1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
|
/* Instruction scheduling pass. This file computes dependencies between
instructions.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
and currently maintained by, Jim Wilson (wilson@cygnus.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "diagnostic-core.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "recog.h"
#include "sched-int.h"
#include "params.h"
#include "cselib.h"
#include "ira.h"
#include "target.h"
#ifdef INSN_SCHEDULING
#ifdef ENABLE_CHECKING
#define CHECK (true)
#else
#define CHECK (false)
#endif
/* In deps->last_pending_memory_flush marks JUMP_INSNs that weren't
added to the list because of flush_pending_lists, stands just
for itself and not for any other pending memory reads/writes. */
#define NON_FLUSH_JUMP_KIND REG_DEP_ANTI
#define NON_FLUSH_JUMP_P(x) (REG_NOTE_KIND (x) == NON_FLUSH_JUMP_KIND)
/* Holds current parameters for the dependency analyzer. */
struct sched_deps_info_def *sched_deps_info;
/* The data is specific to the Haifa scheduler. */
VEC(haifa_deps_insn_data_def, heap) *h_d_i_d = NULL;
/* Return the major type present in the DS. */
enum reg_note
ds_to_dk (ds_t ds)
{
if (ds & DEP_TRUE)
return REG_DEP_TRUE;
if (ds & DEP_OUTPUT)
return REG_DEP_OUTPUT;
gcc_assert (ds & DEP_ANTI);
return REG_DEP_ANTI;
}
/* Return equivalent dep_status. */
ds_t
dk_to_ds (enum reg_note dk)
{
switch (dk)
{
case REG_DEP_TRUE:
return DEP_TRUE;
case REG_DEP_OUTPUT:
return DEP_OUTPUT;
default:
gcc_assert (dk == REG_DEP_ANTI);
return DEP_ANTI;
}
}
/* Functions to operate with dependence information container - dep_t. */
/* Init DEP with the arguments. */
void
init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
{
DEP_PRO (dep) = pro;
DEP_CON (dep) = con;
DEP_TYPE (dep) = type;
DEP_STATUS (dep) = ds;
}
/* Init DEP with the arguments.
While most of the scheduler (including targets) only need the major type
of the dependency, it is convenient to hide full dep_status from them. */
void
init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
{
ds_t ds;
if ((current_sched_info->flags & USE_DEPS_LIST))
ds = dk_to_ds (kind);
else
ds = -1;
init_dep_1 (dep, pro, con, kind, ds);
}
/* Make a copy of FROM in TO. */
static void
copy_dep (dep_t to, dep_t from)
{
memcpy (to, from, sizeof (*to));
}
static void dump_ds (FILE *, ds_t);
/* Define flags for dump_dep (). */
/* Dump producer of the dependence. */
#define DUMP_DEP_PRO (2)
/* Dump consumer of the dependence. */
#define DUMP_DEP_CON (4)
/* Dump type of the dependence. */
#define DUMP_DEP_TYPE (8)
/* Dump status of the dependence. */
#define DUMP_DEP_STATUS (16)
/* Dump all information about the dependence. */
#define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
|DUMP_DEP_STATUS)
/* Dump DEP to DUMP.
FLAGS is a bit mask specifying what information about DEP needs
to be printed.
If FLAGS has the very first bit set, then dump all information about DEP
and propagate this bit into the callee dump functions. */
static void
dump_dep (FILE *dump, dep_t dep, int flags)
{
if (flags & 1)
flags |= DUMP_DEP_ALL;
fprintf (dump, "<");
if (flags & DUMP_DEP_PRO)
fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
if (flags & DUMP_DEP_CON)
fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
if (flags & DUMP_DEP_TYPE)
{
char t;
enum reg_note type = DEP_TYPE (dep);
switch (type)
{
case REG_DEP_TRUE:
t = 't';
break;
case REG_DEP_OUTPUT:
t = 'o';
break;
case REG_DEP_ANTI:
t = 'a';
break;
default:
gcc_unreachable ();
break;
}
fprintf (dump, "%c; ", t);
}
if (flags & DUMP_DEP_STATUS)
{
if (current_sched_info->flags & USE_DEPS_LIST)
dump_ds (dump, DEP_STATUS (dep));
}
fprintf (dump, ">");
}
/* Default flags for dump_dep (). */
static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
/* Dump all fields of DEP to STDERR. */
void
sd_debug_dep (dep_t dep)
{
dump_dep (stderr, dep, 1);
fprintf (stderr, "\n");
}
/* Determine whether DEP is a dependency link of a non-debug insn on a
debug insn. */
static inline bool
depl_on_debug_p (dep_link_t dep)
{
return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
&& !DEBUG_INSN_P (DEP_LINK_CON (dep)));
}
/* Functions to operate with a single link from the dependencies lists -
dep_link_t. */
/* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
PREV_NEXT_P. */
static void
attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
{
dep_link_t next = *prev_nextp;
gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
&& DEP_LINK_NEXT (l) == NULL);
/* Init node being inserted. */
DEP_LINK_PREV_NEXTP (l) = prev_nextp;
DEP_LINK_NEXT (l) = next;
/* Fix next node. */
if (next != NULL)
{
gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
}
/* Fix prev node. */
*prev_nextp = l;
}
/* Add dep_link LINK to deps_list L. */
static void
add_to_deps_list (dep_link_t link, deps_list_t l)
{
attach_dep_link (link, &DEPS_LIST_FIRST (l));
/* Don't count debug deps. */
if (!depl_on_debug_p (link))
++DEPS_LIST_N_LINKS (l);
}
/* Detach dep_link L from the list. */
static void
detach_dep_link (dep_link_t l)
{
dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
dep_link_t next = DEP_LINK_NEXT (l);
*prev_nextp = next;
if (next != NULL)
DEP_LINK_PREV_NEXTP (next) = prev_nextp;
DEP_LINK_PREV_NEXTP (l) = NULL;
DEP_LINK_NEXT (l) = NULL;
}
/* Remove link LINK from list LIST. */
static void
remove_from_deps_list (dep_link_t link, deps_list_t list)
{
detach_dep_link (link);
/* Don't count debug deps. */
if (!depl_on_debug_p (link))
--DEPS_LIST_N_LINKS (list);
}
/* Move link LINK from list FROM to list TO. */
static void
move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
{
remove_from_deps_list (link, from);
add_to_deps_list (link, to);
}
/* Return true of LINK is not attached to any list. */
static bool
dep_link_is_detached_p (dep_link_t link)
{
return DEP_LINK_PREV_NEXTP (link) == NULL;
}
/* Pool to hold all dependency nodes (dep_node_t). */
static alloc_pool dn_pool;
/* Number of dep_nodes out there. */
static int dn_pool_diff = 0;
/* Create a dep_node. */
static dep_node_t
create_dep_node (void)
{
dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
dep_link_t back = DEP_NODE_BACK (n);
dep_link_t forw = DEP_NODE_FORW (n);
DEP_LINK_NODE (back) = n;
DEP_LINK_NEXT (back) = NULL;
DEP_LINK_PREV_NEXTP (back) = NULL;
DEP_LINK_NODE (forw) = n;
DEP_LINK_NEXT (forw) = NULL;
DEP_LINK_PREV_NEXTP (forw) = NULL;
++dn_pool_diff;
return n;
}
/* Delete dep_node N. N must not be connected to any deps_list. */
static void
delete_dep_node (dep_node_t n)
{
gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
&& dep_link_is_detached_p (DEP_NODE_FORW (n)));
--dn_pool_diff;
pool_free (dn_pool, n);
}
/* Pool to hold dependencies lists (deps_list_t). */
static alloc_pool dl_pool;
/* Number of deps_lists out there. */
static int dl_pool_diff = 0;
/* Functions to operate with dependences lists - deps_list_t. */
/* Return true if list L is empty. */
static bool
deps_list_empty_p (deps_list_t l)
{
return DEPS_LIST_N_LINKS (l) == 0;
}
/* Create a new deps_list. */
static deps_list_t
create_deps_list (void)
{
deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
DEPS_LIST_FIRST (l) = NULL;
DEPS_LIST_N_LINKS (l) = 0;
++dl_pool_diff;
return l;
}
/* Free deps_list L. */
static void
free_deps_list (deps_list_t l)
{
gcc_assert (deps_list_empty_p (l));
--dl_pool_diff;
pool_free (dl_pool, l);
}
/* Return true if there is no dep_nodes and deps_lists out there.
After the region is scheduled all the dependency nodes and lists
should [generally] be returned to pool. */
bool
deps_pools_are_empty_p (void)
{
return dn_pool_diff == 0 && dl_pool_diff == 0;
}
/* Remove all elements from L. */
static void
clear_deps_list (deps_list_t l)
{
do
{
dep_link_t link = DEPS_LIST_FIRST (l);
if (link == NULL)
break;
remove_from_deps_list (link, l);
}
while (1);
}
static regset reg_pending_sets;
static regset reg_pending_clobbers;
static regset reg_pending_uses;
static enum reg_pending_barrier_mode reg_pending_barrier;
/* Hard registers implicitly clobbered or used (or may be implicitly
clobbered or used) by the currently analyzed insn. For example,
insn in its constraint has one register class. Even if there is
currently no hard register in the insn, the particular hard
register will be in the insn after reload pass because the
constraint requires it. */
static HARD_REG_SET implicit_reg_pending_clobbers;
static HARD_REG_SET implicit_reg_pending_uses;
/* To speed up the test for duplicate dependency links we keep a
record of dependencies created by add_dependence when the average
number of instructions in a basic block is very large.
Studies have shown that there is typically around 5 instructions between
branches for typical C code. So we can make a guess that the average
basic block is approximately 5 instructions long; we will choose 100X
the average size as a very large basic block.
Each insn has associated bitmaps for its dependencies. Each bitmap
has enough entries to represent a dependency on any other insn in
the insn chain. All bitmap for true dependencies cache is
allocated then the rest two ones are also allocated. */
static bitmap_head *true_dependency_cache = NULL;
static bitmap_head *output_dependency_cache = NULL;
static bitmap_head *anti_dependency_cache = NULL;
static bitmap_head *spec_dependency_cache = NULL;
static int cache_size;
static int deps_may_trap_p (const_rtx);
static void add_dependence_list (rtx, rtx, int, enum reg_note);
static void add_dependence_list_and_free (struct deps_desc *, rtx,
rtx *, int, enum reg_note);
static void delete_all_dependences (rtx);
static void fixup_sched_groups (rtx);
static void flush_pending_lists (struct deps_desc *, rtx, int, int);
static void sched_analyze_1 (struct deps_desc *, rtx, rtx);
static void sched_analyze_2 (struct deps_desc *, rtx, rtx);
static void sched_analyze_insn (struct deps_desc *, rtx, rtx);
static bool sched_has_condition_p (const_rtx);
static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
rtx, rtx);
static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
#ifdef ENABLE_CHECKING
static void check_dep (dep_t, bool);
#endif
/* Return nonzero if a load of the memory reference MEM can cause a trap. */
static int
deps_may_trap_p (const_rtx mem)
{
const_rtx addr = XEXP (mem, 0);
if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
{
const_rtx t = get_reg_known_value (REGNO (addr));
if (t)
addr = t;
}
return rtx_addr_can_trap_p (addr);
}
/* Find the condition under which INSN is executed. If REV is not NULL,
it is set to TRUE when the returned comparison should be reversed
to get the actual condition. */
static rtx
sched_get_condition_with_rev (const_rtx insn, bool *rev)
{
rtx pat = PATTERN (insn);
rtx src;
if (pat == 0)
return 0;
if (rev)
*rev = false;
if (GET_CODE (pat) == COND_EXEC)
return COND_EXEC_TEST (pat);
if (!any_condjump_p (insn) || !onlyjump_p (insn))
return 0;
src = SET_SRC (pc_set (insn));
if (XEXP (src, 2) == pc_rtx)
return XEXP (src, 0);
else if (XEXP (src, 1) == pc_rtx)
{
rtx cond = XEXP (src, 0);
enum rtx_code revcode = reversed_comparison_code (cond, insn);
if (revcode == UNKNOWN)
return 0;
if (rev)
*rev = true;
return cond;
}
return 0;
}
/* True when we can find a condition under which INSN is executed. */
static bool
sched_has_condition_p (const_rtx insn)
{
return !! sched_get_condition_with_rev (insn, NULL);
}
/* Return nonzero if conditions COND1 and COND2 can never be both true. */
static int
conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
{
if (COMPARISON_P (cond1)
&& COMPARISON_P (cond2)
&& GET_CODE (cond1) ==
(rev1==rev2
? reversed_comparison_code (cond2, NULL)
: GET_CODE (cond2))
&& XEXP (cond1, 0) == XEXP (cond2, 0)
&& XEXP (cond1, 1) == XEXP (cond2, 1))
return 1;
return 0;
}
/* Return true if insn1 and insn2 can never depend on one another because
the conditions under which they are executed are mutually exclusive. */
bool
sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
{
rtx cond1, cond2;
bool rev1 = false, rev2 = false;
/* df doesn't handle conditional lifetimes entirely correctly;
calls mess up the conditional lifetimes. */
if (!CALL_P (insn1) && !CALL_P (insn2))
{
cond1 = sched_get_condition_with_rev (insn1, &rev1);
cond2 = sched_get_condition_with_rev (insn2, &rev2);
if (cond1 && cond2
&& conditions_mutex_p (cond1, cond2, rev1, rev2)
/* Make sure first instruction doesn't affect condition of second
instruction if switched. */
&& !modified_in_p (cond1, insn2)
/* Make sure second instruction doesn't affect condition of first
instruction if switched. */
&& !modified_in_p (cond2, insn1))
return true;
}
return false;
}
/* Return true if INSN can potentially be speculated with type DS. */
bool
sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
{
if (HAS_INTERNAL_DEP (insn))
return false;
if (!NONJUMP_INSN_P (insn))
return false;
if (SCHED_GROUP_P (insn))
return false;
if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
return false;
if (side_effects_p (PATTERN (insn)))
return false;
if (ds & BE_IN_SPEC)
/* The following instructions, which depend on a speculatively scheduled
instruction, cannot be speculatively scheduled along. */
{
if (may_trap_or_fault_p (PATTERN (insn)))
/* If instruction might fault, it cannot be speculatively scheduled.
