summaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2009.a
blob: 0b11ca53887ef6e9a332a0f42217c5397349d390 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
-- CXG2009.A
--
--                             Grant of Unlimited Rights
--
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained 
--     unlimited rights in the software and documentation contained herein.
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making 
--     this public release, the Government intends to confer upon all 
--     recipients unlimited rights  equal to those held by the Government.  
--     These rights include rights to use, duplicate, release or disclose the 
--     released technical data and computer software in whole or in part, in 
--     any manner and for any purpose whatsoever, and to have or permit others 
--     to do so.
--
--                                    DISCLAIMER
--
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED 
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE 
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--     PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
--      Check that the real sqrt and complex modulus functions
--      return results that are within the allowed
--      error bound.
--
-- TEST DESCRIPTION:
--      This test checks the accuracy of the sqrt and modulus functions 
--      by computing the norm of various vectors where the result
--      is known in advance.
--      This test uses real and complex math together as would an 
--      actual application.  Considerable use of generics is also
--      employed.
--
-- SPECIAL REQUIREMENTS
--      The Strict Mode for the numerical accuracy must be
--      selected.  The method by which this mode is selected
--      is implementation dependent.
--
-- APPLICABILITY CRITERIA:
--      This test applies only to implementations supporting the
--      Numerics Annex.
--      This test only applies to the Strict Mode for numerical
--      accuracy.
--
--
-- CHANGE HISTORY:
--      26 FEB 96   SAIC    Initial release for 2.1
--      22 AUG 96   SAIC    Revised Check procedure
--
--!

------------------------------------------------------------------------------

with System;
with Report;
with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Generic_Elementary_Functions;
procedure CXG2009 is
   Verbose : constant Boolean := False;

   --=====================================================================

   generic
      type Real is digits <>;
   package Generic_Real_Norm_Check is
      procedure Do_Test;
   end Generic_Real_Norm_Check;

   -----------------------------------------------------------------------

   package body Generic_Real_Norm_Check is
      type Vector is array (Integer range <>) of Real;

      package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
      function Sqrt (X : Real) return Real renames GEF.Sqrt;

      function One_Norm (V : Vector) return Real is
      -- sum of absolute values of the elements of the vector
	 Result : Real := 0.0;
      begin
	 for I in V'Range loop
	    Result := Result + abs V(I);
	 end loop;
	 return Result;
      end One_Norm;

      function Inf_Norm (V : Vector) return Real is
      -- greatest absolute vector element
	 Result : Real := 0.0;
      begin
	 for I in V'Range loop
	    if abs V(I) > Result then
	       Result := abs V(I);
	    end if;
	 end loop;
	 return Result;
      end Inf_Norm;

      function Two_Norm (V : Vector) return Real is
      -- if greatest absolute vector element is 0 then return 0
      -- else return greatest * sqrt (sum((element / greatest) ** 2)))
      --   where greatest is Inf_Norm of the vector
	 Inf_N : Real;
	 Sum_Squares : Real;
	 Term : Real;
      begin
	 Inf_N := Inf_Norm (V);
	 if Inf_N = 0.0 then
	    return 0.0;
	 end if;
         Sum_Squares := 0.0;
	 for I in V'Range loop
	    Term := V (I) / Inf_N;
	    Sum_Squares := Sum_Squares + Term * Term;
	 end loop;
	 return Inf_N * Sqrt (Sum_Squares);
      end Two_Norm;


      procedure Check (Actual, Expected : Real;
		       Test_Name : String;
		       MRE : Real;
		       Vector_Length : Integer) is
         Rel_Error : Real;
         Abs_Error : Real;
         Max_Error : Real;
      begin
         -- In the case where the expected result is very small or 0
         -- we compute the maximum error as a multiple of Model_Epsilon instead
         -- of Model_Epsilon and Expected.
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
         Abs_Error := MRE * Real'Model_Epsilon;
         if Rel_Error > Abs_Error then
            Max_Error := Rel_Error;
         else
            Max_Error := Abs_Error;
         end if; 

         if abs (Actual - Expected) > Max_Error then
            Report.Failed (Test_Name & 
	                     "  VectLength:" & 
                           Integer'Image (Vector_Length) &
                           " actual: " & Real'Image (Actual) &
                           " expected: " & Real'Image (Expected) &
                           " difference: " & 
                           Real'Image (Actual - Expected) &
                           " mre:" & Real'Image (Max_Error) );
         elsif Verbose then
            Report.Comment (Test_Name & " vector length" &
                            Integer'Image (Vector_Length));
	  end if;
      end Check;


