line 6)
* remainder: MOD. (line 6)
* RENAME: RENAME. (line 6)
* repacking arrays: Code Gen Options. (line 250)
* REPEAT: REPEAT. (line 6)
* RESHAPE: RESHAPE. (line 6)
* right shift, combined: DSHIFTR. (line 6)
* root: SQRT. (line 6)
* rounding, ceiling <1>: CEILING. (line 6)
* rounding, ceiling: ANINT. (line 6)
* rounding, floor <1>: FLOOR. (line 6)
* rounding, floor: AINT. (line 6)
* rounding, nearest whole number: NINT. (line 6)
* RRSPACING: RRSPACING. (line 6)
* RSHIFT: RSHIFT. (line 6)
* run-time checking: Code Gen Options. (line 157)
* SAME_TYPE_AS: SAME_TYPE_AS. (line 6)
* SAVE statement: Code Gen Options. (line 15)
* SCALE: SCALE. (line 6)
* SCAN: SCAN. (line 6)
* search path: Directory Options. (line 6)
* search paths, for included files: Directory Options. (line 14)
* SECNDS: SECNDS. (line 6)
* SECOND: SECOND. (line 6)
* seeding a random number generator <1>: SRAND. (line 6)
* seeding a random number generator: RANDOM_SEED. (line 6)
* SELECTED_CHAR_KIND: SELECTED_CHAR_KIND. (line 6)
* SELECTED_INT_KIND: SELECTED_INT_KIND. (line 6)
* SELECTED_REAL_KIND: SELECTED_REAL_KIND. (line 6)
* SET_EXPONENT: SET_EXPONENT. (line 6)
* SHAPE: SHAPE. (line 6)
* shift, left <1>: SHIFTL. (line 6)
* shift, left: DSHIFTL. (line 6)
* shift, right <1>: SHIFTR. (line 6)
* shift, right: DSHIFTR. (line 6)
* shift, right with fill: SHIFTA. (line 6)
* SHIFTA: SHIFTA. (line 6)
* SHIFTL: SHIFTL. (line 6)
* SHIFTR: SHIFTR. (line 6)
* SHORT: INT2. (line 6)
* SIGN: SIGN. (line 6)
* sign copying: SIGN. (line 6)
* SIGNAL: SIGNAL. (line 6)
* SIN: SIN. (line 6)
* sine: SIN. (line 6)
* sine, hyperbolic: SINH. (line 6)
* sine, hyperbolic, inverse: ASINH. (line 6)
* sine, inverse: ASIN. (line 6)
* SINH: SINH. (line 6)
* SIZE: SIZE. (line 6)
* size of a variable, in bits: BIT_SIZE. (line 6)
* size of an expression <1>: SIZEOF. (line 6)
* size of an expression: C_SIZEOF. (line 6)
* SIZEOF: SIZEOF. (line 6)
* SLEEP: SLEEP. (line 6)
* SNGL: REAL. (line 6)
* SPACING: SPACING. (line 6)
* SPREAD: SPREAD. (line 6)
* SQRT: SQRT. (line 6)
* square-root: SQRT. (line 6)
* SRAND: SRAND. (line 6)
* Standards: Standards. (line 6)
* STAT: STAT. (line 6)
* statement, ENUM: Fortran 2003 status. (line 83)
* statement, ENUMERATOR: Fortran 2003 status. (line 83)
* statement, FLUSH: Fortran 2003 status. (line 79)
* statement, IMPORT: Fortran 2003 status. (line 110)
* statement, ISO_FORTRAN_ENV: Fortran 2003 status. (line 118)
* statement, PROTECTED: Fortran 2003 status. (line 104)
* statement, SAVE: Code Gen Options. (line 15)
* statement, USE, INTRINSIC: Fortran 2003 status. (line 118)
* statement, VALUE: Fortran 2003 status. (line 106)
* statement, VOLATILE: Fortran 2003 status. (line 108)
* storage size: STORAGE_SIZE. (line 6)
