summaryrefslogtreecommitdiff
path: root/gcc/graphds.c
blob: 4ee71dff904d485fd501540042c338290a0d8ef3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/* Graph representation and manipulation functions.
   Copyright (C) 2007
   Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "obstack.h"
#include "bitmap.h"
#include "vec.h"
#include "vecprim.h"
#include "graphds.h"

/* Dumps graph G into F.  */

void
dump_graph (FILE *f, struct graph *g)
{
  int i;
  struct graph_edge *e;

  for (i = 0; i < g->n_vertices; i++)
    {
      if (!g->vertices[i].pred
	  && !g->vertices[i].succ)
	continue;

      fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
      for (e = g->vertices[i].pred; e; e = e->pred_next)
	fprintf (f, " %d", e->src);
      fprintf (f, "\n");

      fprintf (f, "\t->");
      for (e = g->vertices[i].succ; e; e = e->succ_next)
	fprintf (f, " %d", e->dest);
      fprintf (f, "\n");
    }
}

/* Creates a new graph with N_VERTICES vertices.  */

struct graph *
new_graph (int n_vertices)
{
  struct graph *g = XNEW (struct graph);

  g->n_vertices = n_vertices;
  g->vertices = XCNEWVEC (struct vertex, n_vertices);

  return g;
}

/* Adds an edge from F to T to graph G.  The new edge is returned.  */

struct graph_edge *
add_edge (struct graph *g, int f, int t)
{
  struct graph_edge *e = XNEW (struct graph_edge);
  struct vertex *vf = &g->vertices[f], *vt = &g->vertices[t];


  e->src = f;
  e->dest = t;

  e->pred_next = vt->pred;
  vt->pred = e;

  e->succ_next = vf->succ;
  vf->succ = e;

  return e;
}

/* Moves all the edges incident with U to V.  */

void
identify_vertices (struct graph *g, int v, int u)
{
  struct vertex *vv = &g->vertices[v];
  struct vertex *uu = &g->vertices[u];
  struct graph_edge *e, *next;

  for (e = uu->succ; e; e = next)
    {
      next = e->succ_next;

      e->src = v;
      e->succ_next = vv->succ;
      vv->succ = e;
    }
  uu->succ = NULL;

  for (e = uu->pred; e; e = next)
    {
      next = e->pred_next;

      e->dest = v;
      e->pred_next = vv->pred;
      vv->pred = e;
    }
  uu->pred = NULL;
}

/* Helper function for graphds_dfs.  Returns the source vertex of E, in the
   direction given by FORWARD.  */

static inline int
dfs_edge_src (struct graph_edge *e, bool forward)
{
  return forward ? e->src : e->dest;
}

/* Helper function for graphds_dfs.  Returns the destination vertex of E, in
   the direction given by FORWARD.  */

static inline int
dfs_edge_dest (struct graph_edge *e, bool forward)
{
  return forward ? e->dest : e->src;
}

/* Helper function for graphds_dfs.  Returns the first edge after E (including
   E), in the graph direction given by FORWARD, that belongs to SUBGRAPH.  */

static inline struct graph_edge *
foll_in_subgraph (struct graph_edge *e, bool forward, bitmap subgraph)
{
  int d;

  if (!subgraph)
    return e;

  while (e)
    {
      d = dfs_edge_dest (e, forward);
      if (bitmap_bit_p (subgraph, d))
	return e;

      e = forward ? e->succ_next : e->pred_next;
    }

  return e;
}

/* Helper function for graphds_dfs.  Select the first edge from V in G, in the
   direction given by FORWARD, that belongs to SUBGRAPH.  */

static inline struct graph_edge *
dfs_fst_edge (struct graph *g, int v, bool forward, bitmap subgraph)
{
  struct graph_edge *e;

  e = (forward ? g->vertices[v].succ : g->vertices[v].pred);
  return foll_in_subgraph (e, forward, subgraph);
}