For control speculation it's obvious why and for data speculation
it's because the insn might get wrong input if speculation
wasn't successful. */
return false;
if ((ds & BE_IN_DATA)
&& sched_has_condition_p (insn))
/* If this is a predicated instruction, then it cannot be
speculatively scheduled. See PR35659. */
return false;
}
return true;
}
/* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
This function is used to switch sd_iterator to the next list.
!!! For internal use only. Might consider moving it to sched-int.h. */
void
sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
deps_list_t *list_ptr, bool *resolved_p_ptr)
{
sd_list_types_def types = *types_ptr;
if (types & SD_LIST_HARD_BACK)
{
*list_ptr = INSN_HARD_BACK_DEPS (insn);
*resolved_p_ptr = false;
*types_ptr = types & ~SD_LIST_HARD_BACK;
}
else if (types & SD_LIST_SPEC_BACK)
{
*list_ptr = INSN_SPEC_BACK_DEPS (insn);
*resolved_p_ptr = false;
*types_ptr = types & ~SD_LIST_SPEC_BACK;
}
else if (types & SD_LIST_FORW)
{
*list_ptr = INSN_FORW_DEPS (insn);
*resolved_p_ptr = false;
*types_ptr = types & ~SD_LIST_FORW;
}
else if (types & SD_LIST_RES_BACK)
{
*list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
*resolved_p_ptr = true;
*types_ptr = types & ~SD_LIST_RES_BACK;
}
else if (types & SD_LIST_RES_FORW)
{
*list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
*resolved_p_ptr = true;
*types_ptr = types & ~SD_LIST_RES_FORW;
}
else
{
*list_ptr = NULL;
*resolved_p_ptr = false;
*types_ptr = SD_LIST_NONE;
}
}
/* Return the summary size of INSN's lists defined by LIST_TYPES. */
int
sd_lists_size (const_rtx insn, sd_list_types_def list_types)
{
int size = 0;
while (list_types != SD_LIST_NONE)
{
deps_list_t list;
bool resolved_p;
sd_next_list (insn, &list_types, &list, &resolved_p);
if (list)
size += DEPS_LIST_N_LINKS (list);
}
return size;
}
/* Return true if INSN's lists defined by LIST_TYPES are all empty. */
bool
sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
{
while (list_types != SD_LIST_NONE)
{
deps_list_t list;
bool resolved_p;
sd_next_list (insn, &list_types, &list, &resolved_p);
if (!deps_list_empty_p (list))
return false;
}
return true;
}
/* Initialize data for INSN. */
void
sd_init_insn (rtx insn)
{
INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
INSN_FORW_DEPS (insn) = create_deps_list ();
INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
/* ??? It would be nice to allocate dependency caches here. */
}
/* Free data for INSN. */
void
sd_finish_insn (rtx insn)
{
/* ??? It would be nice to deallocate dependency caches here. */
free_deps_list (INSN_HARD_BACK_DEPS (insn));
INSN_HARD_BACK_DEPS (insn) = NULL;
free_deps_list (INSN_SPEC_BACK_DEPS (insn));
INSN_SPEC_BACK_DEPS (insn) = NULL;
free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
INSN_RESOLVED_BACK_DEPS (insn) = NULL;
free_deps_list (INSN_FORW_DEPS (insn));
INSN_FORW_DEPS (insn) = NULL;
free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
INSN_RESOLVED_FORW_DEPS (insn) = NULL;
}
/* Find a dependency between producer PRO and consumer CON.
Search through resolved dependency lists if RESOLVED_P is true.
If no such dependency is found return NULL,
otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
with an iterator pointing to it. */
static dep_t
sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
sd_iterator_def *sd_it_ptr)
{
sd_list_types_def pro_list_type;
sd_list_types_def con_list_type;
sd_iterator_def sd_it;
dep_t dep;
bool found_p = false;
if (resolved_p)
{
pro_list_type = SD_LIST_RES_FORW;
con_list_type = SD_LIST_RES_BACK;
}
else
{
pro_list_type = SD_LIST_FORW;
con_list_type = SD_LIST_BACK;
}
/* Walk through either back list of INSN or forw list of ELEM
depending on which one is shorter. */
if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
{
/* Find the dep_link with producer PRO in consumer's back_deps. */
FOR_EACH_DEP (con, con_list_type, sd_it, dep)
if (DEP_PRO (dep) == pro)
{
found_p = true;
break;
}
}
else
{
/* Find the dep_link with consumer CON in producer's forw_deps. */
FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
if (DEP_CON (dep) == con)
{
found_p = true;
break;
}
}
if (found_p)
{
if (sd_it_ptr != NULL)
*sd_it_ptr = sd_it;
return dep;
}
return NULL;
}
/* Find a dependency between producer PRO and consumer CON.
Use dependency [if available] to check if dependency is present at all.
Search through resolved dependency lists if RESOLVED_P is true.
If the dependency or NULL if none found. */
dep_t
sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
{
if (true_dependency_cache != NULL)
/* Avoiding the list walk below can cut compile times dramatically
for some code. */
{
int elem_luid = INSN_LUID (pro);
int insn_luid = INSN_LUID (con);
gcc_assert (output_dependency_cache != NULL
&& anti_dependency_cache != NULL);
if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
&& !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
&& !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
return NULL;
}
return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
}
/* Add or update a dependence described by DEP.
MEM1 and MEM2, if non-null, correspond to memory locations in case of
data speculation.
The function returns a value indicating if an old entry has been changed
or a new entry has been added to insn's backward deps.
This function merely checks if producer and consumer is the same insn
and doesn't create a dep in this case. Actual manipulation of
dependence data structures is performed in add_or_update_dep_1. */
static enum DEPS_ADJUST_RESULT
maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
{
rtx elem = DEP_PRO (dep);
rtx insn = DEP_CON (dep);
gcc_assert (INSN_P (insn) && INSN_P (elem));
/* Don't depend an insn on itself. */
if (insn == elem)
{
if (sched_deps_info->generate_spec_deps)
/* INSN has an internal dependence, which we can't overcome. */
HAS_INTERNAL_DEP (insn) = 1;
return DEP_NODEP;
}
return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
}
/* Ask dependency caches what needs to be done for dependence DEP.
Return DEP_CREATED if new dependence should be created and there is no
need to try to find one searching the dependencies lists.
Return DEP_PRESENT if there already is a dependence described by DEP and
hence nothing is to be done.
Return DEP_CHANGED if there already is a dependence, but it should be
updated to incorporate additional information from DEP. */
static enum DEPS_ADJUST_RESULT
ask_dependency_caches (dep_t dep)
{
int elem_luid = INSN_LUID (DEP_PRO (dep));
int insn_luid = INSN_LUID (DEP_CON (dep));
gcc_assert (true_dependency_cache != NULL
&& output_dependency_cache != NULL
&& anti_dependency_cache != NULL);
if (!(current_sched_info->flags & USE_DEPS_LIST))
{
enum reg_note present_dep_type;
if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
present_dep_type = REG_DEP_TRUE;
else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
present_dep_type = REG_DEP_OUTPUT;
else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
present_dep_type = REG_DEP_ANTI;
else
/* There is no existing dep so it should be created. */
return DEP_CREATED;
if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
/* DEP does not add anything to the existing dependence. */
return DEP_PRESENT;
}
else
{
ds_t present_dep_types = 0;
if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
present_dep_types |= DEP_TRUE;
if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
present_dep_types |= DEP_OUTPUT;
if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
present_dep_types |= DEP_ANTI;
if (present_dep_types == 0)
/* There is no existing dep so it should be created. */
return DEP_CREATED;
if (!(current_sched_info->flags & DO_SPECULATION)
|| !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
{
if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
== present_dep_types)
/* DEP does not add anything to the existing dependence. */
return DEP_PRESENT;
}
else
{
/* Only true dependencies can be data speculative and
only anti dependencies can be control speculative. */
gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
== present_dep_types);
/* if (DEP is SPECULATIVE) then
..we should update DEP_STATUS
else
..we should reset existing dep to non-speculative. */
}
}
return DEP_CHANGED;
}
/* Set dependency caches according to DEP. */
static void
set_dependency_caches (dep_t dep)
{
int elem_luid = INSN_LUID (DEP_PRO (dep));
int insn_luid = INSN_LUID (DEP_CON (dep));
if (!(current_sched_info->flags & USE_DEPS_LIST))
{
switch (DEP_TYPE (dep))
{
case REG_DEP_TRUE:
bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
break;
case REG_DEP_OUTPUT:
bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
break;
case REG_DEP_ANTI:
bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
break;
default:
gcc_unreachable ();
}
}
else
{
ds_t ds = DEP_STATUS (dep);
if (ds & DEP_TRUE)
bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
if (ds & DEP_OUTPUT)
bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
if (ds & DEP_ANTI)
bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
if (ds & SPECULATIVE)
{
gcc_assert (current_sched_info->flags & DO_SPECULATION);
bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
}
}
}
/* Type of dependence DEP have changed from OLD_TYPE. Update dependency
caches accordingly. */
static void
update_dependency_caches (dep_t dep, enum reg_note old_type)
{
int elem_luid = INSN_LUID (DEP_PRO (dep));
int insn_luid = INSN_LUID (DEP_CON (dep));
/* Clear corresponding cache entry because type of the link
may have changed. Keep them if we use_deps_list. */
if (!(current_sched_info->flags & USE_DEPS_LIST))
{
switch (old_type)
{
case REG_DEP_OUTPUT:
bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
break;
case REG_DEP_ANTI:
bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
break;
default:
gcc_unreachable ();
}
}
set_dependency_caches (dep);
}
/* Convert a dependence pointed to by SD_IT to be non-speculative. */
static void
change_spec_dep_to_hard (sd_iterator_def sd_it)
{
dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
dep_link_t link = DEP_NODE_BACK (node);
dep_t dep = DEP_NODE_DEP (node);
rtx elem = DEP_PRO (dep);
rtx insn = DEP_CON (dep);
move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
DEP_STATUS (dep) &= ~SPECULATIVE;
if (true_dependency_cache != NULL)
/* Clear the cache entry. */
bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
INSN_LUID (elem));
}
/* Update DEP to incorporate information from NEW_DEP.
SD_IT points to DEP in case it should be moved to another list.