* STORAGE_SIZE: STORAGE_SIZE. (line 6)
* STREAM I/O: Fortran 2003 status. (line 95)
* stream mode, read character <1>: FGETC. (line 6)
* stream mode, read character: FGET. (line 6)
* stream mode, write character <1>: FPUTC. (line 6)
* stream mode, write character: FPUT. (line 6)
* string, adjust left: ADJUSTL. (line 6)
* string, adjust right: ADJUSTR. (line 6)
* string, comparison <1>: LLT. (line 6)
* string, comparison <2>: LLE. (line 6)
* string, comparison <3>: LGT. (line 6)
* string, comparison: LGE. (line 6)
* string, concatenate: REPEAT. (line 6)
* string, find missing set: VERIFY. (line 6)
* string, find non-blank character: LNBLNK. (line 6)
* string, find subset: SCAN. (line 6)
* string, find substring: INDEX intrinsic. (line 6)
* string, length: LEN. (line 6)
* string, length, without trailing whitespace: LEN_TRIM. (line 6)
* string, remove trailing whitespace: TRIM. (line 6)
* string, repeat: REPEAT. (line 6)
* strings, varying length: Varying Length Character Strings.
(line 6)
* STRUCTURE: STRUCTURE and RECORD.
(line 6)
* structure packing: Code Gen Options. (line 244)
* subscript checking: Code Gen Options. (line 157)
* substring position: INDEX intrinsic. (line 6)
* SUM: SUM. (line 6)
* sum array elements: SUM. (line 6)
* suppressing warnings: Error and Warning Options.
(line 6)
* symbol names: Fortran Dialect Options.
(line 54)
* symbol names, transforming: Code Gen Options. (line 54)
* symbol names, underscores: Code Gen Options. (line 54)
* SYMLNK: SYMLNK. (line 6)
* syntax checking: Error and Warning Options.
(line 33)
* SYSTEM: SYSTEM. (line 6)
* system, error handling <1>: PERROR. (line 6)
* system, error handling <2>: IERRNO. (line 6)
* system, error handling: GERROR. (line 6)
* system, group ID: GETGID. (line 6)
* system, host name: HOSTNM. (line 6)
* system, login name: GETLOG. (line 6)
* system, process ID: GETPID. (line 6)
* system, signal handling: SIGNAL. (line 6)
* system, system call <1>: SYSTEM. (line 6)
* system, system call: EXECUTE_COMMAND_LINE.
(line 6)
* system, terminal <1>: TTYNAM. (line 6)
* system, terminal: ISATTY. (line 6)
* system, user ID: GETUID. (line 6)
* system, working directory <1>: GETCWD. (line 6)
* system, working directory: CHDIR. (line 6)
* SYSTEM_CLOCK: SYSTEM_CLOCK. (line 6)
* tabulators: Error and Warning Options.
(line 155)
* TAN: TAN. (line 6)
* tangent: TAN. (line 6)
* tangent, hyperbolic: TANH. (line 6)
* tangent, hyperbolic, inverse: ATANH. (line 6)
* tangent, inverse <1>: ATAN2. (line 6)
* tangent, inverse: ATAN. (line 6)
* TANH: TANH. (line 6)
* terminate program: EXIT. (line 6)
* terminate program, with core dump: ABORT. (line 6)
* THIS_IMAGE: THIS_IMAGE. (line 6)
* thread-safety, threads: Thread-safety of the runtime library.
