summaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg1005.a
blob: 6faad4e13577695b4f30ea9c9724ef2c01050794 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
-- CXG1005.A
--
--                             Grant of Unlimited Rights
--
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained 
--     unlimited rights in the software and documentation contained herein.
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making 
--     this public release, the Government intends to confer upon all 
--     recipients unlimited rights  equal to those held by the Government.  
--     These rights include rights to use, duplicate, release or disclose the 
--     released technical data and computer software in whole or in part, in 
--     any manner and for any purpose whatsoever, and to have or permit others 
--     to do so.
--
--                                    DISCLAIMER
--
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED 
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE 
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--     PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
--      Check that the subprograms defined in the package
--      Ada.Numerics.Generic_Complex_Elementary_Functions provide correct
--      results.
--      
-- TEST DESCRIPTION:
--      This test checks that specific subprograms defined in the generic
--      package Generic_Complex_Elementary_Functions are available, and that
--      they provide prescribed results given specific input values.
--      The generic package Ada.Numerics.Generic_Complex_Types is instantiated 
--      with a real type (new Float). The resulting new package is used as
--      the generic actual to package Complex_IO.
--      
-- SPECIAL REQUIREMENTS:
--      Implementations for which Float'Signed_Zeros is True must provide
--      a body for ImpDef.Annex_G.Negative_Zero which returns a negative 
--      zero.
--
-- APPLICABILITY CRITERIA
--      This test only applies to implementations that support the
--      numerics annex.
--
--         
--       
-- CHANGE HISTORY:
--      06 Dec 94   SAIC    ACVC 2.0
--      16 Nov 95   SAIC    Corrected visibility problems for ACVC 2.0.1.
--      21 Feb 96   SAIC    Incorporated new structure for package Impdef.
--      29 Sep 96   SAIC    Incorporated reviewer comments.
--
--!

with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Generic_Complex_Elementary_Functions;
with ImpDef.Annex_G;
with Report;

procedure CXG1005 is
begin

   Report.Test ("CXG1005", "Check that the subprograms defined in "  &
                           "the package Generic_Complex_Elementary_" & 
                           "Functions provide correct results");

   Test_Block:
   declare

      type Real_Type is new Float;

      TC_Signed_Zeros : Boolean := Real_Type'Signed_Zeros; 

      package Complex_Pack is new 
        Ada.Numerics.Generic_Complex_Types(Real_Type);

      package CEF is 
        new Ada.Numerics.Generic_Complex_Elementary_Functions(Complex_Pack);

      use Ada.Numerics, Complex_Pack, CEF;

      Complex_Zero : constant Complex := Compose_From_Cartesian( 0.0, 0.0);
      Plus_One     : constant Complex := Compose_From_Cartesian( 1.0, 0.0);
      Minus_One    : constant Complex := Compose_From_Cartesian(-1.0, 0.0);
      Plus_i       : constant Complex := Compose_From_Cartesian(i);
      Minus_i      : constant Complex := Compose_From_Cartesian(-i);

      Complex_Positive_Real      : constant Complex := 
                                         Compose_From_Cartesian(4.0, 2.0);
      Complex_Positive_Imaginary : constant Complex := 
                                         Compose_From_Cartesian(3.0, 5.0);
      Complex_Negative_Real      : constant Complex := 
                                         Compose_From_Cartesian(-4.0, 2.0);
      Complex_Negative_Imaginary : constant Complex := 
                                         Compose_From_Cartesian(3.0, -5.0);


      function A_Zero_Result (Z : Complex) return Boolean is
      begin
         return (Re(Z) = 0.0 and Im(Z) = 0.0);
      end A_Zero_Result;


      -- In order to evaluate complex elementary functions that are
      -- prescribed to return a "real" result (meaning that the imaginary
      -- component is zero), the Function A_Real_Result is defined.

      function A_Real_Result (Z : Complex) return Boolean is
      begin
         return Im(Z) = 0.0;
      end A_Real_Result;


      -- In order to evaluate complex elementary functions that are
      -- prescribed to return an "imaginary" result (meaning that the real
      -- component of the complex number is zero, and the imaginary
      -- component is non-zero), the Function An_Imaginary_Result is defined.

      function An_Imaginary_Result (Z : Complex) return Boolean is
      begin
         return  (Re(Z) = 0.0 and Im(Z) /= 0.0);
      end An_Imaginary_Result;


   begin

      -- Check that when the input parameter value is zero, the following
      -- functions yield a zero result.

