summaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2004.a
blob: 2df296d3d42e5b0498a9803bdace1da87e5a7c80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
-- CXG2004.A
--
--                             Grant of Unlimited Rights
--
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained 
--     unlimited rights in the software and documentation contained herein.
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making 
--     this public release, the Government intends to confer upon all 
--     recipients unlimited rights  equal to those held by the Government.  
--     These rights include rights to use, duplicate, release or disclose the 
--     released technical data and computer software in whole or in part, in 
--     any manner and for any purpose whatsoever, and to have or permit others 
--     to do so.
--
--                                    DISCLAIMER
--
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED 
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE 
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--     PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
--      Check that the sin and cos functions return
--      results that are within the error bound allowed.
--
-- TEST DESCRIPTION:
--      This test consists of a generic package that is 
--      instantiated to check both float and a long float type.
--      The test for each floating point type is divided into
--      the following parts:
--         Special value checks where the result is a known constant.
--         Checks using an identity relationship.
--
-- SPECIAL REQUIREMENTS
--      The Strict Mode for the numerical accuracy must be
--      selected.  The method by which this mode is selected
--      is implementation dependent.
--
-- APPLICABILITY CRITERIA:
--      This test applies only to implementations supporting the
--      Numerics Annex.
--      This test only applies to the Strict Mode for numerical
--      accuracy.
--
--
-- CHANGE HISTORY:
--      13 FEB 96   SAIC    Initial release for 2.1
--      22 APR 96   SAIC    Changed to generic implementation.
--      18 AUG 96   SAIC    Improvements to commentary.
--      23 OCT 96   SAIC    Exact results are not required unless the
--                          cycle is specified.  
--      28 FEB 97   PWB.CTA Removed checks where cycle 2.0*Pi is specified
--      02 JUN 98   EDS     Revised calculations to ensure that X is exactly
--                          three times Y per advice of numerics experts.
--
-- CHANGE NOTE:
--      According to Ken Dritz, author of the Numerics Annex of the RM,
--      one should never specify the cycle 2.0*Pi for the trigonometric
--      functions.  In particular, if the machine number for the first
--      argument is not an exact multiple of the machine number for the
--      explicit cycle, then the specified exact results cannot be
--      reasonably expected.  The affected checks in this test have been
--      marked as comments, with the additional notation "pwb-math".
--      Phil Brashear
--!

--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition 
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science   Volume 142
-- Springer Verlag, 1982
--
-- The sin and cos checks are translated directly from 
-- the netlib FORTRAN code that was written by W. Cody.
--

with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
with Ada.Numerics.Elementary_Functions;
procedure CXG2004 is
   Verbose : constant Boolean := False;
   Number_Samples : constant := 1000;

   -- CRC Standard Mathematical Tables;  23rd Edition; pg 738
   Sqrt2 : constant := 
        1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
   Sqrt3 : constant :=
        1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;

   Pi : constant := Ada.Numerics.Pi;

   generic
      type Real is digits <>;
   package Generic_Check is
      procedure Do_Test;
   end Generic_Check;

   package body Generic_Check is
      package Elementary_Functions is new 
           Ada.Numerics.Generic_Elementary_Functions (Real);

      function Sin (X : Real) return Real renames
           Elementary_Functions.Sin;
      function Cos (X : Real) return Real renames
           Elementary_Functions.Cos;
      function Sin (X, Cycle : Real) return Real renames
           Elementary_Functions.Sin;
      function Cos (X, Cycle : Real) return Real renames
           Elementary_Functions.Cos;

      Accuracy_Error_Reported : Boolean := False;

      procedure Check (Actual, Expected : Real;
                       Test_Name : String;
                       MRE : Real) is
         Rel_Error,
         Abs_Error,
         Max_Error : Real;
      begin

         -- In the case where the expected result is very small or 0
         -- we compute the maximum error as a multiple of Model_Epsilon instead
         -- of Model_Epsilon and Expected.
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
         Abs_Error := MRE * Real'Model_Epsilon;
         if Rel_Error > Abs_Error then
            Max_Error := Rel_Error;
         else
            Max_Error := Abs_Error;
         end if; 