(line 6)
* TIME: TIME. (line 6)
* time, clock ticks <1>: SYSTEM_CLOCK. (line 6)
* time, clock ticks <2>: MCLOCK8. (line 6)
* time, clock ticks: MCLOCK. (line 6)
* time, conversion to GMT info: GMTIME. (line 6)
* time, conversion to local time info: LTIME. (line 6)
* time, conversion to string: CTIME. (line 6)
* time, current <1>: TIME8. (line 6)
* time, current <2>: TIME. (line 6)
* time, current <3>: ITIME. (line 6)
* time, current <4>: FDATE. (line 6)
* time, current: DATE_AND_TIME. (line 6)
* time, elapsed <1>: SECOND. (line 6)
* time, elapsed <2>: SECNDS. (line 6)
* time, elapsed <3>: ETIME. (line 6)
* time, elapsed <4>: DTIME. (line 6)
* time, elapsed: CPU_TIME. (line 6)
* TIME8: TIME8. (line 6)
* TINY: TINY. (line 6)
* TR 15581: Fortran 2003 status. (line 88)
* trace: Debugging Options. (line 41)
* TRAILZ: TRAILZ. (line 6)
* TRANSFER: TRANSFER. (line 6)
* transforming symbol names: Code Gen Options. (line 54)
* transpose: TRANSPOSE. (line 6)
* TRANSPOSE: TRANSPOSE. (line 6)
* trigonometric function, cosine: COS. (line 6)
* trigonometric function, cosine, inverse: ACOS. (line 6)
* trigonometric function, sine: SIN. (line 6)
* trigonometric function, sine, inverse: ASIN. (line 6)
* trigonometric function, tangent: TAN. (line 6)
* trigonometric function, tangent, inverse <1>: ATAN2. (line 6)
* trigonometric function, tangent, inverse: ATAN. (line 6)
* TRIM: TRIM. (line 6)
* TTYNAM: TTYNAM. (line 6)
* type cast: TRANSFER. (line 6)
* UBOUND: UBOUND. (line 6)
* UCOBOUND: UCOBOUND. (line 6)
* UMASK: UMASK. (line 6)
* underflow: Error and Warning Options.
(line 163)
* underscore: Code Gen Options. (line 54)
* UNLINK: UNLINK. (line 6)
* UNPACK: UNPACK. (line 6)
* unused dummy argument: Error and Warning Options.
(line 173)
* unused parameter: Error and Warning Options.
(line 177)
* USE, INTRINSIC statement: Fortran 2003 status. (line 118)
* user id: GETUID. (line 6)
* VALUE statement: Fortran 2003 status. (line 106)
* Varying length character strings: Varying Length Character Strings.
(line 6)
* Varying length strings: Varying Length Character Strings.
(line 6)
* vector product: DOT_PRODUCT. (line 6)
* VERIFY: VERIFY. (line 6)
* version of the compiler: COMPILER_VERSION. (line 6)
* VOLATILE statement: Fortran 2003 status. (line 108)
* warnings, aliasing: Error and Warning Options.
(line 69)
* warnings, alignment of COMMON blocks: Error and Warning Options.
(line 184)
* warnings, all: Error and Warning Options.
(line 61)
* warnings, ampersand: Error and Warning Options.
(line 86)
* warnings, array temporaries: Error and Warning Options.
(line 94)
* warnings, character truncation: Error and Warning Options.
(line 99)
* warnings, conversion: Error and Warning Options.
(line 105)
* warnings, implicit interface: Error and Warning Options.
(line 112)
* warnings, implicit procedure: Error and Warning Options.
(line 118)
* warnings, intrinsic: Error and Warning Options.
(line 167)
* warnings, intrinsics of other standards: Error and Warning Options.
(line 122)
* warnings, line truncation: Error and Warning Options.
(line 102)
* warnings, non-standard intrinsics: Error and Warning Options.
(line 122)
* warnings, q exponent-letter: Error and Warning Options.
(line 129)
* warnings, suppressing: Error and Warning Options.
(line 6)
* warnings, suspicious code: Error and Warning Options.
(line 133)
* warnings, tabs: Error and Warning Options.
(line 155)
* warnings, to errors: Error and Warning Options.
(line 190)
* warnings, underflow: Error and Warning Options.
(line 163)
* warnings, unused dummy argument: Error and Warning Options.
(line 173)
* warnings, unused parameter: Error and Warning Options.
