1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
|
// types.h -- Go frontend types. -*- C++ -*-
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef GO_TYPES_H
#define GO_TYPES_H
class Gogo;
class Package;
class Traverse;
class Typed_identifier;
class Typed_identifier_list;
class Integer_type;
class Float_type;
class Complex_type;
class String_type;
class Function_type;
class Struct_field;
class Struct_field_list;
class Struct_type;
class Pointer_type;
class Array_type;
class Map_type;
class Channel_type;
class Interface_type;
class Named_type;
class Forward_declaration_type;
class Method;
class Methods;
class Type_hash_identical;
class Type_identical;
class Expression;
class Expression_list;
class Call_expression;
class Field_reference_expression;
class Bound_method_expression;
class Bindings;
class Named_object;
class Function;
class Translate_context;
class Export;
class Import;
// Type codes used in type descriptors. These must match the values
// in libgo/runtime/go-type.h. They also match the values in the gc
// compiler in src/cmd/gc/reflect.c and src/pkg/runtime/type.go,
// although this is not required.
static const int RUNTIME_TYPE_KIND_BOOL = 1;
static const int RUNTIME_TYPE_KIND_INT = 2;
static const int RUNTIME_TYPE_KIND_INT8 = 3;
static const int RUNTIME_TYPE_KIND_INT16 = 4;
static const int RUNTIME_TYPE_KIND_INT32 = 5;
static const int RUNTIME_TYPE_KIND_INT64 = 6;
static const int RUNTIME_TYPE_KIND_UINT = 7;
static const int RUNTIME_TYPE_KIND_UINT8 = 8;
static const int RUNTIME_TYPE_KIND_UINT16 = 9;
static const int RUNTIME_TYPE_KIND_UINT32 = 10;
static const int RUNTIME_TYPE_KIND_UINT64 = 11;
static const int RUNTIME_TYPE_KIND_UINTPTR = 12;
static const int RUNTIME_TYPE_KIND_FLOAT32 = 13;
static const int RUNTIME_TYPE_KIND_FLOAT64 = 14;
static const int RUNTIME_TYPE_KIND_COMPLEX64 = 15;
static const int RUNTIME_TYPE_KIND_COMPLEX128 = 16;
static const int RUNTIME_TYPE_KIND_ARRAY = 17;
static const int RUNTIME_TYPE_KIND_CHAN = 18;
static const int RUNTIME_TYPE_KIND_FUNC = 19;
static const int RUNTIME_TYPE_KIND_INTERFACE = 20;
static const int RUNTIME_TYPE_KIND_MAP = 21;
static const int RUNTIME_TYPE_KIND_PTR = 22;
static const int RUNTIME_TYPE_KIND_SLICE = 23;
static const int RUNTIME_TYPE_KIND_STRING = 24;
static const int RUNTIME_TYPE_KIND_STRUCT = 25;
static const int RUNTIME_TYPE_KIND_UNSAFE_POINTER = 26;
// To build the complete list of methods for a named type we need to
// gather all methods from anonymous fields. Those methods may
// require an arbitrary set of indirections and field offsets. There
// is also the possibility of ambiguous methods, which we could ignore
// except that we want to give a better error message for that case.
// This is a base class. There are two types of methods: named
// methods, and methods which are inherited from an anonymous field of
// interface type.
class Method
{
public:
// For methods in anonymous types we need to know the sequence of
// field references used to extract the pointer to pass to the
// method. Since each method for a particular anonymous field will
// have the sequence of field indexes, and since the indexes can be
// shared going down the chain, we use a manually managed linked
// list. The first entry in the list is the field index for the
// last field, the one passed to the method.
struct Field_indexes
{
const Field_indexes* next;
unsigned int field_index;
};
virtual ~Method()
{ }
// Get the list of field indexes.
const Field_indexes*
field_indexes() const
{ return this->field_indexes_; }
// Get the depth.
unsigned int
depth() const
{ return this->depth_; }
// Return whether this is a value method--a method which does not
// require a pointer expression.
bool
is_value_method() const
{ return this->is_value_method_; }
// Return whether we need a stub method--this is true if we can't
// just pass the main object to the method.
bool
needs_stub_method() const
{ return this->needs_stub_method_; }
// Return whether this is an ambiguous method name.
bool
is_ambiguous() const
{ return this->is_ambiguous_; }
// Note that this method is ambiguous.
void
set_is_ambiguous()
{ this->is_ambiguous_ = true; }
// Return the type of the method.
Function_type*
type() const
{ return this->do_type(); }
// Return the location of the method receiver.
source_location
receiver_location() const
{ return this->do_receiver_location(); }
// Return an expression which binds this method to EXPR. This is
// something which can be used with a function call.
Expression*
bind_method(Expression* expr, source_location location) const;
// Return the named object for this method. This may only be called
// after methods are finalized.
Named_object*
named_object() const;
// Get the stub object.
Named_object*
stub_object() const
{
gcc_assert(this->stub_ != NULL);
return this->stub_;
}
// Set the stub object.
void
set_stub_object(Named_object* no)
{
gcc_assert(this->stub_ == NULL);
this->stub_ = no;
}
protected:
// These objects are only built by the child classes.
Method(const Field_indexes* field_indexes, unsigned int depth,
bool is_value_method, bool needs_stub_method)
: field_indexes_(field_indexes), depth_(depth), stub_(NULL),
is_value_method_(is_value_method), needs_stub_method_(needs_stub_method),
is_ambiguous_(false)
{ }
// The named object for this method.
virtual Named_object*
do_named_object() const = 0;
// The type of the method.
virtual Function_type*
do_type() const = 0;
// Return the location of the method receiver.
virtual source_location
do_receiver_location() const = 0;
// Bind a method to an object.
virtual Expression*
do_bind_method(Expression* expr, source_location location) const = 0;
private:
// The sequence of field indexes used for this method. If this is
// NULL, then the method is defined for the current type.
const Field_indexes* field_indexes_;
// The depth at which this method was found.
unsigned int depth_;
// If a stub method is required, this is its object. This is only
// set after stub methods are built in finalize_methods.
Named_object* stub_;
// Whether this is a value method--a method that does not require a
// pointer.
bool is_value_method_;
// Whether a stub method is required.
bool needs_stub_method_;
// Whether this method is ambiguous.
bool is_ambiguous_;
};
// A named method. This is what you get with a method declaration,
// either directly on the type, or inherited from some anonymous
// embedded field.
class Named_method : public Method
{
public:
Named_method(Named_object* named_object, const Field_indexes* field_indexes,
unsigned int depth, bool is_value_method,
bool needs_stub_method)
: Method(field_indexes, depth, is_value_method, needs_stub_method),
named_object_(named_object)
{ }
protected:
// Get the Named_object for the method.
Named_object*
do_named_object() const
{ return this->named_object_; }
// The type of the method.
Function_type*
do_type() const;
// Return the location of the method receiver.
source_location
do_receiver_location() const;
// Bind a method to an object.
Expression*
do_bind_method(Expression* expr, source_location location) const;
private:
// The method itself. For a method which needs a stub, this starts
// out as the underlying method, and is later replaced with the stub
// method.
Named_object* named_object_;
};
// An interface method. This is used when an interface appears as an
// anonymous field in a named struct.
class Interface_method : public Method
{
public:
Interface_method(const std::string& name, source_location location,
Function_type* fntype, const Field_indexes* field_indexes,
unsigned int depth)
: Method(field_indexes, depth, true, true),
name_(name), location_(location), fntype_(fntype)
{ }
protected:
// Get the Named_object for the method. This should never be
// called, as we always create a stub.
Named_object*
do_named_object() const
{ gcc_unreachable(); }
// The type of the method.