MEM1 and MEM2, if nonnull, correspond to memory locations in case if
data-speculative dependence should be updated. */
static enum DEPS_ADJUST_RESULT
update_dep (dep_t dep, dep_t new_dep,
sd_iterator_def sd_it ATTRIBUTE_UNUSED,
rtx mem1 ATTRIBUTE_UNUSED,
rtx mem2 ATTRIBUTE_UNUSED)
{
enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
enum reg_note old_type = DEP_TYPE (dep);
/* If this is a more restrictive type of dependence than the
existing one, then change the existing dependence to this
type. */
if ((int) DEP_TYPE (new_dep) < (int) old_type)
{
DEP_TYPE (dep) = DEP_TYPE (new_dep);
res = DEP_CHANGED;
}
if (current_sched_info->flags & USE_DEPS_LIST)
/* Update DEP_STATUS. */
{
ds_t dep_status = DEP_STATUS (dep);
ds_t ds = DEP_STATUS (new_dep);
ds_t new_status = ds | dep_status;
if (new_status & SPECULATIVE)
/* Either existing dep or a dep we're adding or both are
speculative. */
{
if (!(ds & SPECULATIVE)
|| !(dep_status & SPECULATIVE))
/* The new dep can't be speculative. */
{
new_status &= ~SPECULATIVE;
if (dep_status & SPECULATIVE)
/* The old dep was speculative, but now it
isn't. */
change_spec_dep_to_hard (sd_it);
}
else
{
/* Both are speculative. Merge probabilities. */
if (mem1 != NULL)
{
dw_t dw;
dw = estimate_dep_weak (mem1, mem2);
ds = set_dep_weak (ds, BEGIN_DATA, dw);
}
new_status = ds_merge (dep_status, ds);
}
}
ds = new_status;
if (dep_status != ds)
{
DEP_STATUS (dep) = ds;
res = DEP_CHANGED;
}
}
if (true_dependency_cache != NULL
&& res == DEP_CHANGED)
update_dependency_caches (dep, old_type);
return res;
}
/* Add or update a dependence described by DEP.
MEM1 and MEM2, if non-null, correspond to memory locations in case of
data speculation.
The function returns a value indicating if an old entry has been changed
or a new entry has been added to insn's backward deps or nothing has
been updated at all. */
static enum DEPS_ADJUST_RESULT
add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
{
bool maybe_present_p = true;
bool present_p = false;
gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
&& DEP_PRO (new_dep) != DEP_CON (new_dep));
#ifdef ENABLE_CHECKING
check_dep (new_dep, mem1 != NULL);
#endif
if (true_dependency_cache != NULL)
{
switch (ask_dependency_caches (new_dep))
{
case DEP_PRESENT:
return DEP_PRESENT;
case DEP_CHANGED:
maybe_present_p = true;
present_p = true;
break;
case DEP_CREATED:
maybe_present_p = false;
present_p = false;
break;
default:
gcc_unreachable ();
break;
}
}
/* Check that we don't already have this dependence. */
if (maybe_present_p)
{
dep_t present_dep;
sd_iterator_def sd_it;
gcc_assert (true_dependency_cache == NULL || present_p);
present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
DEP_CON (new_dep),
resolved_p, &sd_it);
if (present_dep != NULL)
/* We found an existing dependency between ELEM and INSN. */
return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
else
/* We didn't find a dep, it shouldn't present in the cache. */
gcc_assert (!present_p);
}
/* Might want to check one level of transitivity to save conses.
This check should be done in maybe_add_or_update_dep_1.
Since we made it to add_or_update_dep_1, we must create
(or update) a link. */
if (mem1 != NULL_RTX)
{
gcc_assert (sched_deps_info->generate_spec_deps);
DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
estimate_dep_weak (mem1, mem2));
}
sd_add_dep (new_dep, resolved_p);
return DEP_CREATED;
}
/* Initialize BACK_LIST_PTR with consumer's backward list and
FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
initialize with lists that hold resolved deps. */
static void
get_back_and_forw_lists (dep_t dep, bool resolved_p,
deps_list_t *back_list_ptr,
deps_list_t *forw_list_ptr)
{
rtx con = DEP_CON (dep);
if (!resolved_p)
{
if ((current_sched_info->flags & DO_SPECULATION)
&& (DEP_STATUS (dep) & SPECULATIVE))
*back_list_ptr = INSN_SPEC_BACK_DEPS (con);
else
*back_list_ptr = INSN_HARD_BACK_DEPS (con);
*forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
}
else
{
*back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
*forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
}
}
/* Add dependence described by DEP.
If RESOLVED_P is true treat the dependence as a resolved one. */
void
sd_add_dep (dep_t dep, bool resolved_p)
{
dep_node_t n = create_dep_node ();
deps_list_t con_back_deps;
deps_list_t pro_forw_deps;
rtx elem = DEP_PRO (dep);
rtx insn = DEP_CON (dep);
gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
if ((current_sched_info->flags & DO_SPECULATION)
&& !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
DEP_STATUS (dep) &= ~SPECULATIVE;
copy_dep (DEP_NODE_DEP (n), dep);
get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
#ifdef ENABLE_CHECKING
check_dep (dep, false);
#endif
add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
/* If we are adding a dependency to INSN's LOG_LINKs, then note that
in the bitmap caches of dependency information. */
if (true_dependency_cache != NULL)
set_dependency_caches (dep);
}
/* Add or update backward dependence between INSN and ELEM
with given type DEP_TYPE and dep_status DS.
This function is a convenience wrapper. */
enum DEPS_ADJUST_RESULT
sd_add_or_update_dep (dep_t dep, bool resolved_p)
{
return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
}
/* Resolved dependence pointed to by SD_IT.
SD_IT will advance to the next element. */
void
sd_resolve_dep (sd_iterator_def sd_it)
{
dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
dep_t dep = DEP_NODE_DEP (node);
rtx pro = DEP_PRO (dep);
rtx con = DEP_CON (dep);
if ((current_sched_info->flags & DO_SPECULATION)
&& (DEP_STATUS (dep) & SPECULATIVE))
move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
INSN_RESOLVED_BACK_DEPS (con));
else
move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
INSN_RESOLVED_BACK_DEPS (con));
move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
INSN_RESOLVED_FORW_DEPS (pro));
}
/* Make TO depend on all the FROM's producers.
If RESOLVED_P is true add dependencies to the resolved lists. */
void
sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
{
sd_list_types_def list_type;
sd_iterator_def sd_it;
dep_t dep;
list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
FOR_EACH_DEP (from, list_type, sd_it, dep)
{
dep_def _new_dep, *new_dep = &_new_dep;
copy_dep (new_dep, dep);
DEP_CON (new_dep) = to;
sd_add_dep (new_dep, resolved_p);
}
}
/* Remove a dependency referred to by SD_IT.
SD_IT will point to the next dependence after removal. */
void
sd_delete_dep (sd_iterator_def sd_it)
{
dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
dep_t dep = DEP_NODE_DEP (n);
rtx pro = DEP_PRO (dep);
rtx con = DEP_CON (dep);
deps_list_t con_back_deps;
deps_list_t pro_forw_deps;
if (true_dependency_cache != NULL)
{
int elem_luid = INSN_LUID (pro);
int insn_luid = INSN_LUID (con);
bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
if (current_sched_info->flags & DO_SPECULATION)
bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
}
get_back_and_forw_lists (dep, sd_it.resolved_p,
&con_back_deps, &pro_forw_deps);
remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
delete_dep_node (n);
}
/* Dump size of the lists. */
#define DUMP_LISTS_SIZE (2)
/* Dump dependencies of the lists. */
#define DUMP_LISTS_DEPS (4)
/* Dump all information about the lists. */
#define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
/* Dump deps_lists of INSN specified by TYPES to DUMP.
FLAGS is a bit mask specifying what information about the lists needs
to be printed.
If FLAGS has the very first bit set, then dump all information about
the lists and propagate this bit into the callee dump functions. */
static void
dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
{
sd_iterator_def sd_it;
dep_t dep;
int all;
all = (flags & 1);
if (all)
flags |= DUMP_LISTS_ALL;
fprintf (dump, "[");
if (flags & DUMP_LISTS_SIZE)
fprintf (dump, "%d; ", sd_lists_size (insn, types));
if (flags & DUMP_LISTS_DEPS)
{
FOR_EACH_DEP (insn, types, sd_it, dep)
{
dump_dep (dump, dep, dump_dep_flags | all);
fprintf (dump, " ");
}
}
}
/* Dump all information about deps_lists of INSN specified by TYPES
to STDERR. */
void
sd_debug_lists (rtx insn, sd_list_types_def types)
{
dump_lists (stderr, insn, types, 1);
fprintf (stderr, "\n");
}
/* A convenience wrapper to operate on an entire list. */
static void
add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type)
{
for (; list; list = XEXP (list, 1))
{
if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
add_dependence (insn, XEXP (list, 0), dep_type);
}
}
/* Similar, but free *LISTP at the same time, when the context
is not readonly. */
static void
add_dependence_list_and_free (struct deps_desc *deps, rtx insn, rtx *listp,
int uncond, enum reg_note dep_type)
{
rtx list, next;
/* We don't want to short-circuit dependencies involving debug
insns, because they may cause actual dependencies to be
disregarded. */
if (deps->readonly || DEBUG_INSN_P (insn))
{
add_dependence_list (insn, *listp, uncond, dep_type);
return;
}
for (list = *listp, *listp = NULL; list ; list = next)
{
next = XEXP (list, 1);
if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
add_dependence (insn, XEXP (list, 0), dep_type);
free_INSN_LIST_node (list);
}
}
/* Remove all occurences of INSN from LIST. Return the number of
occurences removed. */
static int
remove_from_dependence_list (rtx insn, rtx* listp)
{
int removed = 0;
while (*listp)
{
if (XEXP (*listp, 0) == insn)
{
remove_free_INSN_LIST_node (listp);
removed++;
continue;
}
listp = &XEXP (*listp, 1);
}
return removed;
}
/* Same as above, but process two lists at once. */
static int
remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
{
int removed = 0;
while (*listp)
{
if (XEXP (*listp, 0) == insn)
{
remove_free_INSN_LIST_node (listp);
remove_free_EXPR_LIST_node (exprp);
removed++;
continue;
}
listp = &XEXP (*listp, 1);
exprp = &XEXP (*exprp, 1);
}
return removed;
}
/* Clear all dependencies for an insn. */
static void
delete_all_dependences (rtx insn)
{
sd_iterator_def sd_it;
dep_t dep;
/* The below cycle can be optimized to clear the caches and back_deps
in one call but that would provoke duplication of code from
delete_dep (). */
for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
sd_iterator_cond (&sd_it, &dep);)
sd_delete_dep (sd_it);
}
/* All insns in a scheduling group except the first should only have
dependencies on the previous insn in the group. So we find the
first instruction in the scheduling group by walking the dependence
chains backwards. Then we add the dependencies for the group to
the previous nonnote insn. */
static void
fixup_sched_groups (rtx insn)
{
sd_iterator_def sd_it;
dep_t dep;
rtx prev_nonnote;
FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
{
rtx i = insn;
rtx pro = DEP_PRO (dep);
do
{
i = prev_nonnote_insn (i);
if (pro == i)
goto next_link;
} while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
if (! sched_insns_conditions_mutex_p (i, pro))
add_dependence (i, pro, DEP_TYPE (dep));
next_link:;
}
delete_all_dependences (insn);
prev_nonnote = prev_nonnote_nondebug_insn (insn);
if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
&& ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
}
/* Process an insn's memory dependencies. There are four kinds of
dependencies:
(0) read dependence: read follows read
(1) true dependence: read follows write
(2) output dependence: write follows write
(3) anti dependence: write follows read
We are careful to build only dependencies which actually exist, and
use transitivity to avoid building too many links. */
/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
The MEM is a memory reference contained within INSN, which we are saving
so that we can do memory aliasing on it. */
static void
add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
rtx insn, rtx mem)
{
rtx *insn_list;
rtx *mem_list;
rtx link;
gcc_assert (!deps->readonly);
if (read_p)
{
insn_list = &deps->pending_read_insns;
mem_list = &deps->pending_read_mems;
if (!DEBUG_INSN_P (insn))
deps->pending_read_list_length++;
}
else
{
insn_list = &deps->pending_write_insns;
mem_list = &deps->pending_write_mems;
deps->pending_write_list_length++;
}
link = alloc_INSN_LIST (insn, *insn_list);
*insn_list = link;
if (sched_deps_info->use_cselib)
{
mem = shallow_copy_rtx (mem);
XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0), GET_MODE (mem));
}