(line 177)
* write character, stream mode <1>: FPUTC. (line 6)
* write character, stream mode: FPUT. (line 6)
* XOR: XOR. (line 6)
* XOR reduction: PARITY. (line 6)
* ZABS: ABS. (line 6)
* ZCOS: COS. (line 6)
* zero bits <1>: TRAILZ. (line 6)
* zero bits: LEADZ. (line 6)
* ZEXP: EXP. (line 6)
* ZLOG: LOG. (line 6)
* ZSIN: SIN. (line 6)
* ZSQRT: SQRT. (line 6)
Tag Table:
Node: Top2133
Node: Introduction3511
Node: About GNU Fortran4258
Node: GNU Fortran and GCC8246
Node: Preprocessing and conditional compilation10360
Node: GNU Fortran and G7712004
Node: Project Status12577
Node: Standards15024
Node: Varying Length Character Strings15962
Node: Invoking GNU Fortran16498
Node: Option Summary18221
Node: Fortran Dialect Options21923
Node: Preprocessing Options28959
Node: Error and Warning Options37189
Node: Debugging Options45282
Node: Directory Options47898
Node: Link Options49333
Node: Runtime Options49957
Node: Code Gen Options52207
Node: Environment Variables67557
Node: Runtime68162
Node: GFORTRAN_STDIN_UNIT69390
Node: GFORTRAN_STDOUT_UNIT69757
Node: GFORTRAN_STDERR_UNIT70158
Node: GFORTRAN_USE_STDERR70556
Node: GFORTRAN_TMPDIR71002
Node: GFORTRAN_UNBUFFERED_ALL71453
Node: GFORTRAN_UNBUFFERED_PRECONNECTED71977
Node: GFORTRAN_SHOW_LOCUS72619
Node: GFORTRAN_OPTIONAL_PLUS73114
Node: GFORTRAN_DEFAULT_RECL73590
Node: GFORTRAN_LIST_SEPARATOR74081
Node: GFORTRAN_CONVERT_UNIT74690
Node: GFORTRAN_ERROR_DUMPCORE77552
Node: GFORTRAN_ERROR_BACKTRACE78101
Node: Fortran 2003 and 2008 status78653
Node: Fortran 2003 status78893
Node: Fortran 2008 status83540
Node: Compiler Characteristics88194
Node: KIND Type Parameters88710
Node: Internal representation of LOGICAL variables89960
Node: Thread-safety of the runtime library91317
Node: Extensions92704
Node: Extensions implemented in GNU Fortran93305
Node: Old-style kind specifications94663
Node: Old-style variable initialization95770
Node: Extensions to namelist97082
Node: X format descriptor without count field99079
Node: Commas in FORMAT specifications99606
Node: Missing period in FORMAT specifications100123
Node: I/O item lists100685
Node: `Q' exponent-letter101074
Node: BOZ literal constants101680
Node: Real array indices104255
Node: Unary operators104552
Node: Implicitly convert LOGICAL and INTEGER values104966
Node: Hollerith constants support105926
Node: Cray pointers107698
Node: CONVERT specifier113145
Node: OpenMP115143
Node: Argument list functions117394
Node: Extensions not implemented in GNU Fortran119000
Node: STRUCTURE and RECORD119922
Node: ENCODE and DECODE statements121979
Node: Variable FORMAT expressions123338
Node: Alternate complex function syntax124443
Node: Mixed-Language Programming124963
Node: Interoperability with C125507
Node: Intrinsic Types126845
Node: Derived Types and struct127360
Node: Interoperable Global Variables128716
Node: Interoperable Subroutines and Functions129992
