1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
-- CXG2007.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the complex Compose_From_Polar function returns
-- results that are within the error bound allowed.
-- Check that Argument_Error is raised if the Cycle parameter
-- is less than or equal to zero.
--
-- TEST DESCRIPTION:
-- This test uses a generic package to compute and check the
-- values of the Compose_From_Polar function.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 23 FEB 96 SAIC Initial release for 2.1
-- 23 APR 96 SAIC Fixed error checking
-- 03 MAR 97 PWB.CTA Deleted checks with explicit Cycle => 2.0*Pi
--
-- CHANGE NOTE:
-- According to Ken Dritz, author of the Numerics Annex of the RM,
-- one should never specify the cycle 2.0*Pi for the trigonometric
-- functions. In particular, if the machine number for the first
-- argument is not an exact multiple of the machine number for the
-- explicit cycle, then the specified exact results cannot be
-- reasonably expected. The affected checks in this test have been
-- marked as comments, with the additional notation "pwb-math".
-- Phil Brashear
--!
with System;
with Report;
with Ada.Numerics;
with Ada.Numerics.Generic_Complex_Types;
procedure CXG2007 is
Verbose : constant Boolean := False;
-- CRC Standard Mathematical Tables; 23rd Edition; pg 738
Sqrt2 : constant :=
1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
Sqrt3 : constant :=
1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
Pi : constant := Ada.Numerics.Pi;
generic
type Real is digits <>;
package Generic_Check is
procedure Do_Test;
end Generic_Check;
package body Generic_Check is
package Complex_Types is new
Ada.Numerics.Generic_Complex_Types (Real);
use Complex_Types;
Maximum_Relative_Error : constant Real := 3.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real;
Arg_Error : Real) is
-- Arg_Error is additional absolute error that is allowed beyond
-- the MRE to account for error in the result that can be
-- attributed to error in the arguments.
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Small instead
-- of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
Max_Error := Max_Error + Arg_Error;
if abs (Actual - Expected) > Max_Error then
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Check (Actual, Expected : Complex;
Test_Name : String;
MRE : Real;
Arg_Error : Real) is
-- Arg_Error is additional absolute error that is allowed beyond
-- the MRE to account for error in the result that can be
-- attributed to error in the arguments.
begin
Check (Actual.Re, Expected.Re,
Test_Name & " real part",
MRE, Arg_Error);
Check (Actual.Im, Expected.Im,
Test_Name & " imaginary part",
MRE, Arg_Error);
end Check;
procedure Special_Cases is
type Data_Point is
record
Re,
Im,
Modulus,
Radians,
Degrees,
Arg_Error : Real;
end record;
-- shorthand names for various constants
P4 : constant := Pi/4.0;
P6 : constant := Pi/6.0;
MER2 : constant Real := Real'Model_Epsilon * Sqrt2;
type Test_Data_Type is array (Positive range <>) of Data_Point;
-- the values in the following table only involve static
-- expressions so no loss of precision occurs.
Test_Data : constant Test_Data_Type := (
--Re Im Modulus Radians Degrees Arg_Err
( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ), -- 1
( 0.0, 0.0, 0.0, Pi, 180.0, 0.0 ), -- 2
( 1.0, 0.0, 1.0, 0.0, 0.0, 0.0 ), -- 3
(-1.0, 0.0, -1.0, 0.0, 0.0, 0.0 ), -- 4
( 1.0, 1.0, Sqrt2, P4, 45.0, MER2), -- 5
(-1.0, 1.0, -Sqrt2, -P4, -45.0, MER2), -- 6
( 1.0, -1.0, Sqrt2, -P4, -45.0, MER2), -- 7
(-1.0, -1.0, -Sqrt2, P4, 45.0, MER2), -- 8
(-1.0, -1.0, Sqrt2, -3.0*P4,-135.0, MER2), -- 9
(-1.0, 1.0, Sqrt2, 3.0*P4, 135.0, MER2), -- 10
( 1.0, -1.0, -Sqrt2, 3.0*P4, 135.0, MER2), -- 11
(-1.0, 0.0, 1.0, Pi, 180.0, 0.0 ), -- 12
( 1.0, 0.0, -1.0, Pi, 180.0, 0.0 ) ); -- 13
Z : Complex;
Exp : Complex;
begin
for I in Test_Data'Range loop
begin
Exp := (Test_Data (I).Re, Test_Data (I).Im);
Z := Compose_From_Polar (Test_Data (I).Modulus,
Test_Data (I).Radians);
Check (Z, Exp,
"test" & Integer'Image (I) & " compose_from_polar(m,r)",
Maximum_Relative_Error, Test_Data (I).Arg_Error);
--pwb-math Z := Compose_From_Polar (Test_Data (I).Modulus,
--pwb-math Test_Data (I).Radians,
--pwb-math 2.0*Pi);
--pwb-math Check (Z, Exp,
--pwb-math "test" & Integer'Image (I) & " compose_from_polar(m,r,2pi)",
--pwb-math Maximum_Relative_Error, Test_Data (I).Arg_Error);
Z := Compose_From_Polar (Test_Data (I).Modulus,
Test_Data (I).Degrees,
360.0);
Check (Z, Exp,
"test" & Integer'Image (I) & " compose_from_polar(m,d,360)",
Maximum_Relative_Error, Test_Data (I).Arg_Error);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test" &
Integer'Image (I));
when others =>
Report.Failed ("exception in test" &
Integer'Image (I));
end;
end loop;
end Special_Cases;
procedure Exception_Cases is
-- check that Argument_Error is raised if Cycle is <= 0
Z : Complex;
W : Complex;
begin
begin
Z := Compose_From_Polar (3.0, 0.0, Cycle => 0.0);
Report.Failed ("no exception for cycle = 0.0");
exception
when Ada.Numerics.Argument_Error => null;
when others =>
Report.Failed ("wrong exception for cycle = 0.0");
end;
begin
W := Compose_From_Polar (6.0, 1.0, Cycle => -10.0);
Report.Failed ("no exception for cycle < 0.0");
exception
when Ada.Numerics.Argument_Error => null;
when others =>
Report.Failed ("wrong exception for cycle < 0.0");
end;
if Report.Ident_Int (1) = 2 then
-- not executed - used to make it appear that we use the
-- results of the above computation
Z := Z * W;
Report.Failed(Real'Image (Z.Re + Z.Im));
end if;
end Exception_Cases;
procedure Do_Test is
begin
Special_Cases;
Exception_Cases;
end Do_Test;
end Generic_Check;
package Chk_Float is new Generic_Check (Float);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package Chk_A_Long_Float is new Generic_Check (A_Long_Float);
begin
Report.Test ("CXG2007",
"Check the accuracy of the Compose_From_Polar" &
" function");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Chk_Float.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
Chk_A_Long_Float.Do_Test;
Report.Result;
end CXG2007;
|