summaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2010.a
blob: 4140a48752616d0c531f14ca6ef69c4ceb001e1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
-- CXG2010.A
--
--                             Grant of Unlimited Rights
--
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained 
--     unlimited rights in the software and documentation contained herein.
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making 
--     this public release, the Government intends to confer upon all 
--     recipients unlimited rights  equal to those held by the Government.  
--     These rights include rights to use, duplicate, release or disclose the 
--     released technical data and computer software in whole or in part, in 
--     any manner and for any purpose whatsoever, and to have or permit others 
--     to do so.
--
--                                    DISCLAIMER
--
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED 
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE 
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--     PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
--      Check that the exp function returns
--      results that are within the error bound allowed.
--
-- TEST DESCRIPTION:
--      This test contains three test packages that are almost
--      identical.  The first two packages differ only in the 
--      floating point type that is being tested.  The first
--      and third package differ only in whether the generic
--      elementary functions package or the pre-instantiated
--      package is used.
--      The test package is not generic so that the arguments
--      and expected results for some of the test values
--      can be expressed as universal real instead of being
--      computed at runtime.
--
-- SPECIAL REQUIREMENTS
--      The Strict Mode for the numerical accuracy must be
--      selected.  The method by which this mode is selected
--      is implementation dependent.
--
-- APPLICABILITY CRITERIA:
--      This test applies only to implementations supporting the
--      Numerics Annex and where the Machine_Radix is 2, 4, 8, or 16.
--      This test only applies to the Strict Mode for numerical
--      accuracy.
--
--
-- CHANGE HISTORY:
--       1 Mar 96   SAIC    Initial release for 2.1
--       2 Sep 96   SAIC    Improved check routine 
--
--!

--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition 
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science   Volume 142
-- Springer Verlag, 1982
--

--
-- Notes on derivation of error bound for exp(p)*exp(-p)
--
-- Let a = true value of exp(p) and ac be the computed value.
-- Then a = ac(1+e1), where |e1| <= 4*Model_Epsilon.
-- Similarly, let b = true value of exp(-p) and bc be the computed value.
-- Then b = bc(1+e2), where |e2| <= 4*ME.
-- 
-- The product of x and y is (x*y)(1+e3), where |e3| <= 1.0ME
-- 
-- Hence, the computed ab is [ac(1+e1)*bc(1+e2)](1+e3) =
-- (ac*bc)[1 + e1 + e2 + e3 + e1e2 + e1e3 + e2e3 + e1e2e3).
-- 
-- Throwing away the last four tiny terms, we have (ac*bc)(1 + eta),
-- 
-- where |eta| <= (4+4+1)ME = 9.0Model_Epsilon.

with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
with Ada.Numerics.Elementary_Functions;
procedure CXG2010 is
   Verbose : constant Boolean := False;
   Max_Samples : constant := 1000;
   Accuracy_Error_Reported : Boolean := False;

   package Float_Check is
      subtype Real is Float;
      procedure Do_Test;
   end Float_Check;

   package body Float_Check is
      package Elementary_Functions is new 
           Ada.Numerics.Generic_Elementary_Functions (Real);
      function Sqrt (X : Real) return Real renames
           Elementary_Functions.Sqrt;
      function Exp (X : Real) return Real renames
           Elementary_Functions.Exp;


      -- The following value is a lower bound on the accuracy
      -- required.  It is normally 0.0 so that the lower bound
      -- is computed from Model_Epsilon.  However, for tests
      -- where the expected result is only known to a certain
      -- amount of precision this bound takes on a non-zero 
      -- value to account for that level of precision.
      Error_Low_Bound : Real := 0.0;

      procedure Check (Actual, Expected : Real;
                       Test_Name : String;
                       MRE : Real) is
         Max_Error : Real;
         Rel_Error : Real;
         Abs_Error : Real;
      begin
         -- In the case where the expected result is very small or 0
         -- we compute the maximum error as a multiple of Model_Epsilon 
         -- instead of Model_Epsilon and Expected.
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
         Abs_Error := MRE * Real'Model_Epsilon;
         if Rel_Error > Abs_Error then
            Max_Error := Rel_Error;
         else
            Max_Error := Abs_Error;
         end if; 