link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
*mem_list = link;
}
/* Make a dependency between every memory reference on the pending lists
and INSN, thus flushing the pending lists. FOR_READ is true if emitting
dependencies for a read operation, similarly with FOR_WRITE. */
static void
flush_pending_lists (struct deps_desc *deps, rtx insn, int for_read,
int for_write)
{
if (for_write)
{
add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1, REG_DEP_ANTI);
if (!deps->readonly)
{
free_EXPR_LIST_list (&deps->pending_read_mems);
deps->pending_read_list_length = 0;
}
}
add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
add_dependence_list_and_free (deps, insn,
&deps->last_pending_memory_flush, 1,
for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
if (!deps->readonly)
{
free_EXPR_LIST_list (&deps->pending_write_mems);
deps->pending_write_list_length = 0;
deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
deps->pending_flush_length = 1;
}
}
/* Instruction which dependencies we are analyzing. */
static rtx cur_insn = NULL_RTX;
/* Implement hooks for haifa scheduler. */
static void
haifa_start_insn (rtx insn)
{
gcc_assert (insn && !cur_insn);
cur_insn = insn;
}
static void
haifa_finish_insn (void)
{
cur_insn = NULL;
}
void
haifa_note_reg_set (int regno)
{
SET_REGNO_REG_SET (reg_pending_sets, regno);
}
void
haifa_note_reg_clobber (int regno)
{
SET_REGNO_REG_SET (reg_pending_clobbers, regno);
}
void
haifa_note_reg_use (int regno)
{
SET_REGNO_REG_SET (reg_pending_uses, regno);
}
static void
haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx pending_insn, ds_t ds)
{
if (!(ds & SPECULATIVE))
{
mem = NULL_RTX;
pending_mem = NULL_RTX;
}
else
gcc_assert (ds & BEGIN_DATA);
{
dep_def _dep, *dep = &_dep;
init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
current_sched_info->flags & USE_DEPS_LIST ? ds : -1);
maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
}
}
static void
haifa_note_dep (rtx elem, ds_t ds)
{
dep_def _dep;
dep_t dep = &_dep;
init_dep (dep, elem, cur_insn, ds_to_dt (ds));
maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
}
static void
note_reg_use (int r)
{
if (sched_deps_info->note_reg_use)
sched_deps_info->note_reg_use (r);
}
static void
note_reg_set (int r)
{
if (sched_deps_info->note_reg_set)
sched_deps_info->note_reg_set (r);
}
static void
note_reg_clobber (int r)
{
if (sched_deps_info->note_reg_clobber)
sched_deps_info->note_reg_clobber (r);
}
static void
note_mem_dep (rtx m1, rtx m2, rtx e, ds_t ds)
{
if (sched_deps_info->note_mem_dep)
sched_deps_info->note_mem_dep (m1, m2, e, ds);
}
static void
note_dep (rtx e, ds_t ds)
{
if (sched_deps_info->note_dep)
sched_deps_info->note_dep (e, ds);
}
/* Return corresponding to DS reg_note. */
enum reg_note
ds_to_dt (ds_t ds)
{
if (ds & DEP_TRUE)
return REG_DEP_TRUE;
else if (ds & DEP_OUTPUT)
return REG_DEP_OUTPUT;
else
{
gcc_assert (ds & DEP_ANTI);
return REG_DEP_ANTI;
}
}
/* Functions for computation of info needed for register pressure
sensitive insn scheduling. */
/* Allocate and return reg_use_data structure for REGNO and INSN. */
static struct reg_use_data *
create_insn_reg_use (int regno, rtx insn)
{
struct reg_use_data *use;
use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
use->regno = regno;
use->insn = insn;
use->next_insn_use = INSN_REG_USE_LIST (insn);
INSN_REG_USE_LIST (insn) = use;
return use;
}
/* Allocate and return reg_set_data structure for REGNO and INSN. */
static struct reg_set_data *
create_insn_reg_set (int regno, rtx insn)
{
struct reg_set_data *set;
set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
set->regno = regno;
set->insn = insn;
set->next_insn_set = INSN_REG_SET_LIST (insn);
INSN_REG_SET_LIST (insn) = set;
return set;
}
/* Set up insn register uses for INSN and dependency context DEPS. */
static void
setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
{
unsigned i;
reg_set_iterator rsi;
rtx list;
struct reg_use_data *use, *use2, *next;
struct deps_reg *reg_last;
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
{
if (i < FIRST_PSEUDO_REGISTER
&& TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
continue;
if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
&& ! REGNO_REG_SET_P (reg_pending_sets, i)
&& ! REGNO_REG_SET_P (reg_pending_clobbers, i))
/* Ignore use which is not dying. */
continue;
use = create_insn_reg_use (i, insn);
use->next_regno_use = use;
reg_last = &deps->reg_last[i];
/* Create the cycle list of uses. */
for (list = reg_last->uses; list; list = XEXP (list, 1))
{
use2 = create_insn_reg_use (i, XEXP (list, 0));
next = use->next_regno_use;
use->next_regno_use = use2;
use2->next_regno_use = next;
}
}
}
/* Register pressure info for the currently processed insn. */
static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
/* Return TRUE if INSN has the use structure for REGNO. */
static bool
insn_use_p (rtx insn, int regno)
{
struct reg_use_data *use;
for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
if (use->regno == regno)
return true;
return false;
}
/* Update the register pressure info after birth of pseudo register REGNO
in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
the register is in clobber or unused after the insn. */
static void
mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
{
int incr, new_incr;
enum reg_class cl;
gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
cl = sched_regno_cover_class[regno];
if (cl != NO_REGS)
{
incr = ira_reg_class_nregs[cl][PSEUDO_REGNO_MODE (regno)];
if (clobber_p)
{
new_incr = reg_pressure_info[cl].clobber_increase + incr;
reg_pressure_info[cl].clobber_increase = new_incr;
}
else if (unused_p)
{
new_incr = reg_pressure_info[cl].unused_set_increase + incr;
reg_pressure_info[cl].unused_set_increase = new_incr;
}
else
{
new_incr = reg_pressure_info[cl].set_increase + incr;
reg_pressure_info[cl].set_increase = new_incr;
if (! insn_use_p (insn, regno))
reg_pressure_info[cl].change += incr;
create_insn_reg_set (regno, insn);
}
gcc_assert (new_incr < (1 << INCREASE_BITS));
}
}
/* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
hard registers involved in the birth. */
static void
mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
bool clobber_p, bool unused_p)
{
enum reg_class cl;
int new_incr, last = regno + nregs;
while (regno < last)
{
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
{
cl = sched_regno_cover_class[regno];
if (cl != NO_REGS)
{
if (clobber_p)
{
new_incr = reg_pressure_info[cl].clobber_increase + 1;
reg_pressure_info[cl].clobber_increase = new_incr;
}
else if (unused_p)
{
new_incr = reg_pressure_info[cl].unused_set_increase + 1;
reg_pressure_info[cl].unused_set_increase = new_incr;
}
else
{
new_incr = reg_pressure_info[cl].set_increase + 1;
reg_pressure_info[cl].set_increase = new_incr;
if (! insn_use_p (insn, regno))
reg_pressure_info[cl].change += 1;
create_insn_reg_set (regno, insn);
}
gcc_assert (new_incr < (1 << INCREASE_BITS));
}
}
regno++;
}
}
/* Update the register pressure info after birth of pseudo or hard
register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
correspondingly that the register is in clobber or unused after the
insn. */
static void
mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
{
int regno;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (! REG_P (reg))
return;
regno = REGNO (reg);
if (regno < FIRST_PSEUDO_REGISTER)
mark_insn_hard_regno_birth (insn, regno,
hard_regno_nregs[regno][GET_MODE (reg)],
clobber_p, unused_p);
else
mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
}
/* Update the register pressure info after death of pseudo register
REGNO. */
static void
mark_pseudo_death (int regno)
{
int incr;
enum reg_class cl;
gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
cl = sched_regno_cover_class[regno];
if (cl != NO_REGS)
{
incr = ira_reg_class_nregs[cl][PSEUDO_REGNO_MODE (regno)];
reg_pressure_info[cl].change -= incr;
}
}
/* Like mark_pseudo_death except that NREGS saying how many hard
registers involved in the death. */
static void
mark_hard_regno_death (int regno, int nregs)
{
enum reg_class cl;
int last = regno + nregs;
while (regno < last)
{
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
{
cl = sched_regno_cover_class[regno];
if (cl != NO_REGS)
reg_pressure_info[cl].change -= 1;
}
regno++;
}
}
/* Update the register pressure info after death of pseudo or hard
register REG. */
static void
mark_reg_death (rtx reg)
{
int regno;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (! REG_P (reg))
return;
regno = REGNO (reg);
if (regno < FIRST_PSEUDO_REGISTER)
mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
else
mark_pseudo_death (regno);
}
/* Process SETTER of REG. DATA is an insn containing the setter. */
static void
mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
{
if (setter != NULL_RTX && GET_CODE (setter) != SET)
return;
mark_insn_reg_birth
((rtx) data, reg, false,
find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
}
/* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
static void
mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
{
if (GET_CODE (setter) == CLOBBER)
mark_insn_reg_birth ((rtx) data, reg, true, false);
}
/* Set up reg pressure info related to INSN. */
static void
setup_insn_reg_pressure_info (rtx insn)
{
int i, len;
enum reg_class cl;
static struct reg_pressure_data *pressure_info;
rtx link;
gcc_assert (sched_pressure_p);
if (! INSN_P (insn))
return;
for (i = 0; i < ira_reg_class_cover_size; i++)
{
cl = ira_reg_class_cover[i];
reg_pressure_info[cl].clobber_increase = 0;
reg_pressure_info[cl].set_increase = 0;
reg_pressure_info[cl].unused_set_increase = 0;
reg_pressure_info[cl].change = 0;
}
note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
note_stores (PATTERN (insn), mark_insn_reg_store, insn);
#ifdef AUTO_INC_DEC
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC)
mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
#endif
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_DEAD)
mark_reg_death (XEXP (link, 0));
len = sizeof (struct reg_pressure_data) * ira_reg_class_cover_size;
pressure_info
= INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_reg_class_cover_size
* sizeof (int), 1);
for (i = 0; i < ira_reg_class_cover_size; i++)
{
cl = ira_reg_class_cover[i];
pressure_info[i].clobber_increase
= reg_pressure_info[cl].clobber_increase;
pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
pressure_info[i].unused_set_increase
= reg_pressure_info[cl].unused_set_increase;
pressure_info[i].change = reg_pressure_info[cl].change;
}
}
/* Internal variable for sched_analyze_[12] () functions.
If it is nonzero, this means that sched_analyze_[12] looks
at the most toplevel SET. */
static bool can_start_lhs_rhs_p;
/* Extend reg info for the deps context DEPS given that
we have just generated a register numbered REGNO. */
static void
extend_deps_reg_info (struct deps_desc *deps, int regno)
{
int max_regno = regno + 1;
gcc_assert (!reload_completed);
/* In a readonly context, it would not hurt to extend info,
but it should not be needed. */
if (reload_completed && deps->readonly)
{
deps->max_reg = max_regno;
return;
}
if (max_regno > deps->max_reg)
{
deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
max_regno);
memset (&deps->reg_last[deps->max_reg],
0, (max_regno - deps->max_reg)
* sizeof (struct deps_reg));
deps->max_reg = max_regno;
}
}
/* Extends REG_INFO_P if needed. */
void
maybe_extend_reg_info_p (void)
{
/* Extend REG_INFO_P, if needed. */
if ((unsigned int)max_regno - 1 >= reg_info_p_size)
{
size_t new_reg_info_p_size = max_regno + 128;
gcc_assert (!reload_completed && sel_sched_p ());
reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
new_reg_info_p_size,
reg_info_p_size,
sizeof (*reg_info_p));
reg_info_p_size = new_reg_info_p_size;
}
}
/* Analyze a single reference to register (reg:MODE REGNO) in INSN.
The type of the reference is specified by REF and can be SET,
CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
static void
sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
enum rtx_code ref, rtx insn)
{
/* We could emit new pseudos in renaming. Extend the reg structures. */
if (!reload_completed && sel_sched_p ()
&& (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
extend_deps_reg_info (deps, regno);
maybe_extend_reg_info_p ();
/* A hard reg in a wide mode may really be multiple registers.