      if not A_Zero_Result( Sqrt(Complex_Zero) ) then
         Report.Failed("Non-zero result from Function Sqrt with zero input");
      end if;

      if not A_Zero_Result( Sin(Complex_Zero) ) then
         Report.Failed("Non-zero result from Function Sin with zero input");
      end if;

      if not A_Zero_Result( Arcsin(Complex_Zero) ) then
         Report.Failed("Non-zero result from Function Arcsin with zero " &
                       "input");
      end if;

      if not A_Zero_Result( Tan(Complex_Zero) ) then
         Report.Failed("Non-zero result from Function Tan with zero input");
      end if;

      if not A_Zero_Result( Arctan(Complex_Zero) ) then
         Report.Failed("Non-zero result from Function Arctan with zero " &
                       "input");
      end if;

      if not A_Zero_Result( Sinh(Complex_Zero) ) then
         Report.Failed("Non-zero result from Function Sinh with zero input");
      end if;

      if not A_Zero_Result( Arcsinh(Complex_Zero) ) then
         Report.Failed("Non-zero result from Function Arcsinh with zero " &
                       "input");
      end if;

      if not A_Zero_Result( Tanh(Complex_Zero) ) then
         Report.Failed("Non-zero result from Function Tanh with zero input");
      end if;

      if not A_Zero_Result( Arctanh(Complex_Zero) ) then
         Report.Failed("Non-zero result from Function Arctanh with zero " &
                       "input");
      end if;


      -- Check that when the input parameter value is zero, the following
      -- functions yield a result of one.

      if Exp(Complex_Zero) /= Plus_One 
      then
         Report.Failed("Non-zero result from Function Exp with zero input");
      end if;

      if Cos(Complex_Zero) /= Plus_One 
      then
         Report.Failed("Non-zero result from Function Cos with zero input");
      end if;

      if Cosh(Complex_Zero) /= Plus_One 
      then
         Report.Failed("Non-zero result from Function Cosh with zero input");
      end if;


      -- Check that when the input parameter value is zero, the following
      -- functions yield a real result.

      if not A_Real_Result( Arccos(Complex_Zero) ) then
        Report.Failed("Non-real result from Function Arccos with zero input");
      end if;

      if not A_Real_Result( Arccot(Complex_Zero) ) then
        Report.Failed("Non-real result from Function Arccot with zero input");
      end if;


      -- Check that when the input parameter value is zero, the following
      -- functions yield an imaginary result.

      if not An_Imaginary_Result( Arccoth(Complex_Zero) ) then
        Report.Failed("Non-imaginary result from Function Arccoth with " &
                      "zero input");
      end if;


      -- Check that when the input parameter value is one, the Sqrt function 
      -- yields a result of one.

      if Sqrt(Plus_One) /= Plus_One then
         Report.Failed("Incorrect result from Function Sqrt with input " &
                       "value of one");
      end if;


      -- Check that when the input parameter value is one, the following 
      -- functions yield a result of zero.

      if not A_Zero_Result( Log(Plus_One) ) then
         Report.Failed("Non-zero result from Function Log with input " &
                       "value of one");
      end if;

      if not A_Zero_Result( Arccos(Plus_One) ) then
         Report.Failed("Non-zero result from Function Arccos with input " &
                       "value of one");
      end if;

      if not A_Zero_Result( Arccosh(Plus_One) ) then
         Report.Failed("Non-zero result from Function Arccosh with input " &
                       "value of one");
      end if;


      -- Check that when the input parameter value is one, the Arcsin 
      -- function yields a real result.

      if not A_Real_Result( Arcsin(Plus_One) ) then
         Report.Failed("Non-real result from Function Arcsin with input " &
                       "value of one");
      end if;


      -- Check that when the input parameter value is minus one, the Sqrt 
      -- function yields a result of "i", when the sign of the imaginary
      -- component of the input parameter is positive (and yields "-i", if 
      -- the sign on the imaginary component is negative), and the 
      -- Complex_Types.Real'Signed_Zeros attribute is True.