Function_type*
do_type() const
{ return this->fntype_; }
// Return the location of the method receiver.
source_location
do_receiver_location() const
{ return this->location_; }
// Bind a method to an object.
Expression*
do_bind_method(Expression* expr, source_location location) const;
private:
// The name of the interface method to call.
std::string name_;
// The location of the definition of the interface method.
source_location location_;
// The type of the interface method.
Function_type* fntype_;
};
// A mapping from method name to Method. This is a wrapper around a
// hash table.
class Methods
{
private:
typedef Unordered_map(std::string, Method*) Method_map;
public:
typedef Method_map::const_iterator const_iterator;
Methods()
: methods_()
{ }
// Insert a new method. Returns true if it was inserted, false if
// it was overidden or ambiguous.
bool
insert(const std::string& name, Method* m);
// The number of (unambiguous) methods.
size_t
count() const;
// Iterate.
const_iterator
begin() const
{ return this->methods_.begin(); }
const_iterator
end() const
{ return this->methods_.end(); }
// Lookup.
const_iterator
find(const std::string& name) const
{ return this->methods_.find(name); }
private:
Method_map methods_;
};
// The base class for all types.
class Type
{
public:
// The types of types.
enum Type_classification
{
TYPE_ERROR,
TYPE_VOID,
TYPE_BOOLEAN,
TYPE_INTEGER,
TYPE_FLOAT,
TYPE_COMPLEX,
TYPE_STRING,
TYPE_SINK,
TYPE_FUNCTION,
TYPE_POINTER,
TYPE_NIL,
TYPE_CALL_MULTIPLE_RESULT,
TYPE_STRUCT,
TYPE_ARRAY,
TYPE_MAP,
TYPE_CHANNEL,
TYPE_INTERFACE,
TYPE_NAMED,
TYPE_FORWARD
};
virtual ~Type();
// Creators.
static Type*
make_error_type();
static Type*
make_void_type();
// Get the unnamed bool type.
static Type*
make_boolean_type();
// Get the named type "bool".
static Named_type*
lookup_bool_type();
// Make the named type "bool".
static Named_type*
make_named_bool_type();
// Make an abstract integer type.
static Integer_type*
make_abstract_integer_type();
// Make a named integer type with a specified size.
// RUNTIME_TYPE_KIND is the code to use in reflection information,
// to distinguish int and int32.
static Named_type*
make_integer_type(const char* name, bool is_unsigned, int bits,
int runtime_type_kind);
// Look up a named integer type.
static Named_type*
lookup_integer_type(const char* name);
// Make an abstract floating point type.
static Float_type*
make_abstract_float_type();
// Make a named floating point type with a specific size.
// RUNTIME_TYPE_KIND is the code to use in reflection information,
// to distinguish float and float32.
static Named_type*
make_float_type(const char* name, int bits, int runtime_type_kind);
// Look up a named float type.
static Named_type*
lookup_float_type(const char* name);
// Make an abstract complex type.
static Complex_type*
make_abstract_complex_type();
// Make a named complex type with a specific size.
// RUNTIME_TYPE_KIND is the code to use in reflection information,
// to distinguish complex and complex64.
static Named_type*
make_complex_type(const char* name, int bits, int runtime_type_kind);
// Look up a named complex type.
static Named_type*
lookup_complex_type(const char* name);
// Get the unnamed string type.
static Type*
make_string_type();
// Get the named type "string".
static Named_type*
lookup_string_type();
// Make the named type "string".
static Named_type*
make_named_string_type();
static Type*
make_sink_type();
static Function_type*
make_function_type(Typed_identifier* receiver,
Typed_identifier_list* parameters,
Typed_identifier_list* results,
source_location);
static Pointer_type*
make_pointer_type(Type*);
static Type*
make_nil_type();
static Type*
make_call_multiple_result_type(Call_expression*);
static Struct_type*
make_struct_type(Struct_field_list* fields, source_location);
static Array_type*
make_array_type(Type* element_type, Expression* length);
static Map_type*
make_map_type(Type* key_type, Type* value_type, source_location);
static Channel_type*
make_channel_type(bool send, bool receive, Type*);
static Interface_type*
make_interface_type(Typed_identifier_list* methods, source_location);
static Type*
make_type_descriptor_type();
static Type*
make_type_descriptor_ptr_type();
static Named_type*
make_named_type(Named_object*, Type*, source_location);
static Type*
make_forward_declaration(Named_object*);
// Traverse a type.
static int
traverse(Type*, Traverse*);
// Verify the type. This is called after parsing, and verifies that
// types are complete and meet the language requirements. This
// returns false if the type is invalid.
bool
verify()
{ return this->do_verify(); }
// Return true if two types are identical. If ERRORS_ARE_IDENTICAL,
// returns that an erroneous type is identical to any other type;
// this is used to avoid cascading errors. If this returns false,
// and REASON is not NULL, it may set *REASON.
static bool
are_identical(const Type* lhs, const Type* rhs, bool errors_are_identical,
std::string* reason);
// Return true if two types are compatible for use in a binary
// operation, other than a shift, comparison, or channel send. This
// is an equivalence relation.
static bool
are_compatible_for_binop(const Type* t1, const Type* t2);
// Return true if a value with type RHS is assignable to a variable
// with type LHS. This is not an equivalence relation. If this
// returns false, and REASON is not NULL, it sets *REASON.
static bool
are_assignable(const Type* lhs, const Type* rhs, std::string* reason);
// Return true if a value with type RHS may be converted to type
// LHS. If this returns false, and REASON is not NULL, it sets
// *REASON.
static bool
are_convertible(const Type* lhs, const Type* rhs, std::string* reason);
// Whether this type has any hidden fields which are not visible in
// the current compilation, such as a field whose name begins with a
// lower case letter in a struct imported from a different package.
// WITHIN is not NULL if we are looking at fields in a named type.
bool
has_hidden_fields(const Named_type* within, std::string* reason) const;
// Return a hash code for this type for the method hash table.
// Types which are equivalent according to are_identical will have
// the same hash code.
unsigned int
hash_for_method(Gogo*) const;
// Return the type classification.
Type_classification
classification() const
{ return this->classification_; }
// Return the base type for this type. This looks through forward
// declarations and names. Using this with a forward declaration
// which has not been defined will return an error type.
Type*
base();
const Type*
base() const;
// Return the type skipping defined forward declarations. If this
// type is a forward declaration which has not been defined, it will
// return the Forward_declaration_type. This differs from base() in
// that it will return a Named_type, and for a
// Forward_declaration_type which is not defined it will return that
// type rather than an error type.
Type*
forwarded();
const Type*
forwarded() const;
// Return true if this is a basic type: a type which is not composed
// of other types, and is not void.
bool
is_basic_type() const;
// Return true if this is an abstract type--an integer, floating
// point, or complex type whose size has not been determined.
bool
is_abstract() const;
// Return a non-abstract version of an abstract type.
Type*
make_non_abstract_type();
// Return true if this type is or contains a pointer. This
// determines whether the garbage collector needs to look at a value
// of this type.
bool
has_pointer() const
{ return this->do_has_pointer(); }
// Return true if this is an error type. An error type indicates a
// parsing error.
bool
is_error_type() const;
// Return true if this is a void type.
bool
is_void_type() const
{ return this->classification_ == TYPE_VOID; }
// If this is an integer type, return the Integer_type. Otherwise,
// return NULL. This is a controlled dynamic_cast.
Integer_type*
integer_type()
{ return this->convert<Integer_type, TYPE_INTEGER>(); }
const Integer_type*
integer_type() const
{ return this->convert<const Integer_type, TYPE_INTEGER>(); }
// If this is a floating point type, return the Float_type.