         -- in addition to the relative error checks we apply the
         -- criteria of G.2.4(16)
         if abs (Actual) > 1.0 then
            Accuracy_Error_Reported := True;
            Report.Failed (Test_Name & " result > 1.0");
         elsif abs (Actual - Expected) > Max_Error then
            Accuracy_Error_Reported := True;
            Report.Failed (Test_Name & 
                           " actual: " & Real'Image (Actual) &
                           " expected: " & Real'Image (Expected) &
                           " difference: " &
                           Real'Image (Actual - Expected) &
                           " mre:" & 
                           Real'Image (Max_Error) );
         elsif Verbose then
	    if Actual = Expected then
	       Report.Comment (Test_Name & "  exact result");
	    else
	       Report.Comment (Test_Name & "  passed");
	    end if;
         end if;
      end Check;


      procedure Sin_Check (A, B : Real;
                           Arg_Range : String) is
         -- test a selection of 
         -- arguments selected from the range A to B. 
         --
         -- This test uses the identity
	 --   sin(x) = sin(x/3)*(3 - 4 * sin(x/3)**2)
	 --
         -- Note that in this test we must take into account the
         -- error in the calculation of the expected result so
         -- the maximum relative error is larger than the
         -- accuracy required by the ARM.

         X, Y, ZZ : Real;
	 Actual, Expected : Real;
	 MRE : Real;
	 Ran : Real;
      begin
         Accuracy_Error_Reported := False;  -- reset
         for I in 1 .. Number_Samples loop
	    -- Evenly distributed selection of arguments
	    Ran := Real (I) / Real (Number_Samples);

	    -- make sure x and x/3 are both exactly representable
	    -- on the machine.  See "Implementation and Testing of
            -- Function Software" page 44.
            X := (B - A) * Ran + A;
            Y := Real'Leading_Part 
                      ( X/3.0, 
                        Real'Machine_Mantissa - Real'Exponent (3.0) );
            X := Y * 3.0;

	    Actual := Sin (X);

	    ZZ := Sin(Y);
	    Expected := ZZ * (3.0 - 4.0 * ZZ * ZZ);

            -- note that since the expected value is computed, we
            -- must take the error in that computation into account.
            -- See Cody pp 139-141.
	    MRE := 4.0;

            Check (Actual, Expected,
                   "sin test of range" & Arg_Range &
                      Integer'Image (I),
                   MRE);
            exit when Accuracy_Error_Reported;
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed 
               ("Constraint_Error raised in sin check");
         when others =>
            Report.Failed ("exception in sin check");
      end Sin_Check;



      procedure Cos_Check (A, B : Real;
                                  Arg_Range : String) is
         -- test a selection of 
         -- arguments selected from the range A to B. 
         --
         -- This test uses the identity
	 --   cos(x) = cos(x/3)*(4 * cos(x/3)**2 - 3)
	 --
         -- Note that in this test we must take into account the
         -- error in the calculation of the expected result so
         -- the maximum relative error is larger than the
         -- accuracy required by the ARM.

         X, Y, ZZ : Real;
	 Actual, Expected : Real;
	 MRE : Real;
	 Ran : Real;
      begin
         Accuracy_Error_Reported := False;  -- reset
         for I in 1 .. Number_Samples loop
	    -- Evenly distributed selection of arguments
	    Ran := Real (I) / Real (Number_Samples);

	    -- make sure x and x/3 are both exactly representable
	    -- on the machine.  See "Implementation and Testing of
            -- Function Software" page 44.
            X := (B - A) * Ran + A;
            Y := Real'Leading_Part 
                      ( X/3.0, 
                        Real'Machine_Mantissa - Real'Exponent (3.0) );
            X := Y * 3.0;

	    Actual := Cos (X);

	    ZZ := Cos(Y);
	    Expected := ZZ * (4.0 * ZZ * ZZ - 3.0);

            -- note that since the expected value is computed, we
            -- must take the error in that computation into account.
            -- See Cody pp 141-143.
	    MRE := 6.0;

            Check (Actual, Expected,
                   "cos test of range" & Arg_Range &
                      Integer'Image (I),
                   MRE);
            exit when Accuracy_Error_Reported;
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed 
               ("Constraint_Error raised in cos check");
         when others =>
            Report.Failed ("exception in cos check");
      end Cos_Check;


      procedure Special_Angle_Checks is
         type Data_Point is 
            record
               Degrees,
               Radians,
               Sine,
               Cosine         : Real;
               Sin_Result_Error,
               Cos_Result_Error : Boolean;
            end record;

         type Test_Data_Type is array (Positive range <>) of Data_Point;