If so, mark all of them just like the first. */
if (regno < FIRST_PSEUDO_REGISTER)
{
int i = hard_regno_nregs[regno][mode];
if (ref == SET)
{
while (--i >= 0)
note_reg_set (regno + i);
}
else if (ref == USE)
{
while (--i >= 0)
note_reg_use (regno + i);
}
else
{
while (--i >= 0)
note_reg_clobber (regno + i);
}
}
/* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
it does not reload. Ignore these as they have served their
purpose already. */
else if (regno >= deps->max_reg)
{
enum rtx_code code = GET_CODE (PATTERN (insn));
gcc_assert (code == USE || code == CLOBBER);
}
else
{
if (ref == SET)
note_reg_set (regno);
else if (ref == USE)
note_reg_use (regno);
else
note_reg_clobber (regno);
/* Pseudos that are REG_EQUIV to something may be replaced
by that during reloading. We need only add dependencies for
the address in the REG_EQUIV note. */
if (!reload_completed && get_reg_known_equiv_p (regno))
{
rtx t = get_reg_known_value (regno);
if (MEM_P (t))
sched_analyze_2 (deps, XEXP (t, 0), insn);
}
/* Don't let it cross a call after scheduling if it doesn't
already cross one. */
if (REG_N_CALLS_CROSSED (regno) == 0)
{
if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
deps->sched_before_next_call
= alloc_INSN_LIST (insn, deps->sched_before_next_call);
else
add_dependence_list (insn, deps->last_function_call, 1,
REG_DEP_ANTI);
}
}
}
/* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
rtx, X, creating all dependencies generated by the write to the
destination of X, and reads of everything mentioned. */
static void
sched_analyze_1 (struct deps_desc *deps, rtx x, rtx insn)
{
rtx dest = XEXP (x, 0);
enum rtx_code code = GET_CODE (x);
bool cslr_p = can_start_lhs_rhs_p;
can_start_lhs_rhs_p = false;
gcc_assert (dest);
if (dest == 0)
return;
if (cslr_p && sched_deps_info->start_lhs)
sched_deps_info->start_lhs (dest);
if (GET_CODE (dest) == PARALLEL)
{
int i;
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
sched_analyze_1 (deps,
gen_rtx_CLOBBER (VOIDmode,
XEXP (XVECEXP (dest, 0, i), 0)),
insn);
if (cslr_p && sched_deps_info->finish_lhs)
sched_deps_info->finish_lhs ();
if (code == SET)
{
can_start_lhs_rhs_p = cslr_p;
sched_analyze_2 (deps, SET_SRC (x), insn);
can_start_lhs_rhs_p = false;
}
return;
}
while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT)
{
if (GET_CODE (dest) == STRICT_LOW_PART
|| GET_CODE (dest) == ZERO_EXTRACT
|| df_read_modify_subreg_p (dest))
{
/* These both read and modify the result. We must handle
them as writes to get proper dependencies for following
instructions. We must handle them as reads to get proper
dependencies from this to previous instructions.
Thus we need to call sched_analyze_2. */
sched_analyze_2 (deps, XEXP (dest, 0), insn);
}
if (GET_CODE (dest) == ZERO_EXTRACT)
{
/* The second and third arguments are values read by this insn. */
sched_analyze_2 (deps, XEXP (dest, 1), insn);
sched_analyze_2 (deps, XEXP (dest, 2), insn);
}
dest = XEXP (dest, 0);
}
if (REG_P (dest))
{
int regno = REGNO (dest);
enum machine_mode mode = GET_MODE (dest);
sched_analyze_reg (deps, regno, mode, code, insn);
#ifdef STACK_REGS
/* Treat all writes to a stack register as modifying the TOS. */
if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
{
int nregs;
/* Avoid analyzing the same register twice. */
if (regno != FIRST_STACK_REG)
sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
nregs = hard_regno_nregs[FIRST_STACK_REG][mode];
while (--nregs >= 0)
SET_HARD_REG_BIT (implicit_reg_pending_uses,
FIRST_STACK_REG + nregs);
}
#endif
}
else if (MEM_P (dest))
{
/* Writing memory. */
rtx t = dest;
if (sched_deps_info->use_cselib)
{
enum machine_mode address_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
t = shallow_copy_rtx (dest);
cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
GET_MODE (t), insn);
XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0), GET_MODE (t));
}
t = canon_rtx (t);
/* Pending lists can't get larger with a readonly context. */
if (!deps->readonly
&& ((deps->pending_read_list_length + deps->pending_write_list_length)
> MAX_PENDING_LIST_LENGTH))
{
/* Flush all pending reads and writes to prevent the pending lists
from getting any larger. Insn scheduling runs too slowly when
these lists get long. When compiling GCC with itself,
this flush occurs 8 times for sparc, and 10 times for m88k using
the default value of 32. */
flush_pending_lists (deps, insn, false, true);
}
else
{
rtx pending, pending_mem;
pending = deps->pending_read_insns;
pending_mem = deps->pending_read_mems;
while (pending)
{
if (anti_dependence (XEXP (pending_mem, 0), t)
&& ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
DEP_ANTI);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = deps->pending_write_insns;
pending_mem = deps->pending_write_mems;
while (pending)
{
if (output_dependence (XEXP (pending_mem, 0), t)
&& ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
add_dependence_list (insn, deps->last_pending_memory_flush, 1,
REG_DEP_ANTI);
if (!deps->readonly)
add_insn_mem_dependence (deps, false, insn, dest);
}
sched_analyze_2 (deps, XEXP (dest, 0), insn);
}
if (cslr_p && sched_deps_info->finish_lhs)
sched_deps_info->finish_lhs ();
/* Analyze reads. */
if (GET_CODE (x) == SET)
{
can_start_lhs_rhs_p = cslr_p;
sched_analyze_2 (deps, SET_SRC (x), insn);
can_start_lhs_rhs_p = false;
}
}
/* Analyze the uses of memory and registers in rtx X in INSN. */
static void
sched_analyze_2 (struct deps_desc *deps, rtx x, rtx insn)
{
int i;
int j;
enum rtx_code code;
const char *fmt;
bool cslr_p = can_start_lhs_rhs_p;
can_start_lhs_rhs_p = false;
gcc_assert (x);
if (x == 0)
return;
if (cslr_p && sched_deps_info->start_rhs)
sched_deps_info->start_rhs (x);
code = GET_CODE (x);
switch (code)
{
case CONST_INT:
case CONST_DOUBLE:
case CONST_FIXED:
case CONST_VECTOR:
case SYMBOL_REF:
case CONST:
case LABEL_REF:
/* Ignore constants. */
if (cslr_p && sched_deps_info->finish_rhs)
sched_deps_info->finish_rhs ();
return;
#ifdef HAVE_cc0
case CC0:
/* User of CC0 depends on immediately preceding insn. */
SCHED_GROUP_P (insn) = 1;
/* Don't move CC0 setter to another block (it can set up the
same flag for previous CC0 users which is safe). */
CANT_MOVE (prev_nonnote_insn (insn)) = 1;
if (cslr_p && sched_deps_info->finish_rhs)
sched_deps_info->finish_rhs ();
return;
#endif
case REG:
{
int regno = REGNO (x);
enum machine_mode mode = GET_MODE (x);
sched_analyze_reg (deps, regno, mode, USE, insn);
#ifdef STACK_REGS
/* Treat all reads of a stack register as modifying the TOS. */
if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
{
/* Avoid analyzing the same register twice. */
if (regno != FIRST_STACK_REG)
sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
}
#endif
if (cslr_p && sched_deps_info->finish_rhs)
sched_deps_info->finish_rhs ();
return;
}
case MEM:
{
/* Reading memory. */
rtx u;
rtx pending, pending_mem;
rtx t = x;
if (sched_deps_info->use_cselib)
{
enum machine_mode address_mode
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (t));
t = shallow_copy_rtx (t);
cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
GET_MODE (t), insn);
XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0), GET_MODE (t));
}
if (!DEBUG_INSN_P (insn))
{
t = canon_rtx (t);
pending = deps->pending_read_insns;
pending_mem = deps->pending_read_mems;
while (pending)
{
if (read_dependence (XEXP (pending_mem, 0), t)
&& ! sched_insns_conditions_mutex_p (insn,
XEXP (pending, 0)))
note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
DEP_ANTI);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = deps->pending_write_insns;
pending_mem = deps->pending_write_mems;
while (pending)
{
if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
t, rtx_varies_p)
&& ! sched_insns_conditions_mutex_p (insn,
XEXP (pending, 0)))
note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
sched_deps_info->generate_spec_deps
? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
{
if (! NON_FLUSH_JUMP_P (u))
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
else if (deps_may_trap_p (x))
{
if ((sched_deps_info->generate_spec_deps)
&& sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
{
ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
MAX_DEP_WEAK);
note_dep (XEXP (u, 0), ds);
}
else
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
}
}
}
/* Always add these dependencies to pending_reads, since
this insn may be followed by a write. */
if (!deps->readonly)
add_insn_mem_dependence (deps, true, insn, x);
sched_analyze_2 (deps, XEXP (x, 0), insn);
if (cslr_p && sched_deps_info->finish_rhs)
sched_deps_info->finish_rhs ();
return;
}
/* Force pending stores to memory in case a trap handler needs them. */
case TRAP_IF:
flush_pending_lists (deps, insn, true, false);
break;
case PREFETCH:
if (PREFETCH_SCHEDULE_BARRIER_P (x))
reg_pending_barrier = TRUE_BARRIER;
break;
case UNSPEC_VOLATILE:
flush_pending_lists (deps, insn, true, true);
/* FALLTHRU */
case ASM_OPERANDS:
case ASM_INPUT:
{
/* Traditional and volatile asm instructions must be considered to use
and clobber all hard registers, all pseudo-registers and all of
memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
Consider for instance a volatile asm that changes the fpu rounding
mode. An insn should not be moved across this even if it only uses
pseudo-regs because it might give an incorrectly rounded result. */
if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
reg_pending_barrier = TRUE_BARRIER;
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
We can not just fall through here since then we would be confused
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
traditional asms unlike their normal usage. */
if (code == ASM_OPERANDS)
{
for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
if (cslr_p && sched_deps_info->finish_rhs)
sched_deps_info->finish_rhs ();
return;
}
break;
}
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
/* These both read and modify the result. We must handle them as writes
to get proper dependencies for following instructions. We must handle
them as reads to get proper dependencies from this to previous
instructions. Thus we need to pass them to both sched_analyze_1
and sched_analyze_2. We must call sched_analyze_2 first in order
to get the proper antecedent for the read. */
sched_analyze_2 (deps, XEXP (x, 0), insn);
sched_analyze_1 (deps, x, insn);
if (cslr_p && sched_deps_info->finish_rhs)
sched_deps_info->finish_rhs ();
return;
case POST_MODIFY:
case PRE_MODIFY:
/* op0 = op0 + op1 */
sched_analyze_2 (deps, XEXP (x, 0), insn);
sched_analyze_2 (deps, XEXP (x, 1), insn);
sched_analyze_1 (deps, x, insn);
if (cslr_p && sched_deps_info->finish_rhs)
sched_deps_info->finish_rhs ();
return;
default:
break;
}
/* Other cases: walk the insn. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
sched_analyze_2 (deps, XEXP (x, i), insn);
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
}
if (cslr_p && sched_deps_info->finish_rhs)
sched_deps_info->finish_rhs ();
}
/* Analyze an INSN with pattern X to find all dependencies. */
static void
sched_analyze_insn (struct deps_desc *deps, rtx x, rtx insn)
{
RTX_CODE code = GET_CODE (x);
rtx link;
unsigned i;
reg_set_iterator rsi;
if (! reload_completed)
{
HARD_REG_SET temp;
extract_insn (insn);
preprocess_constraints ();
ira_implicitly_set_insn_hard_regs (&temp);
AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
}
can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
&& code == SET);
if (may_trap_p (x))
/* Avoid moving trapping instructions accross function calls that might
not always return. */
add_dependence_list (insn, deps->last_function_call_may_noreturn,
1, REG_DEP_ANTI);
if (code == COND_EXEC)
{
sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
/* ??? Should be recording conditions so we reduce the number of
false dependencies. */
x = COND_EXEC_CODE (x);
code = GET_CODE (x);
}
if (code == SET || code == CLOBBER)
{
sched_analyze_1 (deps, x, insn);
/* Bare clobber insns are used for letting life analysis, reg-stack
and others know that a value is dead. Depend on the last call
instruction so that reg-stack won't get confused. */
if (code == CLOBBER)
add_dependence_list (insn, deps->last_function_call, 1,
REG_DEP_OUTPUT);
}
else if (code == PARALLEL)
{
for (i = XVECLEN (x, 0); i--;)
{
rtx sub = XVECEXP (x, 0, i);
code = GET_CODE (sub);
if (code == COND_EXEC)
{
sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
sub = COND_EXEC_CODE (sub);
code = GET_CODE (sub);
}
if (code == SET || code == CLOBBER)
sched_analyze_1 (deps, sub, insn);
else
sched_analyze_2 (deps, sub, insn);
}
}
else
sched_analyze_2 (deps, x, insn);
/* Mark registers CLOBBERED or used by called function. */
if (CALL_P (insn))
{
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
{
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
sched_analyze_1 (deps, XEXP (link, 0), insn);
else
sched_analyze_2 (deps, XEXP (link, 0), insn);
}
/* Don't schedule anything after a tail call, tail call needs
to use at least all call-saved registers. */
if (SIBLING_CALL_P (insn))
reg_pending_barrier = TRUE_BARRIER;
else if (find_reg_note (insn, REG_SETJMP, NULL))
reg_pending_barrier = MOVE_BARRIER;
}
if (JUMP_P (insn))
{
rtx next;
next = next_nonnote_nondebug_insn (insn);
if (next && BARRIER_P (next))
reg_pending_barrier = MOVE_BARRIER;
else
{
rtx pending, pending_mem;
if (sched_deps_info->compute_jump_reg_dependencies)
{
regset_head tmp_uses, tmp_sets;
INIT_REG_SET (&tmp_uses);
INIT_REG_SET (&tmp_sets);
(*sched_deps_info->compute_jump_reg_dependencies)
(insn, &deps->reg_conditional_sets, &tmp_uses, &tmp_sets);
/* Make latency of jump equal to 0 by using anti-dependence. */
EXECUTE_IF_SET_IN_REG_SET (&tmp_uses, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
add_dependence_list (insn, reg_last->implicit_sets,
0, REG_DEP_ANTI);
add_dependence_list (insn, reg_last->clobbers, 0,
REG_DEP_ANTI);
if (!deps->readonly)
{
reg_last->uses_length++;
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
}
}
IOR_REG_SET (reg_pending_sets, &tmp_sets);
CLEAR_REG_SET (&tmp_uses);
CLEAR_REG_SET (&tmp_sets);
}
/* All memory writes and volatile reads must happen before the
jump. Non-volatile reads must happen before the jump iff
the result is needed by the above register used mask. */
pending = deps->pending_write_insns;
pending_mem = deps->pending_write_mems;
while (pending)
{
if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
pending = deps->pending_read_insns;
pending_mem = deps->pending_read_mems;
while (pending)
{
if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
&& ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
pending = XEXP (pending, 1);
pending_mem = XEXP (pending_mem, 1);
}
add_dependence_list (insn, deps->last_pending_memory_flush, 1,
REG_DEP_ANTI);
}
}
/* If this instruction can throw an exception, then moving it changes
where block boundaries fall. This is mighty confusing elsewhere.