// Otherwise, return NULL. This is a controlled dynamic_cast.
Float_type*
float_type()
{ return this->convert<Float_type, TYPE_FLOAT>(); }
const Float_type*
float_type() const
{ return this->convert<const Float_type, TYPE_FLOAT>(); }
// If this is a complex type, return the Complex_type. Otherwise,
// return NULL.
Complex_type*
complex_type()
{ return this->convert<Complex_type, TYPE_COMPLEX>(); }
const Complex_type*
complex_type() const
{ return this->convert<const Complex_type, TYPE_COMPLEX>(); }
// Return true if this is a boolean type.
bool
is_boolean_type() const
{ return this->base()->classification_ == TYPE_BOOLEAN; }
// Return true if this is an abstract boolean type.
bool
is_abstract_boolean_type() const
{ return this->classification_ == TYPE_BOOLEAN; }
// Return true if this is a string type.
bool
is_string_type() const
{ return this->base()->classification_ == TYPE_STRING; }
// Return true if this is an abstract string type.
bool
is_abstract_string_type() const
{ return this->classification_ == TYPE_STRING; }
// Return true if this is the sink type. This is the type of the
// blank identifier _.
bool
is_sink_type() const
{ return this->base()->classification_ == TYPE_SINK; }
// If this is a function type, return it. Otherwise, return NULL.
Function_type*
function_type()
{ return this->convert<Function_type, TYPE_FUNCTION>(); }
const Function_type*
function_type() const
{ return this->convert<const Function_type, TYPE_FUNCTION>(); }
// If this is a pointer type, return the type to which it points.
// Otherwise, return NULL.
Type*
points_to() const;
// If this is a pointer type, return the type to which it points.
// Otherwise, return the type itself.
Type*
deref()
{
Type* pt = this->points_to();
return pt != NULL ? pt : this;
}
const Type*
deref() const
{
const Type* pt = this->points_to();
return pt != NULL ? pt : this;
}
// Return true if this is the nil type. We don't use base() here,
// because this can be called during parse, and there is no way to
// name the nil type anyhow.
bool
is_nil_type() const
{ return this->classification_ == TYPE_NIL; }
// Return true if this is the predeclared constant nil being used as
// a type. This is what the parser produces for type switches which
// use "case nil".
bool
is_nil_constant_as_type() const;
// Return true if this is the return type of a function which
// returns multiple values.
bool
is_call_multiple_result_type() const
{ return this->base()->classification_ == TYPE_CALL_MULTIPLE_RESULT; }
// If this is a struct type, return it. Otherwise, return NULL.
Struct_type*
struct_type()
{ return this->convert<Struct_type, TYPE_STRUCT>(); }
const Struct_type*
struct_type() const
{ return this->convert<const Struct_type, TYPE_STRUCT>(); }
// If this is an array type, return it. Otherwise, return NULL.
Array_type*
array_type()
{ return this->convert<Array_type, TYPE_ARRAY>(); }
const Array_type*
array_type() const
{ return this->convert<const Array_type, TYPE_ARRAY>(); }
// Return whether if this is an open array type.
bool
is_open_array_type() const;
// If this is a map type, return it. Otherwise, return NULL.
Map_type*
map_type()
{ return this->convert<Map_type, TYPE_MAP>(); }
const Map_type*
map_type() const
{ return this->convert<const Map_type, TYPE_MAP>(); }
// If this is a channel type, return it. Otherwise, return NULL.
Channel_type*
channel_type()
{ return this->convert<Channel_type, TYPE_CHANNEL>(); }
const Channel_type*
channel_type() const
{ return this->convert<const Channel_type, TYPE_CHANNEL>(); }
// If this is an interface type, return it. Otherwise, return NULL.
Interface_type*
interface_type()
{ return this->convert<Interface_type, TYPE_INTERFACE>(); }
const Interface_type*
interface_type() const
{ return this->convert<const Interface_type, TYPE_INTERFACE>(); }
// If this is a named type, return it. Otherwise, return NULL.
Named_type*
named_type();
const Named_type*
named_type() const;
// If this is a forward declaration, return it. Otherwise, return
// NULL.
Forward_declaration_type*
forward_declaration_type()
{ return this->convert_no_base<Forward_declaration_type, TYPE_FORWARD>(); }
const Forward_declaration_type*
forward_declaration_type() const
{
return this->convert_no_base<const Forward_declaration_type,
TYPE_FORWARD>();
}
// Return true if this type is not yet defined.
bool
is_undefined() const;
// Return true if this is the unsafe.pointer type. We currently
// represent that as pointer-to-void.
bool
is_unsafe_pointer_type() const
{ return this->points_to() != NULL && this->points_to()->is_void_type(); }
// Look for field or method NAME for TYPE. Return an expression for
// it, bound to EXPR.
static Expression*
bind_field_or_method(Gogo*, const Type* type, Expression* expr,
const std::string& name, source_location);
// Return true if NAME is an unexported field or method of TYPE.
static bool
is_unexported_field_or_method(Gogo*, const Type*, const std::string&,
std::vector<const Named_type*>*);
// This type was passed to the builtin function make. ARGS are the
// arguments passed to make after the type; this may be NULL if
// there were none. Issue any required errors.
bool
check_make_expression(Expression_list* args, source_location location)
{ return this->do_check_make_expression(args, location); }
// Convert the builtin named types.
static void
convert_builtin_named_types(Gogo*);
// Return a tree representing this type.
tree
get_tree(Gogo*);
// Return a tree representing a zero initialization for this type.
// This will be something like an INTEGER_CST or a CONSTRUCTOR. If
// IS_CLEAR is true, then the memory is known to be zeroed; in that
// case, this will return NULL if there is nothing to be done.
tree
get_init_tree(Gogo*, bool is_clear);
// Like get_init_tree, but passing in the type to use for the
// initializer.
tree
get_typed_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
{ return this->do_get_init_tree(gogo, type_tree, is_clear); }
// Return a tree for a make expression applied to this type.
tree
make_expression_tree(Translate_context* context, Expression_list* args,
source_location location)
{ return this->do_make_expression_tree(context, args, location); }
// Build a type descriptor entry for this type. Return a pointer to
// it.
tree
type_descriptor_pointer(Gogo* gogo);
// Return the type reflection string for this type.
std::string
reflection(Gogo*) const;
// Return a mangled name for the type. This is a name which can be
// used in assembler code. Identical types should have the same
// manged name.
std::string
mangled_name(Gogo*) const;
// Export the type.
void
export_type(Export* exp) const
{ this->do_export(exp); }
// Import a type.
static Type*
import_type(Import*);
protected:
Type(Type_classification);
// Functions implemented by the child class.
// Traverse the subtypes.
virtual int
do_traverse(Traverse*);
// Verify the type.
virtual bool
do_verify()
{ return true; }
virtual bool
do_has_pointer() const
{ return false; }
virtual unsigned int
do_hash_for_method(Gogo*) const;
virtual bool
do_check_make_expression(Expression_list* args, source_location);
virtual tree
do_get_tree(Gogo*) = 0;
virtual tree
do_get_init_tree(Gogo*, tree, bool) = 0;
virtual tree
do_make_expression_tree(Translate_context*, Expression_list*,
source_location);
virtual Expression*
do_type_descriptor(Gogo*, Named_type* name) = 0;
virtual void
do_reflection(Gogo*, std::string*) const = 0;
virtual void
do_mangled_name(Gogo*, std::string*) const = 0;
virtual void
do_export(Export*) const;
// Return whether an expression is an integer.
static bool
check_int_value(Expression*, const char*, source_location);
// Return whether a method expects a pointer as the receiver.
static bool
method_expects_pointer(const Named_object*);
// Finalize the methods for a type.
static void
finalize_methods(Gogo*, const Type*, source_location, Methods**);
// Return a method from a set of methods.
static Method*
method_function(const Methods*, const std::string& name,
bool* is_ambiguous);
// Return a composite literal for the type descriptor entry for a
// type.
static Expression*
type_descriptor(Gogo*, Type*);
// Return a composite literal for the type descriptor entry for
// TYPE, using NAME as the name of the type.
static Expression*
named_type_descriptor(Gogo*, Type* type, Named_type* name);
// Return a composite literal for a plain type descriptor for this
// type with the given kind and name.
