1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
|
-- CXG2003.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the sqrt function returns
-- results that are within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test contains three test packages that are almost
-- identical. The first two packages differ only in the
-- floating point type that is being tested. The first
-- and third package differ only in whether the generic
-- elementary functions package or the pre-instantiated
-- package is used.
-- The test package is not generic so that the arguments
-- and expected results for some of the test values
-- can be expressed as universal real instead of being
-- computed at runtime.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 2 FEB 96 SAIC Initial release for 2.1
-- 18 AUG 96 SAIC Made Check consistent with other tests.
--
--!
with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
with Ada.Numerics.Elementary_Functions;
procedure CXG2003 is
Verbose : constant Boolean := False;
package Float_Check is
subtype Real is Float;
procedure Do_Test;
end Float_Check;
package body Float_Check is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real);
function Sqrt (X : Real) return Real renames
Elementary_Functions.Sqrt;
function Log (X : Real) return Real renames
Elementary_Functions.Log;
function Exp (X : Real) return Real renames
Elementary_Functions.Exp;
-- The default Maximum Relative Error is the value specified
-- in the LRM.
Default_MRE : constant Real := 2.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real := Default_MRE) is
Rel_Error : Real;
Abs_Error : Real;
Max_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon instead
-- of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual - Expected) > Max_Error then
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " &
Real'Image (Actual - Expected) &
" mre:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Argument_Range_Check (A, B : Real;
Test : String) is
-- test a logarithmically distributed selection of
-- arguments selected from the range A to B.
X : Real;
Expected : Real;
Y : Real;
C : Real := Log(B/A);
Max_Samples : constant := 1000;
begin
for I in 1..Max_Samples loop
Expected := A * Exp(C * Real (I) / Real (Max_Samples));
X := Expected * Expected;
Y := Sqrt (X);
-- note that since the expected value is computed, we
-- must take the error in that computation into account.
Check (Y, Expected,
"test " & Test & " -" &
Integer'Image (I) &
" of argument range",
3.0);
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in argument range check");
when others =>
Report.Failed ("exception in argument range check");
end Argument_Range_Check;
procedure Do_Test is
begin
--- test 1 ---
declare
T : constant := (Real'Machine_EMax - 1) / 2;
X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
Expected : constant := (1.0 * Real'Machine_Radix) ** T;
Y : Real;
begin
Y := Sqrt (X);
Check (Y, Expected, "test 1 -- sqrt(radix**((emax-1)/2))");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
T : constant := (Real'Model_EMin + 1) / 2;
X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
Expected : constant := (1.0 * Real'Machine_Radix) ** T;
Y : Real;
begin
Y := Sqrt (X);
Check (Y, Expected, "test 2 -- sqrt(radix**((emin+1)/2))");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
X : constant := 1.0;
Expected : constant := 1.0;
Y : Real;
begin
Y := Sqrt(X);
Check (Y, Expected, "test 3 -- sqrt(1.0)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 3");
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
X : constant := 0.0;
Expected : constant := 0.0;
Y : Real;
begin
Y := Sqrt(X);
Check (Y, Expected, "test 4 -- sqrt(0.0)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 4");
when others =>
Report.Failed ("exception in test 4");
end;
--- test 5 ---
declare
X : constant := -1.0;
Y : Real;
begin
Y := Sqrt(X);
-- the following code should not be executed.
-- The call to Check is to keep the call to Sqrt from
-- appearing to be dead code.