         -- the values in the following table only involve static
         -- expressions to minimize any loss of precision.  However,
         -- there are two sources of error that must be accounted for
         -- in the following tests.
         -- First, when a cycle is not specified there can be a roundoff
         -- error in the value of Pi used.  This error does not apply
         -- when a cycle of 2.0 * Pi is explicitly provided.
         -- Second, the expected results that involve sqrt values also
         -- have a potential roundoff error.
         -- The amount of error due to error in the argument is computed
         -- as follows:
         --   sin(x+err) = sin(x)*cos(err) + cos(x)*sin(err)
         --              ~= sin(x) + err * cos(x)
         -- similarly for cos the error due to error in the argument is
         -- computed as follows:
         --   cos(x+err) = cos(x)*cos(err) - sin(x)*sin(err)
         --              ~= cos(x) - err * sin(x)
         -- In both cases the term "err" is bounded by 0.5 * argument.

         Test_Data : constant Test_Data_Type := (
--  degrees      radians          sine       cosine  sin_er cos_er    test #
  (  0.0,           0.0,          0.0,         1.0,  False, False ),    -- 1
  ( 30.0,        Pi/6.0,          0.5,   Sqrt3/2.0,  False, True  ),    -- 2
  ( 60.0,        Pi/3.0,    Sqrt3/2.0,         0.5,  True,  False ),    -- 3
  ( 90.0,        Pi/2.0,          1.0,         0.0,  False, False ),    -- 4
  (120.0,    2.0*Pi/3.0,    Sqrt3/2.0,        -0.5,  True,  False ),    -- 5
  (150.0,    5.0*Pi/6.0,          0.5,  -Sqrt3/2.0,  False, True  ),    -- 6
  (180.0,            Pi,          0.0,        -1.0,  False, False ),    -- 7
  (210.0,    7.0*Pi/6.0,         -0.5,  -Sqrt3/2.0,  False, True  ),    -- 8
  (240.0,    8.0*Pi/6.0,   -Sqrt3/2.0,        -0.5,  True,  False ),    -- 9
  (270.0,    9.0*Pi/6.0,         -1.0,         0.0,  False, False ),    -- 10
  (300.0,   10.0*Pi/6.0,   -Sqrt3/2.0,         0.5,  True,  False ),    -- 11
  (330.0,   11.0*Pi/6.0,         -0.5,   Sqrt3/2.0,  False, True  ),    -- 12
  (360.0,        2.0*Pi,          0.0,         1.0,  False, False ),    -- 13
  ( 45.0,        Pi/4.0,    Sqrt2/2.0,   Sqrt2/2.0,  True,  True  ),    -- 14
  (135.0,    3.0*Pi/4.0,    Sqrt2/2.0,  -Sqrt2/2.0,  True,  True  ),    -- 15
  (225.0,    5.0*Pi/4.0,   -Sqrt2/2.0,  -Sqrt2/2.0,  True,  True  ),    -- 16
  (315.0,    7.0*Pi/4.0,   -Sqrt2/2.0,   Sqrt2/2.0,  True,  True  ),    -- 17
  (405.0,    9.0*Pi/4.0,    Sqrt2/2.0,   Sqrt2/2.0,  True,  True  ) );  -- 18
            
     
         Y : Real;
         Sin_Arg_Err,
         Cos_Arg_Err,
         Sin_Result_Err,
         Cos_Result_Err  : Real;
      begin
         for I in Test_Data'Range loop
            -- compute error components
            Sin_Arg_Err := abs Test_Data (I).Cosine * 
                           abs Test_Data (I).Radians / 2.0;
            Cos_Arg_Err := abs Test_Data (I).Sine * 
                           abs Test_Data (I).Radians / 2.0;

            if Test_Data (I).Sin_Result_Error then
               Sin_Result_Err := 0.5;
            else 
               Sin_Result_Err := 0.0;
            end if;

            if Test_Data (I).Cos_Result_Error then
               Cos_Result_Err := 1.0;
            else 
               Cos_Result_Err := 0.0;
            end if;