Expression*
plain_type_descriptor(Gogo*, int runtime_type_kind, Named_type* name);
// Build a composite literal for the basic type descriptor.
Expression*
type_descriptor_constructor(Gogo*, int runtime_type_kind, Named_type*,
const Methods*, bool only_value_methods);
// Make a builtin struct type from a list of fields.
static Struct_type*
make_builtin_struct_type(int nfields, ...);
// Make a builtin named type.
static Named_type*
make_builtin_named_type(const char* name, Type* type);
// For the benefit of child class reflection string generation.
void
append_reflection(const Type* type, Gogo* gogo, std::string* ret) const
{ type->do_reflection(gogo, ret); }
// For the benefit of child class mangling.
void
append_mangled_name(const Type* type, Gogo* gogo, std::string* ret) const
{ type->do_mangled_name(gogo, ret); }
// Incorporate a string into a hash code.
static unsigned int
hash_string(const std::string&, unsigned int);
// Return a tree for the underlying type of a named type.
static tree
get_named_type_tree(Gogo* gogo, Type* base_type)
{ return base_type->get_tree_without_hash(gogo); }
private:
// Convert to the desired type classification, or return NULL. This
// is a controlled dynamic_cast.
template<typename Type_class, Type_classification type_classification>
Type_class*
convert()
{
Type* base = this->base();
return (base->classification_ == type_classification
? static_cast<Type_class*>(base)
: NULL);
}
template<typename Type_class, Type_classification type_classification>
const Type_class*
convert() const
{
const Type* base = this->base();
return (base->classification_ == type_classification
? static_cast<Type_class*>(base)
: NULL);
}
template<typename Type_class, Type_classification type_classification>
Type_class*
convert_no_base()
{
return (this->classification_ == type_classification
? static_cast<Type_class*>(this)
: NULL);
}
template<typename Type_class, Type_classification type_classification>
const Type_class*
convert_no_base() const
{
return (this->classification_ == type_classification
? static_cast<Type_class*>(this)
: NULL);
}
// Get the hash and equality functions for a type.
void
type_functions(const char** hash_fn, const char** equal_fn) const;
// Build a composite literal for the uncommon type information.
Expression*
uncommon_type_constructor(Gogo*, Type* uncommon_type,
Named_type*, const Methods*,
bool only_value_methods) const;
// Build a composite literal for the methods.
Expression*
methods_constructor(Gogo*, Type* methods_type, const Methods*,
bool only_value_methods) const;
// Build a composite literal for one method.
Expression*
method_constructor(Gogo*, Type* method_type, const std::string& name,
const Method*) const;
static tree
build_receive_return_type(tree type);
// A hash table we use to avoid infinite recursion.
typedef Unordered_set_hash(const Named_type*, Type_hash_identical,
Type_identical) Types_seen;
// Add all methods for TYPE to the list of methods for THIS.
static void
add_methods_for_type(const Type* type, const Method::Field_indexes*,
unsigned int depth, bool, bool, Types_seen*,
Methods**);
static void
add_local_methods_for_type(const Named_type* type,
const Method::Field_indexes*,
unsigned int depth, bool, bool, Methods**);
static void
add_embedded_methods_for_type(const Type* type,
const Method::Field_indexes*,
unsigned int depth, bool, bool, Types_seen*,
Methods**);
static void
add_interface_methods_for_type(const Type* type,
const Method::Field_indexes*,
unsigned int depth, Methods**);
// Build stub methods for a type.
static void
build_stub_methods(Gogo*, const Type* type, const Methods* methods,
source_location);
static void
build_one_stub_method(Gogo*, Method*, const char* receiver_name,
const Typed_identifier_list*, bool is_varargs,
source_location);
static Expression*
apply_field_indexes(Expression*, const Method::Field_indexes*,
source_location);
// Look for a field or method named NAME in TYPE.
static bool
find_field_or_method(const Type* type, const std::string& name,
bool receiver_can_be_pointer,
std::vector<const Named_type*>*, int* level,
bool* is_method, bool* found_pointer_method,
std::string* ambig1, std::string* ambig2);
// Get a tree for a type without looking in the hash table for
// identical types.
tree
get_tree_without_hash(Gogo*);
// A mapping from Type to tree, used to ensure that the GIMPLE
// representation of identical types is identical.
typedef Unordered_map_hash(const Type*, tree, Type_hash_identical,
Type_identical) Type_trees;
static Type_trees type_trees;
// A list of builtin named types.
static std::vector<Named_type*> named_builtin_types;
// The type classification.
Type_classification classification_;
// The tree representation of the type, once it has been determined.
tree tree_;
// The decl for the type descriptor for this type. This starts out
// as NULL and is filled in as needed.
tree type_descriptor_decl_;
};
// Type hash table operations.
class Type_hash_identical
{
public:
unsigned int
operator()(const Type* type) const
{ return type->hash_for_method(NULL); }
};
class Type_identical
{
public:
bool
operator()(const Type* t1, const Type* t2) const
{ return Type::are_identical(t1, t2, false, NULL); }
};
// An identifier with a type.
class Typed_identifier
{
public:
Typed_identifier(const std::string& name, Type* type,
source_location location)
: name_(name), type_(type), location_(location)
{ }
// Get the name.
const std::string&
name() const
{ return this->name_; }
// Get the type.
Type*
type() const
{ return this->type_; }
// Return the location where the name was seen. This is not always
// meaningful.
source_location
location() const
{ return this->location_; }
// Set the type--sometimes we see the identifier before the type.
void
set_type(Type* type)
{
gcc_assert(this->type_ == NULL || type->is_error_type());
this->type_ = type;
}
private:
// Identifier name.
std::string name_;
// Type.
Type* type_;
// The location where the name was seen.
source_location location_;
};
// A list of Typed_identifiers.
class Typed_identifier_list
{
public:
Typed_identifier_list()
: entries_()
{ }
// Whether the list is empty.
bool
empty() const
{ return this->entries_.empty(); }
// Return the number of entries in the list.
size_t
size() const
{ return this->entries_.size(); }
// Add an entry to the end of the list.
void
push_back(const Typed_identifier& td)
{ this->entries_.push_back(td); }
// Remove an entry from the end of the list.
void
pop_back()
{ this->entries_.pop_back(); }
// Set the type of entry I to TYPE.
void
set_type(size_t i, Type* type)
{
gcc_assert(i < this->entries_.size());
this->entries_[i].set_type(type);
}
// Sort the entries by name.
void
sort_by_name();
// Traverse types.
int
traverse(Traverse*);
// Return the first and last elements.
Typed_identifier&
front()
{ return this->entries_.front(); }
const Typed_identifier&
front() const
{ return this->entries_.front(); }
Typed_identifier&
back()
{ return this->entries_.back(); }
const Typed_identifier&
back() const
{ return this->entries_.back(); }
const Typed_identifier&
at(size_t i) const
{ return this->entries_.at(i); }
void
set(size_t i, const Typed_identifier& t)
{ this->entries_.at(i) = t; }
void
resize(size_t c)
{
gcc_assert(c <= this->entries_.size());
this->entries_.resize(c, Typed_identifier("", NULL, UNKNOWN_LOCATION));
}
// Iterators.
typedef std::vector<Typed_identifier>::iterator iterator;
typedef std::vector<Typed_identifier>::const_iterator const_iterator;
iterator
begin()
{ return this->entries_.begin(); }
const_iterator
begin() const
{ return this->entries_.begin(); }
iterator
end()
{ return this->entries_.end(); }
const_iterator
end() const
{ return this->entries_.end(); }
// Return a copy of this list. This returns an independent copy of
// the vector, but does not copy the types.