      if TC_Signed_Zeros then

         declare
            Minus_One_With_Pos_Zero_Im_Component : Complex := 
                                  Compose_From_Cartesian(-1.0, +0.0);
            Minus_One_With_Neg_Zero_Im_Component : Complex := 
              Compose_From_Cartesian
                (-1.0, Real_Type(ImpDef.Annex_G.Negative_Zero));
         begin

            if Sqrt(Minus_One_With_Pos_Zero_Im_Component) /= Plus_i then
               Report.Failed("Incorrect result from Function Sqrt, when " &
                             "input value is minus one with a positive "  &
                             "imaginary component, Signed_Zeros being True");
            end if;

            if Sqrt(Minus_One_With_Neg_Zero_Im_Component) /= Minus_i then
               Report.Failed("Incorrect result from Function Sqrt, when " &
                             "input value is minus one with a negative "  &
                             "imaginary component, Signed_Zeros being True");
            end if;
         end;

      else   -- Signed_Zeros is False.

         -- Check that when the input parameter value is minus one, the Sqrt 
         -- function yields a result of "i", when the 
         -- Complex_Types.Real'Signed_Zeros attribute is False.

         if Sqrt(Minus_One) /= Plus_i then
            Report.Failed("Incorrect result from Function Sqrt, when "    &
                          "input value is minus one, Signed_Zeros being " & 
                          "False");
         end if;

      end if;


      -- Check that when the input parameter value is minus one, the Log
      -- function yields an imaginary result.

      if not An_Imaginary_Result( Log(Minus_One) ) then
         Report.Failed("Non-imaginary result from Function Log with a " &
                       "minus one input value");
      end if;

      -- Check that when the input parameter is minus one, the following 
      -- functions yield a real result.

      if not A_Real_Result( Arcsin(Minus_One) ) then
         Report.Failed("Non-real result from Function Arcsin with a " &
                       "minus one input value");
      end if;

      if not A_Real_Result( Arccos(Minus_One) ) then
         Report.Failed("Non-real result from Function Arccos with a " &
                       "minus one input value");
      end if;


      -- Check that when the input parameter has a value of +i or -i, the
      -- Log function yields an imaginary result.

      if not An_Imaginary_Result( Log(Plus_i) ) then
         Report.Failed("Non-imaginary result from Function Log with an " &
                       "input value of ""+i""");
      end if;

      if not An_Imaginary_Result( Log(Minus_i) ) then
         Report.Failed("Non-imaginary result from Function Log with an " &
                       "input value of ""-i""");
      end if;


      -- Check that exponentiation by a zero exponent yields the value one.

      if "**"(Left  => Compose_From_Cartesian(5.0, 3.0), 
              Right => Complex_Zero)                     /= Plus_One  or
         Complex_Negative_Real**0.0                      /= Plus_One  or
         15.0**Complex_Zero                              /= Plus_One
      then
         Report.Failed("Incorrect result from exponentiation with a zero " &
                       "exponent");
      end if;


      -- Check that exponentiation by a unit exponent yields the value of 
      -- the left operand (as a complex value).
      -- Note: a "unit exponent" is considered the complex number (1.0, 0.0)

      if "**"(Complex_Negative_Real, Plus_One) /= 
         Complex_Negative_Real                    or
         Complex_Negative_Imaginary**Plus_One  /= 
         Complex_Negative_Imaginary               or
         4.0**Plus_One                         /= 
         Compose_From_Cartesian(4.0, 0.0)
      then
         Report.Failed("Incorrect result from exponentiation with a unit " &
                       "exponent");
      end if;


      -- Check that exponentiation of the value one yields the value one.

      if "**"(Plus_One, Complex_Negative_Imaginary) /= Plus_One  or
         Plus_One**9.0                              /= Plus_One  or
         1.0**Complex_Negative_Real                 /= Plus_One
      then
         Report.Failed("Incorrect result from exponentiation of the value " &
                       "One");
      end if;


      -- Check that exponentiation of the value zero yields the value zero.
      begin
         if not A_Zero_Result("**"(Complex_Zero, 
                                   Complex_Positive_Imaginary)) or
            not A_Zero_Result(Complex_Zero**4.0)                or
            not A_Zero_Result(0.0**Complex_Positive_Real)
         then
            Report.Failed("Incorrect result from exponentiation of the " &
                          "value zero");
         end if;
      exception
         when others =>
           Report.Failed("Exception raised during the exponentiation of " &
                         "the complex value zero");
      end;


   exception
      when others => Report.Failed ("Exception raised in Test_Block");
   end Test_Block;

   Report.Result;

end CXG1005;