      procedure Do_Test is
      begin
	 for Vector_Length in 1 .. 10 loop
	    declare
	       V  : Vector (1..Vector_Length) := (1..Vector_Length => 0.0);
	       V1 : Vector (1..Vector_Length) := (1..Vector_Length => 1.0);
	    begin
	       Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
	       Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);

	       for J in 1..Vector_Length loop
		 V := (1..Vector_Length => 0.0);
		 V (J) := 1.0;
	         Check (One_Norm (V), 1.0, "one_norm (010)", 
			0.0, Vector_Length);
	         Check (Inf_Norm (V), 1.0, "inf_norm (010)", 
			0.0, Vector_Length);
	         Check (Two_Norm (V), 1.0, "two_norm (010)", 
			0.0, Vector_Length);
	       end loop;

	       Check (One_Norm (V1), Real (Vector_Length), "one_norm (1)", 
		      0.0, Vector_Length);
	       Check (Inf_Norm (V1), 1.0, "inf_norm (1)", 
		      0.0, Vector_Length);

               -- error in computing Two_Norm and expected result
               -- are as follows  (ME is Model_Epsilon * Expected_Value):
               --   2ME from expected Sqrt
               --   2ME from Sqrt in Two_Norm times the error in the
               --   vector calculation.
               --   The vector calculation contains the following error
               --   based upon the length N of the vector:
               --      N*1ME from squaring terms in Two_Norm
               --      N*1ME from the division of each term in Two_Norm
               --      (N-1)*1ME from the sum of the terms
               -- This gives (2 + 2 * (N + N + (N-1)) ) * ME
               -- which simplifies to (2 + 2N + 2N + 2N - 2) * ME
               -- or 6*N*ME
	       Check (Two_Norm (V1), Sqrt (Real(Vector_Length)), 
                      "two_norm (1)", 
		      (Real (6 * Vector_Length)), 
		      Vector_Length);
	    exception
	       when others => Report.Failed ("exception for vector length" &
				Integer'Image (Vector_Length) );
	    end;
	 end loop;
      end Do_Test;
   end Generic_Real_Norm_Check;

   --=====================================================================

   generic
      type Real is digits <>;
   package Generic_Complex_Norm_Check is
      procedure Do_Test;
   end Generic_Complex_Norm_Check;

   -----------------------------------------------------------------------

   package body Generic_Complex_Norm_Check is
      package Complex_Types is new Ada.Numerics.Generic_Complex_Types (Real);
      use Complex_Types;
      type Vector is array (Integer range <>) of Complex;

      package GEF is new Ada.Numerics.Generic_Elementary_Functions (Real);
      function Sqrt (X : Real) return Real renames GEF.Sqrt;

      function One_Norm (V : Vector) return Real is
	 Result : Real := 0.0;
      begin
	 for I in V'Range loop
	    Result := Result + abs V(I);
	 end loop;
	 return Result;
      end One_Norm;

      function Inf_Norm (V : Vector) return Real is
	 Result : Real := 0.0;
      begin
	 for I in V'Range loop
	    if abs V(I) > Result then
	       Result := abs V(I);
	    end if;
	 end loop;
	 return Result;
      end Inf_Norm;

      function Two_Norm (V : Vector) return Real is
	 Inf_N : Real;
	 Sum_Squares : Real;
	 Term : Real;
      begin
	 Inf_N := Inf_Norm (V);
	 if Inf_N = 0.0 then
	    return 0.0;
	 end if;
         Sum_Squares := 0.0;
	 for I in V'Range loop
	    Term := abs (V (I) / Inf_N );
	    Sum_Squares := Sum_Squares + Term * Term;
	 end loop;
	 return Inf_N * Sqrt (Sum_Squares);
      end Two_Norm;


      procedure Check (Actual, Expected : Real;
		       Test_Name : String;
		       MRE : Real;
		       Vector_Length : Integer) is
         Rel_Error : Real;
         Abs_Error : Real;
         Max_Error : Real;
      begin
         -- In the case where the expected result is very small or 0
         -- we compute the maximum error as a multiple of Model_Epsilon instead
         -- of Model_Epsilon and Expected.
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
         Abs_Error := MRE * Real'Model_Epsilon;
         if Rel_Error > Abs_Error then
            Max_Error := Rel_Error;
         else
            Max_Error := Abs_Error;
         end if; 