Node: Working with Pointers133605
Node: Further Interoperability of Fortran with C137922
Node: GNU Fortran Compiler Directives138904
Node: Non-Fortran Main Program141105
Node: _gfortran_set_args143247
Node: _gfortran_set_options144182
Node: _gfortran_set_convert147088
Node: _gfortran_set_record_marker147952
Node: _gfortran_set_fpe148777
Node: _gfortran_set_max_subrecord_length149991
Node: Intrinsic Procedures150947
Node: Introduction to Intrinsics166178
Node: ABORT168530
Node: ABS169287
Node: ACCESS170904
Node: ACHAR172825
Node: ACOS174026
Node: ACOSH175263
Node: ADJUSTL176251
Node: ADJUSTR177192
Node: AIMAG178139
Node: AINT179520
Node: ALARM181107
Node: ALL182741
Node: ALLOCATED184659
Node: AND185796
Node: ANINT187093
Node: ANY188571
Node: ASIN190501
Node: ASINH191727
Node: ASSOCIATED192725
Node: ATAN195730
Node: ATAN2197149
Node: ATANH198784
Node: BESSEL_J0199780
Node: BESSEL_J1200824
Node: BESSEL_JN201876
Node: BESSEL_Y0203758
Node: BESSEL_Y1204758
Node: BESSEL_YN205758
Node: BGE207590
Node: BGT208279
Node: BIT_SIZE208926
Node: BLE209747
Node: BLT210426
Node: BTEST211061
Node: C_ASSOCIATED211944
Node: C_FUNLOC213153
Node: C_F_PROCPOINTER214522
Node: C_F_POINTER216023
Node: C_LOC217441
Node: C_SIZEOF218718
Node: CEILING220127
Node: CHAR221132
Node: CHDIR222336
Node: CHMOD223504
Node: CMPLX225299
Node: COMMAND_ARGUMENT_COUNT226763
Node: COMPILER_OPTIONS227677
Node: COMPILER_VERSION228690
Node: COMPLEX229658
Node: CONJG230812
Node: COS231892
Node: COSH233338
Node: COUNT234503
Node: CPU_TIME236519
Node: CSHIFT237873
Node: CTIME239529
Node: DATE_AND_TIME241182
Node: DBLE243643
Node: DCMPLX244436
Node: DIGITS245630
Node: DIM246596
Node: DOT_PRODUCT247854
Node: DPROD249510
Node: DREAL250427
Node: DSHIFTL251093
Node: DSHIFTR251886
Node: DTIME252680
Node: EOSHIFT255483
Node: EPSILON257556
Node: ERF258282
Node: ERFC259056
Node: ERFC_SCALED259860
Node: ETIME260552
Node: EXECUTE_COMMAND_LINE262793
Node: EXIT265373
Node: EXP266247
Node: EXPONENT267520
Node: EXTENDS_TYPE_OF268280
Node: FDATE269133
Node: FGET270615
Node: FGETC272433
Node: FLOOR274232
Node: FLUSH275216
Node: FNUM277091
Node: FPUT277813
Node: FPUTC279438
Node: FRACTION281209
Node: FREE282110
Node: FSEEK282945
Node: FSTAT285239
Node: FTELL286319
Node: GAMMA287297
Node: GERROR288338
Node: GETARG289057
Node: GET_COMMAND290821
Node: GET_COMMAND_ARGUMENT292185
Node: GETCWD294219
Node: GETENV295191
Node: GET_ENVIRONMENT_VARIABLE296614
Node: GETGID298767
Node: GETLOG299304
Node: GETPID300164
Node: GETUID300894
Node: GMTIME301410
Node: HOSTNM302899
Node: HUGE303817
Node: HYPOT304538
Node: IACHAR305358
Node: IALL306538
Node: IAND308015
Node: IANY308999
Node: IARGC310485
Node: IBCLR311506
Node: IBITS312167
Node: IBSET313082
Node: ICHAR313738
Node: IDATE315910
Node: IEOR316937
Node: IERRNO317813
Node: IMAGE_INDEX318362
Node: INDEX intrinsic319386
Node: INT320927
Node: INT2322629