Check (Y, -1.0, "test 5 -- sqrt(-1)" );
Report.Failed ("test 5 - argument_error expected");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 5");
when Ada.Numerics.Argument_Error =>
if Verbose then
Report.Comment ("test 5 correctly got argument_error");
end if;
when others =>
Report.Failed ("exception in test 5");
end;
--- test 6 ---
declare
X : constant := Ada.Numerics.Pi ** 2;
Expected : constant := Ada.Numerics.Pi;
Y : Real;
begin
Y := Sqrt (X);
Check (Y, Expected, "test 6 -- sqrt(pi**2)");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 6");
when others =>
Report.Failed ("exception in test 6");
end;
--- test 7 & 8 ---
Argument_Range_Check (1.0/Sqrt(Real(Real'Machine_Radix)),
1.0,
"7");
Argument_Range_Check (1.0,
Sqrt(Real(Real'Machine_Radix)),
"8");
end Do_Test;
end Float_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package A_Long_Float_Check is
subtype Real is A_Long_Float;
procedure Do_Test;
end A_Long_Float_Check;
package body A_Long_Float_Check is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real);
function Sqrt (X : Real) return Real renames
Elementary_Functions.Sqrt;
function Log (X : Real) return Real renames
Elementary_Functions.Log;
function Exp (X : Real) return Real renames
Elementary_Functions.Exp;
-- The default Maximum Relative Error is the value specified
-- in the LRM.
Default_MRE : constant Real := 2.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real := Default_MRE) is
Rel_Error : Real;
Abs_Error : Real;
Max_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon instead
-- of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual - Expected) > Max_Error then
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " &
Real'Image (Actual - Expected) &
" mre:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Argument_Range_Check (A, B : Real;
Test : String) is
-- test a logarithmically distributed selection of
-- arguments selected from the range A to B.
X : Real;
Expected : Real;
Y : Real;
C : Real := Log(B/A);
Max_Samples : constant := 1000;
begin
for I in 1..Max_Samples loop
Expected := A * Exp(C * Real (I) / Real (Max_Samples));
X := Expected * Expected;
Y := Sqrt (X);
-- note that since the expected value is computed, we
-- must take the error in that computation into account.
Check (Y, Expected,
"test " & Test & " -" &
Integer'Image (I) &
" of argument range",
3.0);
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in argument range check");
when others =>
Report.Failed ("exception in argument range check");
end Argument_Range_Check;
procedure Do_Test is
begin
--- test 1 ---
declare
T : constant := (Real'Machine_EMax - 1) / 2;
X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
Expected : constant := (1.0 * Real'Machine_Radix) ** T;
Y : Real;
begin
Y := Sqrt (X);
Check (Y, Expected, "test 1 -- sqrt(radix**((emax-1)/2))");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
T : constant := (Real'Model_EMin + 1) / 2;
X : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
Expected : constant := (1.0 * Real'Machine_Radix) ** T;
Y : Real;
begin
Y := Sqrt (X);
Check (Y, Expected, "test 2 -- sqrt(radix**((emin+1)/2))");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
X : constant := 1.0;
Expected : constant := 1.0;
Y : Real;
begin
Y := Sqrt(X);
Check (Y, Expected, "test 3 -- sqrt(1.0)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 3");
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
X : constant := 0.0;
Expected : constant := 0.0;
Y : Real;
begin
Y := Sqrt(X);
Check (Y, Expected, "test 4 -- sqrt(0.0)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 4");
when others =>
Report.Failed ("exception in test 4");
end;
--- test 5 ---
declare
X : constant := -1.0;
Y : Real;
begin
Y := Sqrt(X);
-- the following code should not be executed.
-- The call to Check is to keep the call to Sqrt from
-- appearing to be dead code.
Check (Y, -1.0, "test 5 -- sqrt(-1)" );
Report.Failed ("test 5 - argument_error expected");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 5");
when Ada.Numerics.Argument_Error =>
if Verbose then
Report.Comment ("test 5 correctly got argument_error");
end if;
when others =>
Report.Failed ("exception in test 5");
end;
--- test 6 ---
declare
X : constant := Ada.Numerics.Pi ** 2;
Expected : constant := Ada.Numerics.Pi;
Y : Real;
begin
Y := Sqrt (X);
Check (Y, Expected, "test 6 -- sqrt(pi**2)");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 6");
when others =>
Report.Failed ("exception in test 6");
end;
--- test 7 & 8 ---
Argument_Range_Check (1.0/Sqrt(Real(Real'Machine_Radix)),
1.0,
"7");
Argument_Range_Check (1.0,
Sqrt(Real(Real'Machine_Radix)),
"8");
end Do_Test;
end A_Long_Float_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Non_Generic_Check is
procedure Do_Test;
end Non_Generic_Check;
package body Non_Generic_Check is
package EF renames
Ada.Numerics.Elementary_Functions;
subtype Real is Float;
-- The default Maximum Relative Error is the value specified
-- in the LRM.