Typed_identifier_list*
copy() const;
private:
std::vector<Typed_identifier> entries_;
};
// The type of an integer.
class Integer_type : public Type
{
public:
// Create a new integer type.
static Named_type*
create_integer_type(const char* name, bool is_unsigned, int bits,
int runtime_type_kind);
// Look up an existing integer type.
static Named_type*
lookup_integer_type(const char* name);
// Create an abstract integer type.
static Integer_type*
create_abstract_integer_type();
// Whether this is an abstract integer type.
bool
is_abstract() const
{ return this->is_abstract_; }
// Whether this is an unsigned type.
bool
is_unsigned() const
{ return this->is_unsigned_; }
// The number of bits.
int
bits() const
{ return this->bits_; }
// Whether this type is the same as T.
bool
is_identical(const Integer_type* t) const;
protected:
unsigned int
do_hash_for_method(Gogo*) const;
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo*, tree, bool);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
private:
Integer_type(bool is_abstract, bool is_unsigned, int bits,
int runtime_type_kind)
: Type(TYPE_INTEGER),
is_abstract_(is_abstract), is_unsigned_(is_unsigned), bits_(bits),
runtime_type_kind_(runtime_type_kind)
{ }
// Map names of integer types to the types themselves.
typedef std::map<std::string, Named_type*> Named_integer_types;
static Named_integer_types named_integer_types;
// True if this is an abstract type.
bool is_abstract_;
// True if this is an unsigned type.
bool is_unsigned_;
// The number of bits.
int bits_;
// The runtime type code used in the type descriptor for this type.
int runtime_type_kind_;
};
// The type of a floating point number.
class Float_type : public Type
{
public:
// Create a new float type.
static Named_type*
create_float_type(const char* name, int bits, int runtime_type_kind);
// Look up an existing float type.
static Named_type*
lookup_float_type(const char* name);
// Create an abstract float type.
static Float_type*
create_abstract_float_type();
// Whether this is an abstract float type.
bool
is_abstract() const
{ return this->is_abstract_; }
// The number of bits.
int
bits() const
{ return this->bits_; }
// Whether this type is the same as T.
bool
is_identical(const Float_type* t) const;
// Return a tree for this type without using a Gogo*.
tree
type_tree() const;
protected:
unsigned int
do_hash_for_method(Gogo*) const;
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo*, tree, bool);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
private:
Float_type(bool is_abstract, int bits, int runtime_type_kind)
: Type(TYPE_FLOAT),
is_abstract_(is_abstract), bits_(bits),
runtime_type_kind_(runtime_type_kind)
{ }
// Map names of float types to the types themselves.
typedef std::map<std::string, Named_type*> Named_float_types;
static Named_float_types named_float_types;
// True if this is an abstract type.
bool is_abstract_;
// The number of bits in the floating point value.
int bits_;
// The runtime type code used in the type descriptor for this type.
int runtime_type_kind_;
};
// The type of a complex number.
class Complex_type : public Type
{
public:
// Create a new complex type.
static Named_type*
create_complex_type(const char* name, int bits, int runtime_type_kind);
// Look up an existing complex type.
static Named_type*
lookup_complex_type(const char* name);
// Create an abstract complex type.
static Complex_type*
create_abstract_complex_type();
// Whether this is an abstract complex type.
bool
is_abstract() const
{ return this->is_abstract_; }
// The number of bits: 64 or 128.
int bits() const
{ return this->bits_; }
// Whether this type is the same as T.
bool
is_identical(const Complex_type* t) const;
// Return a tree for this type without using a Gogo*.
tree
type_tree() const;
protected:
unsigned int
do_hash_for_method(Gogo*) const;
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo*, tree, bool);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
private:
Complex_type(bool is_abstract, int bits, int runtime_type_kind)
: Type(TYPE_COMPLEX),
is_abstract_(is_abstract), bits_(bits),
runtime_type_kind_(runtime_type_kind)
{ }
// Map names of complex types to the types themselves.
typedef std::map<std::string, Named_type*> Named_complex_types;
static Named_complex_types named_complex_types;
// True if this is an abstract type.
bool is_abstract_;
// The number of bits in the complex value--64 or 128.
int bits_;
// The runtime type code used in the type descriptor for this type.
int runtime_type_kind_;
};
// The type of a string.
class String_type : public Type
{
public:
String_type()
: Type(TYPE_STRING)
{ }
// Return a tree for the length of STRING.
static tree
length_tree(Gogo*, tree string);
// Return a tree which points to the bytes of STRING.
static tree
bytes_tree(Gogo*, tree string);
protected:
bool
do_has_pointer() const
{ return true; }
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo* gogo, tree, bool);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string* ret) const;
private:
// The named string type.
static Named_type* string_type_;
};
// The type of a function.
class Function_type : public Type
{
public:
Function_type(Typed_identifier* receiver, Typed_identifier_list* parameters,
Typed_identifier_list* results, source_location location)
: Type(TYPE_FUNCTION),
receiver_(receiver), parameters_(parameters), results_(results),
location_(location), is_varargs_(false), is_builtin_(false)
{ }
// Get the receiver.
const Typed_identifier*
receiver() const
{ return this->receiver_; }
// Get the return names and types.
const Typed_identifier_list*
results() const
{ return this->results_; }
// Get the parameter names and types.
const Typed_identifier_list*
parameters() const
{ return this->parameters_; }
// Whether this is a varargs function.
bool
is_varargs() const
{ return this->is_varargs_; }
// Whether this is a builtin function.
bool
is_builtin() const
{ return this->is_builtin_; }
// The location where this type was defined.
source_location
location() const
{ return this->location_; }
// Return whether this is a method type.
bool
is_method() const
{ return this->receiver_ != NULL; }
// Whether T is a valid redeclaration of this type. This is called
// when a function is declared more than once.
bool
is_valid_redeclaration(const Function_type* t, std::string*) const;
// Whether this type is the same as T.
bool
is_identical(const Function_type* t, bool ignore_receiver,
bool errors_are_identical, std::string*) const;
// Record that this is a varargs function.
void
set_is_varargs()
{ this->is_varargs_ = true; }
// Record that this is a builtin function.
void
set_is_builtin()
{ this->is_builtin_ = true; }
// Import a function type.
static Function_type*
do_import(Import*);
// Return a copy of this type without a receiver. This is only
// valid for a method type.
Function_type*
copy_without_receiver() const;
// Return a copy of this type with a receiver. This is used when an
// interface method is attached to a named or struct type.
Function_type*
copy_with_receiver(Type*) const;
static Type*
make_function_type_descriptor_type();
protected:
int
do_traverse(Traverse*);
// A trampoline function has a pointer which matters for GC.
bool
do_has_pointer() const
{ return true; }
unsigned int
do_hash_for_method(Gogo*) const;
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo*, tree, bool);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
void
do_export(Export*) const;
private:
Expression*
type_descriptor_params(Type*, const Typed_identifier*,
const Typed_identifier_list*);
// The receiver name and type. This will be NULL for a normal
// function, non-NULL for a method.
Typed_identifier* receiver_;
// The parameter names and types.
Typed_identifier_list* parameters_;
// The result names and types. This will be NULL if no result was
// specified.