Therefore, prevent such an instruction from being moved. Same for
non-jump instructions that define block boundaries.
??? Unclear whether this is still necessary in EBB mode. If not,
add_branch_dependences should be adjusted for RGN mode instead. */
if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
|| (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
reg_pending_barrier = MOVE_BARRIER;
if (sched_pressure_p)
{
setup_insn_reg_uses (deps, insn);
setup_insn_reg_pressure_info (insn);
}
/* Add register dependencies for insn. */
if (DEBUG_INSN_P (insn))
{
rtx prev = deps->last_debug_insn;
rtx u;
if (!deps->readonly)
deps->last_debug_insn = insn;
if (prev)
add_dependence (insn, prev, REG_DEP_ANTI);
add_dependence_list (insn, deps->last_function_call, 1,
REG_DEP_ANTI);
for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
if (! NON_FLUSH_JUMP_P (u) || !sel_sched_p ())
add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI);
add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI);
if (!deps->readonly)
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
}
CLEAR_REG_SET (reg_pending_uses);
/* Quite often, a debug insn will refer to stuff in the
previous instruction, but the reason we want this
dependency here is to make sure the scheduler doesn't
gratuitously move a debug insn ahead. This could dirty
DF flags and cause additional analysis that wouldn't have
occurred in compilation without debug insns, and such
additional analysis can modify the generated code. */
prev = PREV_INSN (insn);
if (prev && NONDEBUG_INSN_P (prev))
add_dependence (insn, prev, REG_DEP_ANTI);
}
else
{
EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI);
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
if (!deps->readonly)
{
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
reg_last->uses_length++;
}
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
add_dependence_list (insn, reg_last->implicit_sets, 0,
REG_DEP_ANTI);
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
if (!deps->readonly)
{
reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
reg_last->uses_length++;
}
}
/* If the current insn is conditional, we can't free any
of the lists. */
if (sched_has_condition_p (insn))
{
EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->implicit_sets, 0,
REG_DEP_ANTI);
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
if (!deps->readonly)
{
reg_last->clobbers
= alloc_INSN_LIST (insn, reg_last->clobbers);
reg_last->clobbers_length++;
}
}
EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->implicit_sets, 0,
REG_DEP_ANTI);
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
if (!deps->readonly)
{
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
SET_REGNO_REG_SET (&deps->reg_conditional_sets, i);
}
}
}
else
{
EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
|| reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
{
add_dependence_list_and_free (deps, insn, ®_last->sets, 0,
REG_DEP_OUTPUT);
add_dependence_list_and_free (deps, insn,
®_last->implicit_sets, 0,
REG_DEP_ANTI);
add_dependence_list_and_free (deps, insn, ®_last->uses, 0,
REG_DEP_ANTI);
add_dependence_list_and_free
(deps, insn, ®_last->clobbers, 0, REG_DEP_OUTPUT);
if (!deps->readonly)
{
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
reg_last->clobbers_length = 0;
reg_last->uses_length = 0;
}
}
else
{
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
add_dependence_list (insn, reg_last->implicit_sets, 0,
REG_DEP_ANTI);
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
}
if (!deps->readonly)
{
reg_last->clobbers_length++;
reg_last->clobbers
= alloc_INSN_LIST (insn, reg_last->clobbers);
}
}
EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list_and_free (deps, insn, ®_last->sets, 0,
REG_DEP_OUTPUT);
add_dependence_list_and_free (deps, insn,
®_last->implicit_sets,
0, REG_DEP_ANTI);
add_dependence_list_and_free (deps, insn, ®_last->clobbers, 0,
REG_DEP_OUTPUT);
add_dependence_list_and_free (deps, insn, ®_last->uses, 0,
REG_DEP_ANTI);
if (!deps->readonly)
{
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
reg_last->uses_length = 0;
reg_last->clobbers_length = 0;
CLEAR_REGNO_REG_SET (&deps->reg_conditional_sets, i);
}
}
}
}
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI);
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
if (!deps->readonly)
reg_last->implicit_sets
= alloc_INSN_LIST (insn, reg_last->implicit_sets);
}
if (!deps->readonly)
{
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
|| TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
/* Set up the pending barrier found. */
deps->last_reg_pending_barrier = reg_pending_barrier;
}
CLEAR_REG_SET (reg_pending_uses);
CLEAR_REG_SET (reg_pending_clobbers);
CLEAR_REG_SET (reg_pending_sets);
CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
/* Add dependencies if a scheduling barrier was found. */
if (reg_pending_barrier)
{
/* In the case of barrier the most added dependencies are not
real, so we use anti-dependence here. */
if (sched_has_condition_p (insn))
{
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
add_dependence_list (insn, reg_last->sets, 0,
reg_pending_barrier == TRUE_BARRIER
? REG_DEP_TRUE : REG_DEP_ANTI);
add_dependence_list (insn, reg_last->implicit_sets, 0,
REG_DEP_ANTI);
add_dependence_list (insn, reg_last->clobbers, 0,
reg_pending_barrier == TRUE_BARRIER
? REG_DEP_TRUE : REG_DEP_ANTI);
}
}
else
{
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
add_dependence_list_and_free (deps, insn, ®_last->uses, 0,
REG_DEP_ANTI);
add_dependence_list_and_free (deps, insn, ®_last->sets, 0,
reg_pending_barrier == TRUE_BARRIER
? REG_DEP_TRUE : REG_DEP_ANTI);
add_dependence_list_and_free (deps, insn,
®_last->implicit_sets, 0,
REG_DEP_ANTI);
add_dependence_list_and_free (deps, insn, ®_last->clobbers, 0,
reg_pending_barrier == TRUE_BARRIER
? REG_DEP_TRUE : REG_DEP_ANTI);
if (!deps->readonly)
{
reg_last->uses_length = 0;
reg_last->clobbers_length = 0;
}
}
}
if (!deps->readonly)
for (i = 0; i < (unsigned)deps->max_reg; i++)
{
struct deps_reg *reg_last = &deps->reg_last[i];
reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
}
/* Flush pending lists on jumps, but not on speculative checks. */
if (JUMP_P (insn) && !(sel_sched_p ()
&& sel_insn_is_speculation_check (insn)))
flush_pending_lists (deps, insn, true, true);
if (!deps->readonly)
CLEAR_REG_SET (&deps->reg_conditional_sets);
reg_pending_barrier = NOT_A_BARRIER;
}
/* If a post-call group is still open, see if it should remain so.
This insn must be a simple move of a hard reg to a pseudo or
vice-versa.
We must avoid moving these insns for correctness on targets
with small register classes, and for special registers like
PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
hard regs for all targets. */
if (deps->in_post_call_group_p)
{
rtx tmp, set = single_set (insn);
int src_regno, dest_regno;
if (set == NULL)
{
if (DEBUG_INSN_P (insn))
/* We don't want to mark debug insns as part of the same
sched group. We know they really aren't, but if we use
debug insns to tell that a call group is over, we'll
get different code if debug insns are not there and
instructions that follow seem like they should be part
of the call group.
Also, if we did, fixup_sched_groups() would move the
deps of the debug insn to the call insn, modifying
non-debug post-dependency counts of the debug insn
dependencies and otherwise messing with the scheduling
order.
Instead, let such debug insns be scheduled freely, but
keep the call group open in case there are insns that
should be part of it afterwards. Since we grant debug
insns higher priority than even sched group insns, it
will all turn out all right. */
goto debug_dont_end_call_group;
else
goto end_call_group;
}
tmp = SET_DEST (set);
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if (REG_P (tmp))
dest_regno = REGNO (tmp);
else
goto end_call_group;
tmp = SET_SRC (set);
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if ((GET_CODE (tmp) == PLUS
|| GET_CODE (tmp) == MINUS)
&& REG_P (XEXP (tmp, 0))
&& REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
&& dest_regno == STACK_POINTER_REGNUM)
src_regno = STACK_POINTER_REGNUM;
else if (REG_P (tmp))
src_regno = REGNO (tmp);
else
goto end_call_group;
if (src_regno < FIRST_PSEUDO_REGISTER
|| dest_regno < FIRST_PSEUDO_REGISTER)
{
if (!deps->readonly
&& deps->in_post_call_group_p == post_call_initial)
deps->in_post_call_group_p = post_call;
if (!sel_sched_p () || sched_emulate_haifa_p)
{
SCHED_GROUP_P (insn) = 1;
CANT_MOVE (insn) = 1;
}
}
else
{
end_call_group:
if (!deps->readonly)
deps->in_post_call_group_p = not_post_call;
}
}
debug_dont_end_call_group:
if ((current_sched_info->flags & DO_SPECULATION)
&& !sched_insn_is_legitimate_for_speculation_p (insn, 0))
/* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
be speculated. */
{
if (sel_sched_p ())
sel_mark_hard_insn (insn);
else
{
sd_iterator_def sd_it;
dep_t dep;
for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
sd_iterator_cond (&sd_it, &dep);)
change_spec_dep_to_hard (sd_it);
}
}
}
/* Return TRUE if INSN might not always return normally (e.g. call exit,
longjmp, loop forever, ...). */
static bool
call_may_noreturn_p (rtx insn)
{
rtx call;
/* const or pure calls that aren't looping will always return. */
if (RTL_CONST_OR_PURE_CALL_P (insn)
&& !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
return false;
call = PATTERN (insn);
if (GET_CODE (call) == PARALLEL)
call = XVECEXP (call, 0, 0);
if (GET_CODE (call) == SET)
call = SET_SRC (call);
if (GET_CODE (call) == CALL
&& MEM_P (XEXP (call, 0))
&& GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
{
rtx symbol = XEXP (XEXP (call, 0), 0);
if (SYMBOL_REF_DECL (symbol)
&& TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
{
if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
== BUILT_IN_NORMAL)
switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
{
case BUILT_IN_BCMP:
case BUILT_IN_BCOPY:
case BUILT_IN_BZERO:
case BUILT_IN_INDEX:
case BUILT_IN_MEMCHR:
case BUILT_IN_MEMCMP:
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMMOVE:
case BUILT_IN_MEMPCPY:
case BUILT_IN_MEMSET:
case BUILT_IN_RINDEX:
case BUILT_IN_STPCPY:
case BUILT_IN_STPNCPY:
case BUILT_IN_STRCAT:
case BUILT_IN_STRCHR:
case BUILT_IN_STRCMP:
case BUILT_IN_STRCPY:
case BUILT_IN_STRCSPN:
case BUILT_IN_STRLEN:
case BUILT_IN_STRNCAT:
case BUILT_IN_STRNCMP:
case BUILT_IN_STRNCPY:
case BUILT_IN_STRPBRK:
case BUILT_IN_STRRCHR:
case BUILT_IN_STRSPN:
case BUILT_IN_STRSTR:
/* Assume certain string/memory builtins always return. */
return false;
default:
break;
}
}
}
/* For all other calls assume that they might not always return. */
return true;
}
/* Analyze INSN with DEPS as a context. */
void
deps_analyze_insn (struct deps_desc *deps, rtx insn)
{
if (sched_deps_info->start_insn)
sched_deps_info->start_insn (insn);
if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn) || JUMP_P (insn))
{
/* Make each JUMP_INSN (but not a speculative check)
a scheduling barrier for memory references. */
if (!deps->readonly
&& JUMP_P (insn)
&& !(sel_sched_p ()
&& sel_insn_is_speculation_check (insn)))
{
/* Keep the list a reasonable size. */
if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
flush_pending_lists (deps, insn, true, true);
else
{
deps->last_pending_memory_flush
= alloc_INSN_LIST (insn, deps->last_pending_memory_flush);
/* Signal to sched_analyze_insn that this jump stands
just for its own, not any other pending memory
reads/writes flush_pending_lists had to flush. */
PUT_REG_NOTE_KIND (deps->last_pending_memory_flush,
NON_FLUSH_JUMP_KIND);
}
}
sched_analyze_insn (deps, PATTERN (insn), insn);
}
else if (CALL_P (insn))
{
int i;
CANT_MOVE (insn) = 1;
if (find_reg_note (insn, REG_SETJMP, NULL))
{
/* This is setjmp. Assume that all registers, not just
hard registers, may be clobbered by this call. */
reg_pending_barrier = MOVE_BARRIER;
}
else
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
/* A call may read and modify global register variables. */
if (global_regs[i])
{
SET_REGNO_REG_SET (reg_pending_sets, i);
SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
}
/* Other call-clobbered hard regs may be clobbered.