/* Helper function for graphds_dfs.  Returns the next edge after E, in the
   graph direction given by FORWARD, that belongs to SUBGRAPH.  */

static inline struct graph_edge *
dfs_next_edge (struct graph_edge *e, bool forward, bitmap subgraph)
{
  return foll_in_subgraph (forward ? e->succ_next : e->pred_next,
			   forward, subgraph);
}

/* Runs dfs search over vertices of G, from NQ vertices in queue QS.
   The vertices in postorder are stored into QT.  If FORWARD is false,
   backward dfs is run.  If SUBGRAPH is not NULL, it specifies the
   subgraph of G to run DFS on.  Returns the number of the components
   of the graph (number of the restarts of DFS).  */

int
graphds_dfs (struct graph *g, int *qs, int nq, VEC (int, heap) **qt,
	     bool forward, bitmap subgraph)
{
  int i, tick = 0, v, comp = 0, top;
  struct graph_edge *e;
  struct graph_edge **stack = XNEWVEC (struct graph_edge *, g->n_vertices);
  bitmap_iterator bi;
  unsigned av;

  if (subgraph)
    {
      EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, av, bi)
	{
	  g->vertices[av].component = -1;
	  g->vertices[av].post = -1;
	}
    }
  else
    {
      for (i = 0; i < g->n_vertices; i++)
	{
	  g->vertices[i].component = -1;
	  g->vertices[i].post = -1;
	}
    }

  for (i = 0; i < nq; i++)
    {
      v = qs[i];
      if (g->vertices[v].post != -1)
	continue;

      g->vertices[v].component = comp++;
      e = dfs_fst_edge (g, v, forward, subgraph);
      top = 0;

      while (1)
	{
	  while (e)
	    {
	      if (g->vertices[dfs_edge_dest (e, forward)].component
		  == -1)
		break;
	      e = dfs_next_edge (e, forward, subgraph);
	    }

	  if (!e)
	    {
	      if (qt)
		VEC_safe_push (int, heap, *qt, v);
	      g->vertices[v].post = tick++;

	      if (!top)
		break;

	      e = stack[--top];
	      v = dfs_edge_src (e, forward);
	      e = dfs_next_edge (e, forward, subgraph);
	      continue;
	    }

	  stack[top++] = e;
	  v = dfs_edge_dest (e, forward);
	  e = dfs_fst_edge (g, v, forward, subgraph);
	  g->vertices[v].component = comp - 1;
	}
    }

  free (stack);

  return comp;
}

/* Determines the strongly connected components of G, using the algorithm of
   Tarjan -- first determine the postorder dfs numbering in reversed graph,
   then run the dfs on the original graph in the order given by decreasing
   numbers assigned by the previous pass.  If SUBGRAPH is not NULL, it
   specifies the subgraph of G whose strongly connected components we want
   to determine.

   After running this function, v->component is the number of the strongly
   connected component for each vertex of G.  Returns the number of the
   sccs of G.  */

int
graphds_scc (struct graph *g, bitmap subgraph)
{
  int *queue = XNEWVEC (int, g->n_vertices);
  VEC (int, heap) *postorder = NULL;
  int nq, i, comp;
  unsigned v;
  bitmap_iterator bi;

  if (subgraph)
    {
      nq = 0;
      EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, v, bi)
	{
	  queue[nq++] = v;
	}
    }
  else
    {
      for (i = 0; i < g->n_vertices; i++)
	queue[i] = i;
      nq = g->n_vertices;
    }

  graphds_dfs (g, queue, nq, &postorder, false, subgraph);
  gcc_assert (VEC_length (int, postorder) == (unsigned) nq);

  for (i = 0; i < nq; i++)
    queue[i] = VEC_index (int, postorder, nq - i - 1);
  comp = graphds_dfs (g, queue, nq, NULL, true, subgraph);

  free (queue);
  VEC_free (int, heap, postorder);

  return comp;
}

/* Runs CALLBACK for all edges in G.  */

void
for_each_edge (struct graph *g, graphds_edge_callback callback)
{
  struct graph_edge *e;
  int i;

  for (i = 0; i < g->n_vertices; i++)
    for (e = g->vertices[i].succ; e; e = e->succ_next)
      callback (g, e);
}