         -- take into account the low bound on the error
         if Max_Error < Error_Low_Bound then
            Max_Error := Error_Low_Bound;
         end if;

         if abs (Actual - Expected) > Max_Error then
            Accuracy_Error_Reported := True;
            Report.Failed (Test_Name & 
                           " actual: " & Real'Image (Actual) &
                           " expected: " & Real'Image (Expected) &
                           " difference: " & Real'Image (Actual - Expected) &
                           " max err:" & Real'Image (Max_Error) );
         elsif Verbose then
	    if Actual = Expected then
	       Report.Comment (Test_Name & "  exact result");
	    else
	       Report.Comment (Test_Name & "  passed");
	    end if;
         end if;
      end Check;


      procedure Argument_Range_Check_1 (A, B : Real;
                                        Test : String) is
         -- test a evenly distributed selection of 
         -- arguments selected from the range A to B. 
	 -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
	 -- The parameter One_Minus_Exp_Minus_V is the value
	 --   1.0 - Exp (-V) 
	 -- accurate to machine precision.
         -- This procedure is a translation of part of Cody's test 
         X : Real;
         Y : Real;
	 ZX, ZY : Real;
         V : constant := 1.0 / 16.0;
         One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;

      begin
         Accuracy_Error_Reported := False;
         for I in 1..Max_Samples loop
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
            Y := X - V;
	    if Y < 0.0 then 
	       X := Y + V;
	    end if;

	    ZX := Exp (X);
	    ZY := Exp (Y);

	    -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
	    -- which simplifies to ZX := Exp (X-V);
	    ZX := ZX - ZX * One_Minus_Exp_Minus_V;

            -- note that since the expected value is computed, we
            -- must take the error in that computation into account.
          Check (ZY, ZX, 
                 "test " & Test & " -" &
                 Integer'Image (I) &
	     	     " exp (" & Real'Image (X) & ")",
                 9.0);
           exit when Accuracy_Error_Reported;
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed 
               ("Constraint_Error raised in argument range check 1");
         when others =>
            Report.Failed ("exception in argument range check 1");
      end Argument_Range_Check_1;



      procedure Argument_Range_Check_2 (A, B : Real;
                                        Test : String) is
         -- test a evenly distributed selection of 
         -- arguments selected from the range A to B. 
	 -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
	 -- The parameter One_Minus_Exp_Minus_V is the value
	 --   1.0 - Exp (-V) 
	 -- accurate to machine precision.
         -- This procedure is a translation of part of Cody's test 
         X : Real;
         Y : Real;
	 ZX, ZY : Real;
         V : constant := 45.0 / 16.0;
            -- 1/16 - Exp(45/16)
         Coeff : constant := 2.4453321046920570389E-3;

      begin
         Accuracy_Error_Reported := False;
         for I in 1..Max_Samples loop
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
            Y := X - V;
	    if Y < 0.0 then 
	       X := Y + V;
	    end if;

	    ZX := Exp (X);
	    ZY := Exp (Y);

	    -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
            -- where Coeff is 1/16 - Exp(45/16)
	    -- which simplifies to ZX := Exp (X-V);
	    ZX := ZX * 0.0625 - ZX * Coeff;

            -- note that since the expected value is computed, we
            -- must take the error in that computation into account.
          Check (ZY, ZX, 
                 "test " & Test & " -" &
                 Integer'Image (I) &
                 " exp (" & Real'Image (X) & ")",
                 9.0);
           exit when Accuracy_Error_Reported;
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed 
               ("Constraint_Error raised in argument range check 2");
         when others =>
            Report.Failed ("exception in argument range check 2");
      end Argument_Range_Check_2;


      procedure Do_Test is
      begin

         --- test 1 ---
         declare
	    Y : Real;
         begin
            Y := Exp(1.0);
            -- normal accuracy requirements
            Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 1");
            when others =>
               Report.Failed ("exception in test 1");
         end;

         --- test 2 ---
	 declare
	    Y : Real;
         begin
            Y := Exp(16.0) * Exp(-16.0);
            Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 2");
            when others =>
               Report.Failed ("exception in test 2");
         end;

         --- test 3 ---
	 declare
            Y : Real;
         begin
            Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
            Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 3");
            when others =>
               Report.Failed ("exception in test 3");
         end;

         --- test 4 ---
	 declare
            Y : Real;
         begin
            Y := Exp(0.0);
            Check (Y, 1.0, "test 4 -- exp(0.0)", 
                   0.0);   -- no error allowed
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 4");
            when others =>
               Report.Failed ("exception in test 4");
         end;