Since we only have a choice between 'might be clobbered'
and 'definitely not clobbered', we must include all
partly call-clobbered registers here. */
else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
|| TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
SET_REGNO_REG_SET (reg_pending_clobbers, i);
/* We don't know what set of fixed registers might be used
by the function, but it is certain that the stack pointer
is among them, but be conservative. */
else if (fixed_regs[i])
SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
/* The frame pointer is normally not used by the function
itself, but by the debugger. */
/* ??? MIPS o32 is an exception. It uses the frame pointer
in the macro expansion of jal but does not represent this
fact in the call_insn rtl. */
else if (i == FRAME_POINTER_REGNUM
|| (i == HARD_FRAME_POINTER_REGNUM
&& (! reload_completed || frame_pointer_needed)))
SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
}
/* For each insn which shouldn't cross a call, add a dependence
between that insn and this call insn. */
add_dependence_list_and_free (deps, insn,
&deps->sched_before_next_call, 1,
REG_DEP_ANTI);
sched_analyze_insn (deps, PATTERN (insn), insn);
/* If CALL would be in a sched group, then this will violate
convention that sched group insns have dependencies only on the
previous instruction.
Of course one can say: "Hey! What about head of the sched group?"
And I will answer: "Basic principles (one dep per insn) are always
the same." */
gcc_assert (!SCHED_GROUP_P (insn));
/* In the absence of interprocedural alias analysis, we must flush
all pending reads and writes, and start new dependencies starting
from here. But only flush writes for constant calls (which may
be passed a pointer to something we haven't written yet). */
flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
if (!deps->readonly)
{
/* Remember the last function call for limiting lifetimes. */
free_INSN_LIST_list (&deps->last_function_call);
deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
if (call_may_noreturn_p (insn))
{
/* Remember the last function call that might not always return
normally for limiting moves of trapping insns. */
free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
deps->last_function_call_may_noreturn
= alloc_INSN_LIST (insn, NULL_RTX);
}
/* Before reload, begin a post-call group, so as to keep the
lifetimes of hard registers correct. */
if (! reload_completed)
deps->in_post_call_group_p = post_call;
}
}
if (sched_deps_info->use_cselib)
cselib_process_insn (insn);
/* EH_REGION insn notes can not appear until well after we complete
scheduling. */
if (NOTE_P (insn))
gcc_assert (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
&& NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END);
if (sched_deps_info->finish_insn)
sched_deps_info->finish_insn ();
/* Fixup the dependencies in the sched group. */
if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
&& SCHED_GROUP_P (insn) && !sel_sched_p ())
fixup_sched_groups (insn);
}
/* Initialize DEPS for the new block beginning with HEAD. */
void
deps_start_bb (struct deps_desc *deps, rtx head)
{
gcc_assert (!deps->readonly);
/* Before reload, if the previous block ended in a call, show that
we are inside a post-call group, so as to keep the lifetimes of
hard registers correct. */
if (! reload_completed && !LABEL_P (head))
{
rtx insn = prev_nonnote_nondebug_insn (head);
if (insn && CALL_P (insn))
deps->in_post_call_group_p = post_call_initial;
}
}
/* Analyze every insn between HEAD and TAIL inclusive, creating backward
dependencies for each insn. */
void
sched_analyze (struct deps_desc *deps, rtx head, rtx tail)
{
rtx insn;
if (sched_deps_info->use_cselib)
cselib_init (CSELIB_RECORD_MEMORY);
deps_start_bb (deps, head);
for (insn = head;; insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
/* And initialize deps_lists. */
sd_init_insn (insn);
}
deps_analyze_insn (deps, insn);
if (insn == tail)
{
if (sched_deps_info->use_cselib)
cselib_finish ();
return;
}
}
gcc_unreachable ();
}
/* Helper for sched_free_deps ().
Delete INSN's (RESOLVED_P) backward dependencies. */
static void
delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
{
sd_iterator_def sd_it;
dep_t dep;
sd_list_types_def types;
if (resolved_p)
types = SD_LIST_RES_BACK;
else
types = SD_LIST_BACK;
for (sd_it = sd_iterator_start (insn, types);
sd_iterator_cond (&sd_it, &dep);)
{
dep_link_t link = *sd_it.linkp;
dep_node_t node = DEP_LINK_NODE (link);
deps_list_t back_list;
deps_list_t forw_list;
get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
remove_from_deps_list (link, back_list);
delete_dep_node (node);
}
}
/* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
deps_lists. */
void
sched_free_deps (rtx head, rtx tail, bool resolved_p)
{
rtx insn;
rtx next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (INSN_P (insn) && INSN_LUID (insn) > 0)
{
/* Clear resolved back deps together with its dep_nodes. */
delete_dep_nodes_in_back_deps (insn, resolved_p);
/* Clear forward deps and leave the dep_nodes to the
corresponding back_deps list. */
if (resolved_p)
clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
else
clear_deps_list (INSN_FORW_DEPS (insn));
sd_finish_insn (insn);
}
}
/* Initialize variables for region data dependence analysis.
When LAZY_REG_LAST is true, do not allocate reg_last array
of struct deps_desc immediately. */
void
init_deps (struct deps_desc *deps, bool lazy_reg_last)
{
int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
deps->max_reg = max_reg;
if (lazy_reg_last)
deps->reg_last = NULL;
else
deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
INIT_REG_SET (&deps->reg_last_in_use);
INIT_REG_SET (&deps->reg_conditional_sets);
deps->pending_read_insns = 0;
deps->pending_read_mems = 0;
deps->pending_write_insns = 0;
deps->pending_write_mems = 0;
deps->pending_read_list_length = 0;
deps->pending_write_list_length = 0;
deps->pending_flush_length = 0;
deps->last_pending_memory_flush = 0;
deps->last_function_call = 0;
deps->last_function_call_may_noreturn = 0;
deps->sched_before_next_call = 0;
deps->in_post_call_group_p = not_post_call;
deps->last_debug_insn = 0;
deps->last_reg_pending_barrier = NOT_A_BARRIER;
deps->readonly = 0;
}
/* Init only reg_last field of DEPS, which was not allocated before as
we inited DEPS lazily. */
void
init_deps_reg_last (struct deps_desc *deps)
{
gcc_assert (deps && deps->max_reg > 0);
gcc_assert (deps->reg_last == NULL);
deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
}
/* Free insn lists found in DEPS. */
void
free_deps (struct deps_desc *deps)
{
unsigned i;
reg_set_iterator rsi;
/* We set max_reg to 0 when this context was already freed. */
if (deps->max_reg == 0)
{
gcc_assert (deps->reg_last == NULL);
return;
}
deps->max_reg = 0;
free_INSN_LIST_list (&deps->pending_read_insns);
free_EXPR_LIST_list (&deps->pending_read_mems);
free_INSN_LIST_list (&deps->pending_write_insns);
free_EXPR_LIST_list (&deps->pending_write_mems);
free_INSN_LIST_list (&deps->last_pending_memory_flush);
/* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
times. For a testcase with 42000 regs and 8000 small basic blocks,
this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
if (reg_last->uses)
free_INSN_LIST_list (®_last->uses);
if (reg_last->sets)
free_INSN_LIST_list (®_last->sets);
if (reg_last->implicit_sets)
free_INSN_LIST_list (®_last->implicit_sets);
if (reg_last->clobbers)
free_INSN_LIST_list (®_last->clobbers);
}
CLEAR_REG_SET (&deps->reg_last_in_use);
CLEAR_REG_SET (&deps->reg_conditional_sets);
/* As we initialize reg_last lazily, it is possible that we didn't allocate
it at all. */
if (deps->reg_last)
free (deps->reg_last);
deps->reg_last = NULL;
deps = NULL;
}
/* Remove INSN from dependence contexts DEPS. Caution: reg_conditional_sets
is not handled. */
void
remove_from_deps (struct deps_desc *deps, rtx insn)
{
int removed;
unsigned i;
reg_set_iterator rsi;
removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
&deps->pending_read_mems);
if (!DEBUG_INSN_P (insn))
deps->pending_read_list_length -= removed;
removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
&deps->pending_write_mems);
deps->pending_write_list_length -= removed;
removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
deps->pending_flush_length -= removed;
EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
{
struct deps_reg *reg_last = &deps->reg_last[i];
if (reg_last->uses)
remove_from_dependence_list (insn, ®_last->uses);
if (reg_last->sets)
remove_from_dependence_list (insn, ®_last->sets);
if (reg_last->implicit_sets)
remove_from_dependence_list (insn, ®_last->implicit_sets);
if (reg_last->clobbers)
remove_from_dependence_list (insn, ®_last->clobbers);
if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
&& !reg_last->clobbers)
CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
}
if (CALL_P (insn))
{
remove_from_dependence_list (insn, &deps->last_function_call);
remove_from_dependence_list (insn,
&deps->last_function_call_may_noreturn);
}
remove_from_dependence_list (insn, &deps->sched_before_next_call);
}
/* Init deps data vector. */
static void
init_deps_data_vector (void)
{
int reserve = (sched_max_luid + 1
- VEC_length (haifa_deps_insn_data_def, h_d_i_d));
if (reserve > 0
&& ! VEC_space (haifa_deps_insn_data_def, h_d_i_d, reserve))
VEC_safe_grow_cleared (haifa_deps_insn_data_def, heap, h_d_i_d,
3 * sched_max_luid / 2);
}
/* If it is profitable to use them, initialize or extend (depending on
GLOBAL_P) dependency data. */
void
sched_deps_init (bool global_p)
{
/* Average number of insns in the basic block.
'+ 1' is used to make it nonzero. */
int insns_in_block = sched_max_luid / n_basic_blocks + 1;
init_deps_data_vector ();
/* We use another caching mechanism for selective scheduling, so
we don't use this one. */
if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
{
/* ?!? We could save some memory by computing a per-region luid mapping
which could reduce both the number of vectors in the cache and the
size of each vector. Instead we just avoid the cache entirely unless
the average number of instructions in a basic block is very high. See
the comment before the declaration of true_dependency_cache for
what we consider "very high". */
cache_size = 0;
extend_dependency_caches (sched_max_luid, true);
}
if (global_p)
{
dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
/* Allocate lists for one block at a time. */
insns_in_block);
dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
/* Allocate nodes for one block at a time.