Typed_identifier_list* results_;
// The location where this type was defined. This exists solely to
// give a location for the fields of the struct if this function
// returns multiple values.
source_location location_;
// Whether this function takes a variable number of arguments.
bool is_varargs_;
// Whether this is a special builtin function which can not simply
// be called. This is used for len, cap, etc.
bool is_builtin_;
};
// The type of a pointer.
class Pointer_type : public Type
{
public:
Pointer_type(Type* to_type)
: Type(TYPE_POINTER),
to_type_(to_type)
{}
Type*
points_to() const
{ return this->to_type_; }
// Import a pointer type.
static Pointer_type*
do_import(Import*);
static Type*
make_pointer_type_descriptor_type();
protected:
int
do_traverse(Traverse*);
bool
do_has_pointer() const
{ return true; }
unsigned int
do_hash_for_method(Gogo*) const;
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo*, tree, bool);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
void
do_export(Export*) const;
private:
// The type to which this type points.
Type* to_type_;
};
// The type of a field in a struct.
class Struct_field
{
public:
explicit Struct_field(const Typed_identifier& typed_identifier)
: typed_identifier_(typed_identifier), tag_(NULL)
{ }
// The field name.
const std::string&
field_name() const;
// The field type.
Type*
type() const
{ return this->typed_identifier_.type(); }
// The field location.
source_location
location() const
{ return this->typed_identifier_.location(); }
// Whether the field has a tag.
bool
has_tag() const
{ return this->tag_ != NULL; }
// The tag.
const std::string&
tag() const
{
gcc_assert(this->tag_ != NULL);
return *this->tag_;
}
// Whether this is an anonymous field.
bool
is_anonymous() const
{ return this->typed_identifier_.name().empty(); }
// Set the tag. FIXME: This is never freed.
void
set_tag(const std::string& tag)
{ this->tag_ = new std::string(tag); }
// Set the type. This is only used in error cases.
void
set_type(Type* type)
{ this->typed_identifier_.set_type(type); }
private:
// The field name, type, and location.
Typed_identifier typed_identifier_;
// The field tag. This is NULL if the field has no tag.
std::string* tag_;
};
// A list of struct fields.
class Struct_field_list
{
public:
Struct_field_list()
: entries_()
{ }
// Whether the list is empty.
bool
empty() const
{ return this->entries_.empty(); }
// Return the number of entries.
size_t
size() const
{ return this->entries_.size(); }
// Add an entry to the end of the list.
void
push_back(const Struct_field& sf)
{ this->entries_.push_back(sf); }
// Index into the list.
const Struct_field&
at(size_t i) const
{ return this->entries_.at(i); }
// Last entry in list.
Struct_field&
back()
{ return this->entries_.back(); }
// Iterators.
typedef std::vector<Struct_field>::iterator iterator;
typedef std::vector<Struct_field>::const_iterator const_iterator;
iterator
begin()
{ return this->entries_.begin(); }
const_iterator
begin() const
{ return this->entries_.begin(); }
iterator
end()
{ return this->entries_.end(); }
const_iterator
end() const
{ return this->entries_.end(); }
private:
std::vector<Struct_field> entries_;
};
// The type of a struct.
class Struct_type : public Type
{
public:
Struct_type(Struct_field_list* fields, source_location location)
: Type(TYPE_STRUCT),
fields_(fields), location_(location), all_methods_(NULL)
{ }
// Return the field NAME. This only looks at local fields, not at
// embedded types. If the field is found, and PINDEX is not NULL,
// this sets *PINDEX to the field index. If the field is not found,
// this returns NULL.
const Struct_field*
find_local_field(const std::string& name, unsigned int *pindex) const;
// Return the field number INDEX.
const Struct_field*
field(unsigned int index) const
{ return &this->fields_->at(index); }
// Get the struct fields.
const Struct_field_list*
fields() const
{ return this->fields_; }
// Return the number of fields.
size_t
field_count() const
{ return this->fields_->size(); }
// Push a new field onto the end of the struct. This is used when
// building a closure variable.
void
push_field(const Struct_field& sf)
{ this->fields_->push_back(sf); }
// Return an expression referring to field NAME in STRUCT_EXPR, or
// NULL if there is no field with that name.
Field_reference_expression*
field_reference(Expression* struct_expr, const std::string& name,
source_location) const;
// Return the total number of fields, including embedded fields.
// This is the number of values which can appear in a conversion to
// this type.
unsigned int
total_field_count() const;
// Whether this type is identical with T.
bool
is_identical(const Struct_type* t, bool errors_are_identical) const;
// Whether this struct type has any hidden fields. This returns
// true if any fields have hidden names, or if any non-pointer
// anonymous fields have types with hidden fields.
bool
struct_has_hidden_fields(const Named_type* within, std::string*) const;
// Return whether NAME is a local field which is not exported. This
// is only used for better error reporting.
bool
is_unexported_local_field(Gogo*, const std::string& name) const;
// If this is an unnamed struct, build the complete list of methods,
// including those from anonymous fields, and build methods stubs if
// needed.
void
finalize_methods(Gogo*);
// Return whether this type has any methods. This should only be
// called after the finalize_methods pass.
bool
has_any_methods() const
{ return this->all_methods_ != NULL; }
// Return the methods for tihs type. This should only be called
// after the finalize_methods pass.
const Methods*
methods() const
{ return this->all_methods_; }
// Return the method to use for NAME. This returns NULL if there is
// no such method or if the method is ambiguous. When it returns
// NULL, this sets *IS_AMBIGUOUS if the method name is ambiguous.
Method*
method_function(const std::string& name, bool* is_ambiguous) const;
// Traverse just the field types of a struct type.
int
traverse_field_types(Traverse* traverse)
{ return this->do_traverse(traverse); }
// Import a struct type.
static Struct_type*
do_import(Import*);
// Fill in the fields for a named struct type.
tree
fill_in_tree(Gogo*, tree);
static Type*
make_struct_type_descriptor_type();
protected:
int
do_traverse(Traverse*);
bool
do_verify();
bool
do_has_pointer() const;
unsigned int
do_hash_for_method(Gogo*) const;
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo*, tree, bool);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
void
do_export(Export*) const;
private:
// Used to avoid infinite loops in field_reference_depth.
struct Saw_named_type
{
Saw_named_type* next;
Named_type* nt;
};
Field_reference_expression*
field_reference_depth(Expression* struct_expr, const std::string& name,
source_location, Saw_named_type*,
unsigned int* depth) const;
// The fields of the struct.
Struct_field_list* fields_;
// The place where the struct was declared.
source_location location_;
// If this struct is unnamed, a list of methods.
Methods* all_methods_;
};
// The type of an array.
class Array_type : public Type
{
public:
Array_type(Type* element_type, Expression* length)
: Type(TYPE_ARRAY),
element_type_(element_type), length_(length), length_tree_(NULL)
{ }
// Return the element type.
Type*
element_type() const
{ return this->element_type_; }
// Return the length. This will return NULL for an open array.