/* Releases the memory occupied by G.  */

void
free_graph (struct graph *g)
{
  struct graph_edge *e, *n;
  struct vertex *v;
  int i;

  for (i = 0; i < g->n_vertices; i++)
    {
      v = &g->vertices[i];
      for (e = v->succ; e; e = n)
	{
	  n = e->succ_next;
	  free (e);
	}
    }
  free (g->vertices);
  free (g);
}

/* Returns the nearest common ancestor of X and Y in tree whose parent
   links are given by PARENT.  MARKS is the array used to mark the
   vertices of the tree, and MARK is the number currently used as a mark.  */

static int
tree_nca (int x, int y, int *parent, int *marks, int mark)
{
  if (x == -1 || x == y)
    return y;

  /* We climb with X and Y up the tree, marking the visited nodes.  When
     we first arrive to a marked node, it is the common ancestor.  */
  marks[x] = mark;
  marks[y] = mark;

  while (1)
    {
      x = parent[x];
      if (x == -1)
	break;
      if (marks[x] == mark)
	return x;
      marks[x] = mark;

      y = parent[y];
      if (y == -1)
	break;
      if (marks[y] == mark)
	return y;
      marks[y] = mark;
    }

  /* If we reached the root with one of the vertices, continue
     with the other one till we reach the marked part of the
     tree.  */
  if (x == -1)
    {
      for (y = parent[y]; marks[y] != mark; y = parent[y])
	continue;

      return y;
    }
  else
    {
      for (x = parent[x]; marks[x] != mark; x = parent[x])
	continue;

      return x;
    }
}

/* Determines the dominance tree of G (stored in the PARENT, SON and BROTHER
   arrays), where the entry node is ENTRY.  */

void
graphds_domtree (struct graph *g, int entry,
		 int *parent, int *son, int *brother)
{
  VEC (int, heap) *postorder = NULL;
  int *marks = XCNEWVEC (int, g->n_vertices);
  int mark = 1, i, v, idom;
  bool changed = true;
  struct graph_edge *e;

  /* We use a slight modification of the standard iterative algorithm, as
     described in

     K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
	Algorithm

     sort vertices in reverse postorder
     foreach v
       dom(v) = everything
     dom(entry) = entry;

     while (anything changes)
       foreach v
         dom(v) = {v} union (intersection of dom(p) over all predecessors of v)

     The sets dom(v) are represented by the parent links in the current version
     of the dominance tree.  */

  for (i = 0; i < g->n_vertices; i++)
    {
      parent[i] = -1;
      son[i] = -1;
      brother[i] = -1;
    }
  graphds_dfs (g, &entry, 1, &postorder, true, NULL);
  gcc_assert (VEC_length (int, postorder) == (unsigned) g->n_vertices);
  gcc_assert (VEC_index (int, postorder, g->n_vertices - 1) == entry);

  while (changed)
    {
      changed = false;

      for (i = g->n_vertices - 2; i >= 0; i--)
	{
	  v = VEC_index (int, postorder, i);
	  idom = -1;
	  for (e = g->vertices[v].pred; e; e = e->pred_next)
	    {
	      if (e->src != entry
		  && parent[e->src] == -1)
		continue;

	      idom = tree_nca (idom, e->src, parent, marks, mark++);
	    }

	  if (idom != parent[v])
	    {
	      parent[v] = idom;
	      changed = true;
	    }
	}
    }

  free (marks);
  VEC_free (int, heap, postorder);

  for (i = 0; i < g->n_vertices; i++)
    if (parent[i] != -1)
      {
	brother[i] = son[parent[i]];
	son[parent[i]] = i;
      }
}