We assume that average insn has
5 producers. */
5 * insns_in_block);
}
}
/* Create or extend (depending on CREATE_P) dependency caches to
size N. */
void
extend_dependency_caches (int n, bool create_p)
{
if (create_p || true_dependency_cache)
{
int i, luid = cache_size + n;
true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
luid);
output_dependency_cache = XRESIZEVEC (bitmap_head,
output_dependency_cache, luid);
anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
luid);
if (current_sched_info->flags & DO_SPECULATION)
spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
luid);
for (i = cache_size; i < luid; i++)
{
bitmap_initialize (&true_dependency_cache[i], 0);
bitmap_initialize (&output_dependency_cache[i], 0);
bitmap_initialize (&anti_dependency_cache[i], 0);
if (current_sched_info->flags & DO_SPECULATION)
bitmap_initialize (&spec_dependency_cache[i], 0);
}
cache_size = luid;
}
}
/* Finalize dependency information for the whole function. */
void
sched_deps_finish (void)
{
gcc_assert (deps_pools_are_empty_p ());
free_alloc_pool_if_empty (&dn_pool);
free_alloc_pool_if_empty (&dl_pool);
gcc_assert (dn_pool == NULL && dl_pool == NULL);
VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
cache_size = 0;
if (true_dependency_cache)
{
int i;
for (i = 0; i < cache_size; i++)
{
bitmap_clear (&true_dependency_cache[i]);
bitmap_clear (&output_dependency_cache[i]);
bitmap_clear (&anti_dependency_cache[i]);
if (sched_deps_info->generate_spec_deps)
bitmap_clear (&spec_dependency_cache[i]);
}
free (true_dependency_cache);
true_dependency_cache = NULL;
free (output_dependency_cache);
output_dependency_cache = NULL;
free (anti_dependency_cache);
anti_dependency_cache = NULL;
if (sched_deps_info->generate_spec_deps)
{
free (spec_dependency_cache);
spec_dependency_cache = NULL;
}
}
}
/* Initialize some global variables needed by the dependency analysis
code. */
void
init_deps_global (void)
{
CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
reg_pending_sets = ALLOC_REG_SET (®_obstack);
reg_pending_clobbers = ALLOC_REG_SET (®_obstack);
reg_pending_uses = ALLOC_REG_SET (®_obstack);
reg_pending_barrier = NOT_A_BARRIER;
if (!sel_sched_p () || sched_emulate_haifa_p)
{
sched_deps_info->start_insn = haifa_start_insn;
sched_deps_info->finish_insn = haifa_finish_insn;
sched_deps_info->note_reg_set = haifa_note_reg_set;
sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
sched_deps_info->note_reg_use = haifa_note_reg_use;
sched_deps_info->note_mem_dep = haifa_note_mem_dep;
sched_deps_info->note_dep = haifa_note_dep;
}
}
/* Free everything used by the dependency analysis code. */
void
finish_deps_global (void)
{
FREE_REG_SET (reg_pending_sets);
FREE_REG_SET (reg_pending_clobbers);
FREE_REG_SET (reg_pending_uses);
}
/* Estimate the weakness of dependence between MEM1 and MEM2. */
dw_t
estimate_dep_weak (rtx mem1, rtx mem2)
{
rtx r1, r2;
if (mem1 == mem2)
/* MEMs are the same - don't speculate. */
return MIN_DEP_WEAK;
r1 = XEXP (mem1, 0);
r2 = XEXP (mem2, 0);
if (r1 == r2
|| (REG_P (r1) && REG_P (r2)
&& REGNO (r1) == REGNO (r2)))
/* Again, MEMs are the same. */
return MIN_DEP_WEAK;
else if ((REG_P (r1) && !REG_P (r2))
|| (!REG_P (r1) && REG_P (r2)))
/* Different addressing modes - reason to be more speculative,
than usual. */
return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
else
/* We can't say anything about the dependence. */
return UNCERTAIN_DEP_WEAK;
}
/* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
This function can handle same INSN and ELEM (INSN == ELEM).
It is a convenience wrapper. */
void
add_dependence (rtx insn, rtx elem, enum reg_note dep_type)
{
ds_t ds;
bool internal;
if (dep_type == REG_DEP_TRUE)
ds = DEP_TRUE;
else if (dep_type == REG_DEP_OUTPUT)
ds = DEP_OUTPUT;
else
{
gcc_assert (dep_type == REG_DEP_ANTI);
ds = DEP_ANTI;
}
/* When add_dependence is called from inside sched-deps.c, we expect
cur_insn to be non-null. */
internal = cur_insn != NULL;
if (internal)
gcc_assert (insn == cur_insn);
else
cur_insn = insn;
note_dep (elem, ds);
if (!internal)
cur_insn = NULL;
}
/* Return weakness of speculative type TYPE in the dep_status DS. */
dw_t
get_dep_weak_1 (ds_t ds, ds_t type)
{
ds = ds & type;
switch (type)
{
case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
default: gcc_unreachable ();
}
return (dw_t) ds;
}
dw_t
get_dep_weak (ds_t ds, ds_t type)
{
dw_t dw = get_dep_weak_1 (ds, type);
gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
return dw;
}
/* Return the dep_status, which has the same parameters as DS, except for
speculative type TYPE, that will have weakness DW. */
ds_t
set_dep_weak (ds_t ds, ds_t type, dw_t dw)
{
gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
ds &= ~type;
switch (type)
{
case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
default: gcc_unreachable ();
}
return ds;
}
/* Return the join of two dep_statuses DS1 and DS2.
If MAX_P is true then choose the greater probability,
otherwise multiply probabilities.
This function assumes that both DS1 and DS2 contain speculative bits. */
static ds_t
ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
{
ds_t ds, t;
gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
t = FIRST_SPEC_TYPE;
do
{
if ((ds1 & t) && !(ds2 & t))
ds |= ds1 & t;
else if (!(ds1 & t) && (ds2 & t))
ds |= ds2 & t;
else if ((ds1 & t) && (ds2 & t))
{
dw_t dw1 = get_dep_weak (ds1, t);
dw_t dw2 = get_dep_weak (ds2, t);
ds_t dw;
if (!max_p)
{
dw = ((ds_t) dw1) * ((ds_t) dw2);
dw /= MAX_DEP_WEAK;
if (dw < MIN_DEP_WEAK)
dw = MIN_DEP_WEAK;
}
else
{
if (dw1 >= dw2)
dw = dw1;
else
dw = dw2;
}
ds = set_dep_weak (ds, t, (dw_t) dw);
}
if (t == LAST_SPEC_TYPE)
break;
t <<= SPEC_TYPE_SHIFT;
}
while (1);
return ds;
}
/* Return the join of two dep_statuses DS1 and DS2.
This function assumes that both DS1 and DS2 contain speculative bits. */
ds_t
ds_merge (ds_t ds1, ds_t ds2)
{
return ds_merge_1 (ds1, ds2, false);
}
/* Return the join of two dep_statuses DS1 and DS2. */
ds_t
ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
{
ds_t new_status = ds | ds2;
if (new_status & SPECULATIVE)
{
if ((ds && !(ds & SPECULATIVE))
|| (ds2 && !(ds2 & SPECULATIVE)))
/* Then this dep can't be speculative. */
new_status &= ~SPECULATIVE;
else
{
/* Both are speculative. Merging probabilities. */
if (mem1)
{
dw_t dw;
dw = estimate_dep_weak (mem1, mem2);
ds = set_dep_weak (ds, BEGIN_DATA, dw);
}
if (!ds)
new_status = ds2;
else if (!ds2)
new_status = ds;
else
new_status = ds_merge (ds2, ds);
}
}
return new_status;
}
/* Return the join of DS1 and DS2. Use maximum instead of multiplying
probabilities. */
ds_t
ds_max_merge (ds_t ds1, ds_t ds2)
{
if (ds1 == 0 && ds2 == 0)
return 0;
if (ds1 == 0 && ds2 != 0)
return ds2;
if (ds1 != 0 && ds2 == 0)
return ds1;
return ds_merge_1 (ds1, ds2, true);
}
/* Return the probability of speculation success for the speculation
status DS. */
dw_t
ds_weak (ds_t ds)
{
ds_t res = 1, dt;
int n = 0;
dt = FIRST_SPEC_TYPE;
do
{
if (ds & dt)
{
res *= (ds_t) get_dep_weak (ds, dt);
n++;
}
if (dt == LAST_SPEC_TYPE)
break;
dt <<= SPEC_TYPE_SHIFT;
}
while (1);
gcc_assert (n);
while (--n)
res /= MAX_DEP_WEAK;
if (res < MIN_DEP_WEAK)
res = MIN_DEP_WEAK;
gcc_assert (res <= MAX_DEP_WEAK);
return (dw_t) res;
}
/* Return a dep status that contains all speculation types of DS. */
ds_t
ds_get_speculation_types (ds_t ds)
{
if (ds & BEGIN_DATA)
ds |= BEGIN_DATA;
if (ds & BE_IN_DATA)
ds |= BE_IN_DATA;
if (ds & BEGIN_CONTROL)
ds |= BEGIN_CONTROL;
if (ds & BE_IN_CONTROL)
ds |= BE_IN_CONTROL;
return ds & SPECULATIVE;
}
/* Return a dep status that contains maximal weakness for each speculation
type present in DS. */
ds_t
ds_get_max_dep_weak (ds_t ds)
{
if (ds & BEGIN_DATA)
ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
if (ds & BE_IN_DATA)
ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
if (ds & BEGIN_CONTROL)
ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
if (ds & BE_IN_CONTROL)
ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
return ds;
}
/* Dump information about the dependence status S. */
static void
dump_ds (FILE *f, ds_t s)
{
fprintf (f, "{");
if (s & BEGIN_DATA)
fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
if (s & BE_IN_DATA)
fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
if (s & BEGIN_CONTROL)
fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
if (s & BE_IN_CONTROL)
fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
if (s & HARD_DEP)
fprintf (f, "HARD_DEP; ");
if (s & DEP_TRUE)
fprintf (f, "DEP_TRUE; ");
if (s & DEP_ANTI)
fprintf (f, "DEP_ANTI; ");
if (s & DEP_OUTPUT)
fprintf (f, "DEP_OUTPUT; ");
fprintf (f, "}");
}
DEBUG_FUNCTION void
debug_ds (ds_t s)
{
dump_ds (stderr, s);
fprintf (stderr, "\n");
}
#ifdef ENABLE_CHECKING
/* Verify that dependence type and status are consistent.
If RELAXED_P is true, then skip dep_weakness checks. */
static void
check_dep (dep_t dep, bool relaxed_p)
{
enum reg_note dt = DEP_TYPE (dep);
ds_t ds = DEP_STATUS (dep);
gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
if (!(current_sched_info->flags & USE_DEPS_LIST))
{
gcc_assert (ds == -1);
return;
}
/* Check that dependence type contains the same bits as the status. */
if (dt == REG_DEP_TRUE)
gcc_assert (ds & DEP_TRUE);
else if (dt == REG_DEP_OUTPUT)
gcc_assert ((ds & DEP_OUTPUT)
&& !(ds & DEP_TRUE));
else
gcc_assert ((dt == REG_DEP_ANTI)
&& (ds & DEP_ANTI)
&& !(ds & (DEP_OUTPUT | DEP_TRUE)));
/* HARD_DEP can not appear in dep_status of a link. */
gcc_assert (!(ds & HARD_DEP));
/* Check that dependence status is set correctly when speculation is not
supported. */
if (!sched_deps_info->generate_spec_deps)
gcc_assert (!(ds & SPECULATIVE));
else if (ds & SPECULATIVE)
{
if (!relaxed_p)
{
ds_t type = FIRST_SPEC_TYPE;
/* Check that dependence weakness is in proper range. */
do
{
if (ds & type)
get_dep_weak (ds, type);
if (type == LAST_SPEC_TYPE)
break;
type <<= SPEC_TYPE_SHIFT;
}
while (1);
}
if (ds & BEGIN_SPEC)
{
/* Only true dependence can be data speculative. */
if (ds & BEGIN_DATA)
gcc_assert (ds & DEP_TRUE);
/* Control dependencies in the insn scheduler are represented by
anti-dependencies, therefore only anti dependence can be
control speculative. */
if (ds & BEGIN_CONTROL)
gcc_assert (ds & DEP_ANTI);
}
else
{
/* Subsequent speculations should resolve true dependencies. */
gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
}
/* Check that true and anti dependencies can't have other speculative
statuses. */
if (ds & DEP_TRUE)
gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
/* An output dependence can't be speculative at all. */
gcc_assert (!(ds & DEP_OUTPUT));
if (ds & DEP_ANTI)
gcc_assert (ds & BEGIN_CONTROL);
}
}
#endif /* ENABLE_CHECKING */
#endif /* INSN_SCHEDULING */
|