         if abs (Actual - Expected) > Max_Error then
            Report.Failed (Test_Name & 
	                     "  VectLength:" & 
                           Integer'Image (Vector_Length) &
                           " actual: " & Real'Image (Actual) &
                           " expected: " & Real'Image (Expected) &
                           " difference: " & 
                           Real'Image (Actual - Expected) &
                           " mre:" & Real'Image (Max_Error) );
         elsif Verbose then
            Report.Comment (Test_Name & " vector length" &
                            Integer'Image (Vector_Length));
	  end if;
      end Check;


      procedure Do_Test is
      begin
	 for Vector_Length in 1 .. 10 loop
	    declare
	       V  : Vector (1..Vector_Length) := 
                      (1..Vector_Length => (0.0, 0.0));
               X, Y : Vector (1..Vector_Length);
	    begin
	       Check (One_Norm (V), 0.0, "one_norm (z)", 0.0, Vector_Length);
	       Check (Inf_Norm (V), 0.0, "inf_norm (z)", 0.0, Vector_Length);

	       for J in 1..Vector_Length loop
		 X := (1..Vector_Length => (0.0, 0.0) );
                 Y := X;   -- X and Y are now both zeroed
		 X (J).Re := 1.0;
                 Y (J).Im := 1.0;
	         Check (One_Norm (X), 1.0, "one_norm (0x0)", 
			0.0, Vector_Length);
	         Check (Inf_Norm (X), 1.0, "inf_norm (0x0)", 
			0.0, Vector_Length);
	         Check (Two_Norm (X), 1.0, "two_norm (0x0)", 
			0.0, Vector_Length);
	         Check (One_Norm (Y), 1.0, "one_norm (0y0)", 
			0.0, Vector_Length);
	         Check (Inf_Norm (Y), 1.0, "inf_norm (0y0)", 
			0.0, Vector_Length);
	         Check (Two_Norm (Y), 1.0, "two_norm (0y0)", 
			0.0, Vector_Length);
	       end loop;

               V := (1..Vector_Length => (3.0, 4.0));

               -- error in One_Norm is 3*N*ME for abs computation +
               --  (N-1)*ME for the additions
               -- which gives (4N-1) * ME
	       Check (One_Norm (V), 5.0 * Real (Vector_Length), 
		      "one_norm ((3,4))", 
		      Real (4*Vector_Length - 1), 
		      Vector_Length);

               -- error in Inf_Norm is from abs of single element (3ME)
	       Check (Inf_Norm (V), 5.0, 
		      "inf_norm ((3,4))", 
		      3.0, 
		      Vector_Length);

               -- error in following comes from:
               --   2ME in sqrt of expected result
               --   3ME in Inf_Norm calculation
               --   2ME in sqrt of vector calculation
               --   vector calculation has following error
               --      3N*ME for abs
               --       N*ME for squaring
               --       N*ME for division
               --       (N-1)ME for sum
               -- this results in [2 + 3 + 2(6N-1) ] * ME
               -- or (12N + 3)ME
	       Check (Two_Norm (V), 5.0 * Sqrt (Real(Vector_Length)), 
                      "two_norm ((3,4))", 
		      (12.0 * Real (Vector_Length) + 3.0), 
		      Vector_Length);
	    exception
	       when others => Report.Failed ("exception for complex " &
                                             "vector length" &
	                                     Integer'Image (Vector_Length) );
	    end;
	 end loop;
      end Do_Test;
   end Generic_Complex_Norm_Check;

   --=====================================================================

   generic
      type Real is digits <>;
   package Generic_Norm_Check is
      procedure Do_Test;
   end Generic_Norm_Check;

   -----------------------------------------------------------------------

   package body Generic_Norm_Check is
      package RNC is new Generic_Real_Norm_Check (Real);
      package CNC is new Generic_Complex_Norm_Check (Real);
      procedure Do_Test is
      begin
         RNC.Do_Test;
         CNC.Do_Test;
      end Do_Test;
   end Generic_Norm_Check;

   --=====================================================================

   package Float_Check is new Generic_Norm_Check (Float);

   type A_Long_Float is digits System.Max_Digits;
   package A_Long_Float_Check is new Generic_Norm_Check (A_Long_Float);

   -----------------------------------------------------------------------

begin
   Report.Test ("CXG2009",
                "Check the accuracy of the real sqrt and complex " &
                " modulus functions"); 

   if Verbose then
      Report.Comment ("checking Standard.Float");
   end if;

   Float_Check.Do_Test;

   if Verbose then
      Report.Comment ("checking a digits" & 
                      Integer'Image (System.Max_Digits) &
                      " floating point type");
   end if;

   A_Long_Float_Check.Do_Test;

   Report.Result;
end CXG2009;