Node: INT8323394
Node: IOR324106
Node: IPARITY324958
Node: IRAND326482
Node: IS_IOSTAT_END327838
Node: IS_IOSTAT_EOR328935
Node: ISATTY330062
Node: ISHFT330845
Node: ISHFTC331825
Node: ISNAN333041
Node: ITIME333789
Node: KILL334814
Node: KIND335718
Node: LBOUND336563
Node: LCOBOUND337896
Node: LEADZ339026
Node: LEN339886
Node: LEN_TRIM341167
Node: LGE342149
Node: LGT343651
Node: LINK345118
Node: LLE346153
Node: LLT347647
Node: LNBLNK349107
Node: LOC349883
Node: LOG350614
Node: LOG10352017
Node: LOG_GAMMA352991
Node: LOGICAL354080
Node: LONG354888
Node: LSHIFT355644
Node: LSTAT356729
Node: LTIME357923
Node: MALLOC359334
Node: MASKL360793
Node: MASKR361556
Node: MATMUL362322
Node: MAX363411
Node: MAXEXPONENT364910
Node: MAXLOC365726
Node: MAXVAL367745
Node: MCLOCK369378
Node: MCLOCK8370381
Node: MERGE371593
Node: MERGE_BITS372342
Node: MIN373203
Node: MINEXPONENT374704
Node: MINLOC375334
Node: MINVAL377353
Node: MOD379005
Node: MODULO380612
Node: MOVE_ALLOC381826
Node: MVBITS382855
Node: NEAREST383914
Node: NEW_LINE385037
Node: NINT385808
Node: NORM2387211
Node: NOT388349
Node: NULL388933
Node: NUM_IMAGES389838
Node: OR390654
Node: PACK391938
Node: PARITY393930
Node: PERROR395145
Node: PRECISION395766
Node: POPCNT396652
Node: POPPAR397523
Node: PRESENT398574
Node: PRODUCT399680
Node: RADIX401205
Node: RAN402027
Node: RAND402483
Node: RANDOM_NUMBER403815
Node: RANDOM_SEED405533
Node: RANGE407418
Node: REAL408106
Node: RENAME409880
Node: REPEAT410899
Node: RESHAPE411625
Node: RRSPACING413094
Node: RSHIFT413787
Node: SAME_TYPE_AS414925
Node: SCALE415755
Node: SCAN416535
Node: SECNDS418085
Node: SECOND419173
Node: SELECTED_CHAR_KIND420049
Node: SELECTED_INT_KIND421640
Node: SELECTED_REAL_KIND422815
Node: SET_EXPONENT425481
Node: SHAPE426477
Node: SHIFTA427892
Node: SHIFTL428853
Node: SHIFTR429688
Node: SIGN430524
Node: SIGNAL431808
Node: SIN433305
Node: SINH434403
Node: SIZE435399
Node: SIZEOF436707
Node: SLEEP438118
Node: SPACING438678
Node: SPREAD439691
Node: SQRT440836
Node: SRAND442190
Node: STAT443358
Node: STORAGE_SIZE446525
Node: SUM447405
Node: SYMLNK448888
Node: SYSTEM450020
Node: SYSTEM_CLOCK451271
Node: TAN453429
Node: TANH454401
Node: THIS_IMAGE455558
Node: TIME457050
Node: TIME8458154
Node: TINY459283
Node: TRAILZ459883
Node: TRANSFER460700
Node: TRANSPOSE462734
Node: TRIM463421
Node: TTYNAM464278
Node: UBOUND465193
Node: UCOBOUND466583
Node: UMASK467715
Node: UNLINK468393
Node: UNPACK469370
Node: VERIFY470658
Node: XOR472379
Node: Intrinsic Modules473751
Node: ISO_FORTRAN_ENV473994
Node: ISO_C_BINDING477834
Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS481696
Node: Contributing483022
Node: Contributors483874
Node: Projects485541
Node: Proposed Extensions486345
Node: Copying488356
Node: GNU Free Documentation License525920
Node: Funding551063
Node: Option Index553588
Node: Keyword Index566546
End Tag Table
|