Expression*
length() const
{ return this->length_; }
// Whether this type is identical with T.
bool
is_identical(const Array_type* t, bool errors_are_identical) const;
// Whether this type has any hidden fields.
bool
array_has_hidden_fields(const Named_type* within, std::string* reason) const
{ return this->element_type_->has_hidden_fields(within, reason); }
// Return a tree for the pointer to the values in an array.
tree
value_pointer_tree(Gogo*, tree array) const;
// Return a tree for the length of an array with this type.
tree
length_tree(Gogo*, tree array);
// Return a tree for the capacity of an array with this type.
tree
capacity_tree(Gogo*, tree array);
// Import an array type.
static Array_type*
do_import(Import*);
// Fill in the fields for a named array type.
tree
fill_in_array_tree(Gogo*, tree);
// Fill in the fields for a named slice type.
tree
fill_in_slice_tree(Gogo*, tree);
static Type*
make_array_type_descriptor_type();
static Type*
make_slice_type_descriptor_type();
protected:
int
do_traverse(Traverse* traverse);
bool
do_verify();
bool
do_has_pointer() const
{
return this->length_ == NULL || this->element_type_->has_pointer();
}
unsigned int
do_hash_for_method(Gogo*) const;
bool
do_check_make_expression(Expression_list*, source_location);
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo*, tree, bool);
tree
do_make_expression_tree(Translate_context*, Expression_list*,
source_location);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
void
do_export(Export*) const;
private:
bool
verify_length();
tree
get_length_tree(Gogo*);
Expression*
array_type_descriptor(Gogo*, Named_type*);
Expression*
slice_type_descriptor(Gogo*, Named_type*);
// The type of elements of the array.
Type* element_type_;
// The number of elements. This may be NULL.
Expression* length_;
// The length as a tree. We only want to compute this once.
tree length_tree_;
};
// The type of a map.
class Map_type : public Type
{
public:
Map_type(Type* key_type, Type* val_type, source_location location)
: Type(TYPE_MAP),
key_type_(key_type), val_type_(val_type), location_(location)
{ }
// Return the key type.
Type*
key_type() const
{ return this->key_type_; }
// Return the value type.
Type*
val_type() const
{ return this->val_type_; }
// Whether this type is identical with T.
bool
is_identical(const Map_type* t, bool errors_are_identical) const;
// Import a map type.
static Map_type*
do_import(Import*);
static Type*
make_map_type_descriptor_type();
protected:
int
do_traverse(Traverse*);
bool
do_verify();
bool
do_has_pointer() const
{ return true; }
unsigned int
do_hash_for_method(Gogo*) const;
bool
do_check_make_expression(Expression_list*, source_location);
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo*, tree, bool);
tree
do_make_expression_tree(Translate_context*, Expression_list*,
source_location);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
void
do_export(Export*) const;
private:
// The key type.
Type* key_type_;
// The value type.
Type* val_type_;
// Where the type was defined.
source_location location_;
};
// The type of a channel.
class Channel_type : public Type
{
public:
Channel_type(bool may_send, bool may_receive, Type* element_type)
: Type(TYPE_CHANNEL),
may_send_(may_send), may_receive_(may_receive),
element_type_(element_type)
{ gcc_assert(may_send || may_receive); }
// Whether this channel can send data.
bool
may_send() const
{ return this->may_send_; }
// Whether this channel can receive data.
bool
may_receive() const
{ return this->may_receive_; }
// The type of the values that may be sent on this channel. This is
// NULL if any type may be sent.
Type*
element_type() const
{ return this->element_type_; }
// Whether this type is identical with T.
bool
is_identical(const Channel_type* t, bool errors_are_identical) const;
// Import a channel type.
static Channel_type*
do_import(Import*);
static Type*
make_chan_type_descriptor_type();
protected:
int
do_traverse(Traverse* traverse)
{ return Type::traverse(this->element_type_, traverse); }
bool
do_has_pointer() const
{ return true; }
unsigned int
do_hash_for_method(Gogo*) const;
bool
do_check_make_expression(Expression_list*, source_location);
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo*, tree, bool);
tree
do_make_expression_tree(Translate_context*, Expression_list*,
source_location);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
void
do_export(Export*) const;
private:
// Whether this channel can send data.
bool may_send_;
// Whether this channel can receive data.
bool may_receive_;
// The types of elements which may be sent on this channel. If this
// is NULL, it means that any type may be sent.
Type* element_type_;
};
// An interface type.
class Interface_type : public Type
{
public:
Interface_type(Typed_identifier_list* methods, source_location location)
: Type(TYPE_INTERFACE),
methods_(methods), location_(location)
{ gcc_assert(methods == NULL || !methods->empty()); }
// The location where the interface type was defined.
source_location
location() const
{ return this->location_; }
// Return whether this is an empty interface.
bool
is_empty() const
{ return this->methods_ == NULL; }
// Return the list of methods. This will return NULL for an empty
// interface.
const Typed_identifier_list*
methods() const
{ return this->methods_; }
// Return the number of methods.
size_t
method_count() const
{ return this->methods_ == NULL ? 0 : this->methods_->size(); }
// Return the method NAME, or NULL.
const Typed_identifier*
find_method(const std::string& name) const;
// Return the zero-based index of method NAME.
size_t
method_index(const std::string& name) const;
// Finalize the methods. This handles interface inheritance.
void
finalize_methods();
// Return true if T implements this interface. If this returns
// false, and REASON is not NULL, it sets *REASON to the reason that
// it fails.
bool
implements_interface(const Type* t, std::string* reason) const;
// Whether this type is identical with T. REASON is as in
// implements_interface.
bool
is_identical(const Interface_type* t, bool errors_are_identical) const;
// Whether we can assign T to this type. is_identical is known to
// be false.
bool
is_compatible_for_assign(const Interface_type*, std::string* reason) const;
// Return whether NAME is a method which is not exported. This is
// only used for better error reporting.
bool
is_unexported_method(Gogo*, const std::string& name) const;
// Import an interface type.
static Interface_type*
do_import(Import*);
// Make a struct for an empty interface type.
static tree
empty_type_tree(Gogo*);
// Make a struct for non-empty interface type.
static tree
non_empty_type_tree(source_location);
// Fill in the fields for a named interface type.
tree
fill_in_tree(Gogo*, tree);
static Type*
make_interface_type_descriptor_type();
protected:
int
do_traverse(Traverse*);
bool
do_has_pointer() const
{ return true; }
unsigned int
do_hash_for_method(Gogo*) const;
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo* gogo, tree, bool);
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string*) const;
void
do_export(Export*) const;
private:
// The list of methods associated with the interface. This will be
// NULL for the empty interface.
Typed_identifier_list* methods_;
// The location where the interface was defined.
source_location location_;
};
// The value we keep for a named type. This lets us get the right
// name when we convert to trees. Note that we don't actually keep
// the name here; the name is in the Named_object which points to
// this. This object exists to hold a unique tree which represents
// the type.
class Named_type : public Type
{
public:
Named_type(Named_object* named_object, Type* type, source_location location)
: Type(TYPE_NAMED),
named_object_(named_object), in_function_(NULL), type_(type),
local_methods_(NULL), all_methods_(NULL),
interface_method_tables_(NULL), pointer_interface_method_tables_(NULL),
location_(location), named_tree_(NULL), dependencies_(),
is_visible_(true), is_error_(false), is_converted_(false),
is_circular_(false), seen_(0)
{ }
// Return the associated Named_object. This holds the actual name.
Named_object*
named_object()
{ return this->named_object_; }
const Named_object*
named_object() const
{ return this->named_object_; }
// Set the Named_object. This is used when we see a type
// declaration followed by a type.
void
set_named_object(Named_object* no)
{ this->named_object_ = no; }
// Return the function in which this type is defined. This will
// return NULL for a type defined in global scope.
const Named_object*
in_function() const
{ return this->in_function_; }
// Set the function in which this type is defined.
void
set_in_function(Named_object* f)
{ this->in_function_ = f; }
// Return the name of the type.
const std::string&
name() const;
// Return the name of the type for an error message. The difference
// is that if the type is defined in a different package, this will
// return PACKAGE.NAME.
std::string
message_name() const;
// Return the underlying type.