            Y := Sin (Test_Data (I).Radians);
            Check (Y, Test_Data (I).Sine,
                   "test" & Integer'Image (I) & " sin(r)",
                   2.0 + Sin_Arg_Err + Sin_Result_Err); 
            Y := Cos (Test_Data (I).Radians);
            Check (Y, Test_Data (I).Cosine,
                   "test" & Integer'Image (I) & " cos(r)",
                   2.0 + Cos_Arg_Err + Cos_Result_Err); 
            Y := Sin (Test_Data (I).Degrees, 360.0);
            Check (Y, Test_Data (I).Sine,
                   "test" & Integer'Image (I) & " sin(d,360)",
                   2.0 + Sin_Result_Err); 
            Y := Cos (Test_Data (I).Degrees, 360.0);
            Check (Y, Test_Data (I).Cosine,
                   "test" & Integer'Image (I) & " cos(d,360)",
                   2.0 + Cos_Result_Err); 
--pwb-math            Y := Sin (Test_Data (I).Radians, 2.0*Pi);
--pwb-math            Check (Y, Test_Data (I).Sine,
--pwb-math                   "test" & Integer'Image (I) & " sin(r,2pi)",
--pwb-math                   2.0 + Sin_Result_Err); 
--pwb-math            Y := Cos (Test_Data (I).Radians, 2.0*Pi);
--pwb-math            Check (Y, Test_Data (I).Cosine,
--pwb-math                   "test" & Integer'Image (I) & " cos(r,2pi)",
--pwb-math                   2.0 + Cos_Result_Err); 
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed ("Constraint_Error raised in special angle test");
         when others =>
            Report.Failed ("exception in special angle test");
      end Special_Angle_Checks;


      -- check the rule of A.5.1(41);6.0 which requires that the
      -- result be exact if the mathematical result is 0.0, 1.0,
      -- or -1.0
      procedure Exact_Result_Checks is
         type Data_Point is 
            record
               Degrees,
               Sine,
               Cosine         : Real;
            end record;

         type Test_Data_Type is array (Positive range <>) of Data_Point;
         Test_Data : constant Test_Data_Type := (
            -- degrees       sine       cosine       test #
              (  0.0,         0.0,         1.0  ),    -- 1
              ( 90.0,         1.0,         0.0  ),    -- 2
              (180.0,         0.0,        -1.0  ),    -- 3
              (270.0,        -1.0,         0.0  ),    -- 4
              (360.0,         0.0,         1.0  ),    -- 5
              ( 90.0 + 360.0, 1.0,         0.0  ),    -- 6
              (180.0 + 360.0, 0.0,        -1.0  ),    -- 7
              (270.0 + 360.0,-1.0,         0.0  ),    -- 8
              (360.0 + 360.0, 0.0,         1.0  ) );  -- 9
         
         Y : Real;   
      begin
         for I in Test_Data'Range loop
            Y := Sin (Test_Data(I).Degrees, 360.0);
            if Y /= Test_Data(I).Sine then
               Report.Failed ("exact result for sin(" &
                  Real'Image (Test_Data(I).Degrees) & 
                  ", 360.0) is not" &
                  Real'Image (Test_Data(I).Sine) &
                  "  Difference is " &
                  Real'Image (Y - Test_Data(I).Sine) );
            end if;

            Y := Cos (Test_Data(I).Degrees, 360.0);
            if Y /= Test_Data(I).Cosine then
               Report.Failed ("exact result for cos(" &
                  Real'Image (Test_Data(I).Degrees) & 
                  ", 360.0) is not" &
                  Real'Image (Test_Data(I).Cosine) &
                  "  Difference is " &
                  Real'Image (Y - Test_Data(I).Cosine) );
            end if;
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed ("Constraint_Error raised in exact result check");
         when others =>
            Report.Failed ("exception in exact result check");
      end Exact_Result_Checks;


      procedure Do_Test is
      begin
         Special_Angle_Checks;
         Sin_Check (0.0, Pi/2.0, "0..pi/2");
         Sin_Check (6.0*Pi, 6.5*Pi, "6pi..6.5pi");
         Cos_Check (7.0*Pi, 7.5*Pi, "7pi..7.5pi");
         Exact_Result_Checks;
      end Do_Test;
   end Generic_Check;

   -----------------------------------------------------------------------
   -----------------------------------------------------------------------

   package Float_Check is new Generic_Check (Float);

   -- check the floating point type with the most digits
   type A_Long_Float is digits System.Max_Digits;
   package A_Long_Float_Check is new Generic_Check (A_Long_Float);

   -----------------------------------------------------------------------
   -----------------------------------------------------------------------


begin
   Report.Test ("CXG2004",
                "Check the accuracy of the sin and cos functions"); 

   if Verbose then
      Report.Comment ("checking Standard.Float");
   end if;

   Float_Check.Do_Test;

   if Verbose then
      Report.Comment ("checking a digits" & 
                      Integer'Image (System.Max_Digits) &
                      " floating point type");
   end if;

   A_Long_Float_Check.Do_Test;

   Report.Result;
end CXG2004;