Default_MRE : constant Real := 2.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real := Default_MRE) is
Rel_Error : Real;
Abs_Error : Real;
Max_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon instead
-- of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual - Expected) > Max_Error then
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " &
Real'Image (Actual - Expected) &
" mre:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Argument_Range_Check (A, B : Float;
Test : String) is
-- test a logarithmically distributed selection of
-- arguments selected from the range A to B.
X : Float;
Expected : Float;
Y : Float;
C : Float := EF.Log(B/A);
Max_Samples : constant := 1000;
begin
for I in 1..Max_Samples loop
Expected := A * EF.Exp(C * Float (I) / Float (Max_Samples));
X := Expected * Expected;
Y := EF.Sqrt (X);
-- note that since the expected value is computed, we
-- must take the error in that computation into account.
Check (Y, Expected,
"test " & Test & " -" &
Integer'Image (I) &
" of argument range",
3.0);
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in argument range check");
when others =>
Report.Failed ("exception in argument range check");
end Argument_Range_Check;
procedure Do_Test is
begin
--- test 1 ---
declare
T : constant := (Float'Machine_EMax - 1) / 2;
X : constant := (1.0 * Float'Machine_Radix) ** (2 * T);
Expected : constant := (1.0 * Float'Machine_Radix) ** T;
Y : Float;
begin
Y := EF.Sqrt (X);
Check (Y, Expected, "test 1 -- sqrt(radix**((emax-1)/2))");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
T : constant := (Float'Model_EMin + 1) / 2;
X : constant := (1.0 * Float'Machine_Radix) ** (2 * T);
Expected : constant := (1.0 * Float'Machine_Radix) ** T;
Y : Float;
begin
Y := EF.Sqrt (X);
Check (Y, Expected, "test 2 -- sqrt(radix**((emin+1)/2))");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
X : constant := 1.0;
Expected : constant := 1.0;
Y : Float;
begin
Y := EF.Sqrt(X);
Check (Y, Expected, "test 3 -- sqrt(1.0)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 3");
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
X : constant := 0.0;
Expected : constant := 0.0;
Y : Float;
begin
Y := EF.Sqrt(X);
Check (Y, Expected, "test 4 -- sqrt(0.0)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 4");
when others =>
Report.Failed ("exception in test 4");
end;
--- test 5 ---
declare
X : constant := -1.0;
Y : Float;
begin
Y := EF.Sqrt(X);
-- the following code should not be executed.
-- The call to Check is to keep the call to Sqrt from
-- appearing to be dead code.
Check (Y, -1.0, "test 5 -- sqrt(-1)" );
Report.Failed ("test 5 - argument_error expected");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 5");
when Ada.Numerics.Argument_Error =>
if Verbose then
Report.Comment ("test 5 correctly got argument_error");
end if;
when others =>
Report.Failed ("exception in test 5");
end;
--- test 6 ---
declare
X : constant := Ada.Numerics.Pi ** 2;
Expected : constant := Ada.Numerics.Pi;
Y : Float;
begin
Y := EF.Sqrt (X);
Check (Y, Expected, "test 6 -- sqrt(pi**2)");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 6");
when others =>
Report.Failed ("exception in test 6");
end;
--- test 7 & 8 ---
Argument_Range_Check (1.0/EF.Sqrt(Float(Float'Machine_Radix)),
1.0,
"7");
Argument_Range_Check (1.0,
EF.Sqrt(Float(Float'Machine_Radix)),
"8");
end Do_Test;
end Non_Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2003",
"Check the accuracy of the sqrt function");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking non-generic package");
end if;
Non_Generic_Check.Do_Test;
Report.Result;
end CXG2003;
|