Type*
real_type()
{ return this->type_; }
const Type*
real_type() const
{ return this->type_; }
// Return the location.
source_location
location() const
{ return this->location_; }
// Whether this type is visible. This only matters when parsing.
bool
is_visible() const
{ return this->is_visible_; }
// Mark this type as visible.
void
set_is_visible()
{ this->is_visible_ = true; }
// Mark this type as invisible.
void
clear_is_visible()
{ this->is_visible_ = false; }
// Whether this is a builtin type.
bool
is_builtin() const
{ return this->location_ == BUILTINS_LOCATION; }
// Whether this is a circular type: a pointer or function type that
// refers to itself, which is not possible in C.
bool
is_circular() const
{ return this->is_circular_; }
// Return the base type for this type.
Type*
named_base();
const Type*
named_base() const;
// Return whether this is an error type.
bool
is_named_error_type() const;
// Add a method to this type.
Named_object*
add_method(const std::string& name, Function*);
// Add a method declaration to this type.
Named_object*
add_method_declaration(const std::string& name, Package* package,
Function_type* type, source_location location);
// Add an existing method--one defined before the type itself was
// defined--to a type.
void
add_existing_method(Named_object*);
// Look up a local method.
Named_object*
find_local_method(const std::string& name) const;
// Return the list of local methods.
const Bindings*
local_methods() const
{ return this->local_methods_; }
// Build the complete list of methods, including those from
// anonymous fields, and build method stubs if needed.
void
finalize_methods(Gogo*);
// Return whether this type has any methods. This should only be
// called after the finalize_methods pass.
bool
has_any_methods() const
{ return this->all_methods_ != NULL; }
// Return the methods for this type. This should only be called
// after the finalized_methods pass.
const Methods*
methods() const
{ return this->all_methods_; }
// Return the method to use for NAME. This returns NULL if there is
// no such method or if the method is ambiguous. When it returns
// NULL, this sets *IS_AMBIGUOUS if the method name is ambiguous.
Method*
method_function(const std::string& name, bool *is_ambiguous) const;
// Return whether NAME is a known field or method which is not
// exported. This is only used for better error reporting.
bool
is_unexported_local_method(Gogo*, const std::string& name) const;
// Return a pointer to the interface method table for this type for
// the interface INTERFACE. If IS_POINTER is true, set the type
// descriptor to a pointer to this type, otherwise set it to this
// type.
tree
interface_method_table(Gogo*, const Interface_type* interface,
bool is_pointer);
// Whether this type has any hidden fields.
bool
named_type_has_hidden_fields(std::string* reason) const;
// Note that a type must be converted to the backend representation
// before we convert this type.
void
add_dependency(Named_type* nt)
{ this->dependencies_.push_back(nt); }
// Export the type.
void
export_named_type(Export*, const std::string& name) const;
// Import a named type.
static void
import_named_type(Import*, Named_type**);
// Initial conversion to backend representation.
void
convert(Gogo*);
protected:
int
do_traverse(Traverse* traverse)
{ return Type::traverse(this->type_, traverse); }
bool
do_verify();
bool
do_has_pointer() const;
unsigned int
do_hash_for_method(Gogo*) const;
bool
do_check_make_expression(Expression_list* args, source_location location)
{ return this->type_->check_make_expression(args, location); }
tree
do_get_tree(Gogo*);
tree
do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
{ return this->type_->get_typed_init_tree(gogo, type_tree, is_clear); }
tree
do_make_expression_tree(Translate_context* context, Expression_list* args,
source_location location)
{ return this->type_->make_expression_tree(context, args, location); }
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string* ret) const;
void
do_export(Export*) const;
private:
// Create the placeholder during conversion.
void
create_placeholder(Gogo*);
// A mapping from interfaces to the associated interface method
// tables for this type. This maps to a decl.
typedef Unordered_map_hash(const Interface_type*, tree, Type_hash_identical,
Type_identical) Interface_method_tables;
// A pointer back to the Named_object for this type.
Named_object* named_object_;
// If this type is defined in a function, a pointer back to the
// function in which it is defined.
Named_object* in_function_;
// The actual type.
Type* type_;
// The list of methods defined for this type. Any named type can
// have methods.
Bindings* local_methods_;
// The full list of methods for this type, including methods
// declared for anonymous fields.
Methods* all_methods_;
// A mapping from interfaces to the associated interface method
// tables for this type.
Interface_method_tables* interface_method_tables_;
// A mapping from interfaces to the associated interface method
// tables for pointers to this type.
Interface_method_tables* pointer_interface_method_tables_;
// The location where this type was defined.
source_location location_;
// The tree for this type while converting to GENERIC. This is used
// to avoid endless recursion when a named type refers to itself.
tree named_tree_;
// A list of types which must be converted to the backend
// representation before this type can be converted. This is for
// cases like
// type S1 { p *S2 }
// type S2 { s S1 }
// where we can't convert S2 to the backend representation unless we
// have converted S1.
std::vector<Named_type*> dependencies_;
// Whether this type is visible. This is false if this type was
// created because it was referenced by an imported object, but the
// type itself was not exported. This will always be true for types
// created in the current package.
bool is_visible_;
// Whether this type is erroneous.
bool is_error_;
// Whether this type has been converted to the backend
// representation.
bool is_converted_;
// Whether this is a pointer or function type which refers to the
// type itself.
bool is_circular_;
// In a recursive operation such as has_hidden_fields, this flag is
// used to prevent infinite recursion when a type refers to itself.
// This is mutable because it is always reset to false when the
// function exits.
mutable int seen_;
};
// A forward declaration. This handles a type which has been declared
// but not defined.
class Forward_declaration_type : public Type
{
public:
Forward_declaration_type(Named_object* named_object);
// The named object associated with this type declaration. This
// will be resolved.
Named_object*
named_object();
const Named_object*
named_object() const;
// Return the name of the type.
const std::string&
name() const;
// Return the type to which this points. Give an error if the type
// has not yet been defined.
Type*
real_type();
const Type*
real_type() const;
// Whether the base type has been defined.
bool
is_defined() const;
// Add a method to this type.
Named_object*
add_method(const std::string& name, Function*);
// Add a method declaration to this type.
Named_object*
add_method_declaration(const std::string& name, Function_type*,
source_location);
protected:
int
do_traverse(Traverse* traverse);
bool
do_has_pointer() const
{ return this->real_type()->has_pointer(); }
unsigned int
do_hash_for_method(Gogo* gogo) const
{ return this->real_type()->hash_for_method(gogo); }
bool
do_check_make_expression(Expression_list* args, source_location location)
{ return this->base()->check_make_expression(args, location); }
tree
do_get_tree(Gogo* gogo);
tree
do_get_init_tree(Gogo* gogo, tree type_tree, bool is_clear)
{ return this->base()->get_typed_init_tree(gogo, type_tree, is_clear); }
tree
do_make_expression_tree(Translate_context* context, Expression_list* args,
source_location location)
{ return this->base()->make_expression_tree(context, args, location); }
Expression*
do_type_descriptor(Gogo*, Named_type*);
void
do_reflection(Gogo*, std::string*) const;
void
do_mangled_name(Gogo*, std::string* ret) const;
void
do_export(Export*) const;
private:
// Issue a warning about a use of an undefined type.
void
warn() const;
// The type declaration.
Named_object* named_object_;
// Whether we have issued a warning about this type.
mutable bool warned_;
};
// The Type_context struct describes what we expect for the type of an
// expression.
struct Type_context
{
// The exact type we expect, if known. This may be NULL.
Type* type;
// Whether an abstract type is permitted.
bool may_be_abstract;
// Constructors.
Type_context()
: type(NULL), may_be_abstract(false)
{ }
Type_context(Type* a_type, bool a_may_be_abstract)
: type(a_type), may_be_abstract(a_may_be_abstract)
{ }
};
#endif // !defined(GO_TYPES_H)
|