         --- test 5 ---
         -- constants used here only have 19 digits of precision
         if Real'Digits > 19 then
            Error_Low_Bound := 0.00000_00000_00000_0001;
            Report.Comment ("exp accuracy checked to 19 digits");
         end if;

         Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)), 
                                  1.0, 
                                  "5");
         Error_Low_Bound := 0.0;  -- reset

	 --- test 6 ---
         -- constants used here only have 19 digits of precision
         if Real'Digits > 19 then
            Error_Low_Bound := 0.00000_00000_00000_0001;
            Report.Comment ("exp accuracy checked to 19 digits");
         end if;

         Argument_Range_Check_2 (1.0, 
                                 Sqrt(Real(Real'Machine_Radix)), 
                                 "6");
         Error_Low_Bound := 0.0;  -- reset

      end Do_Test;
   end Float_Check;

   -----------------------------------------------------------------------
   -----------------------------------------------------------------------
   -- check the floating point type with the most digits
   type A_Long_Float is digits System.Max_Digits;


   package A_Long_Float_Check is
      subtype Real is A_Long_Float;
      procedure Do_Test;
   end A_Long_Float_Check;

   package body A_Long_Float_Check is
      package Elementary_Functions is new 
           Ada.Numerics.Generic_Elementary_Functions (Real);
      function Sqrt (X : Real) return Real renames
           Elementary_Functions.Sqrt;
      function Exp (X : Real) return Real renames
           Elementary_Functions.Exp;


      -- The following value is a lower bound on the accuracy
      -- required.  It is normally 0.0 so that the lower bound
      -- is computed from Model_Epsilon.  However, for tests
      -- where the expected result is only known to a certain
      -- amount of precision this bound takes on a non-zero 
      -- value to account for that level of precision.
      Error_Low_Bound : Real := 0.0;

      procedure Check (Actual, Expected : Real;
                       Test_Name : String;
                       MRE : Real) is
         Max_Error : Real;
         Rel_Error : Real;
         Abs_Error : Real;
      begin
         -- In the case where the expected result is very small or 0
         -- we compute the maximum error as a multiple of Model_Epsilon 
         -- instead of Model_Epsilon and Expected.
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
         Abs_Error := MRE * Real'Model_Epsilon;
         if Rel_Error > Abs_Error then
            Max_Error := Rel_Error;
         else
            Max_Error := Abs_Error;
         end if; 

         -- take into account the low bound on the error
         if Max_Error < Error_Low_Bound then
            Max_Error := Error_Low_Bound;
         end if;

         if abs (Actual - Expected) > Max_Error then
            Accuracy_Error_Reported := True;
            Report.Failed (Test_Name & 
                           " actual: " & Real'Image (Actual) &
                           " expected: " & Real'Image (Expected) &
                           " difference: " & Real'Image (Actual - Expected) &
                           " max err:" & Real'Image (Max_Error) );
         elsif Verbose then
	    if Actual = Expected then
	       Report.Comment (Test_Name & "  exact result");
	    else
	       Report.Comment (Test_Name & "  passed");
	    end if;
         end if;
      end Check;


      procedure Argument_Range_Check_1 (A, B : Real;
                                        Test : String) is
         -- test a evenly distributed selection of 
         -- arguments selected from the range A to B. 
	 -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
	 -- The parameter One_Minus_Exp_Minus_V is the value
	 --   1.0 - Exp (-V) 
	 -- accurate to machine precision.
         -- This procedure is a translation of part of Cody's test 
         X : Real;
         Y : Real;
	 ZX, ZY : Real;
         V : constant := 1.0 / 16.0;
         One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;

      begin
         Accuracy_Error_Reported := False;
         for I in 1..Max_Samples loop
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
            Y := X - V;
	    if Y < 0.0 then 
	       X := Y + V;
	    end if;

	    ZX := Exp (X);
	    ZY := Exp (Y);

	    -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
	    -- which simplifies to ZX := Exp (X-V);
	    ZX := ZX - ZX * One_Minus_Exp_Minus_V;

            -- note that since the expected value is computed, we
            -- must take the error in that computation into account.
          Check (ZY, ZX, 
                 "test " & Test & " -" &
                 Integer'Image (I) &
                 " exp (" & Real'Image (X) & ")",
                 9.0);
           exit when Accuracy_Error_Reported;
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed 
               ("Constraint_Error raised in argument range check 1");
         when others =>
            Report.Failed ("exception in argument range check 1");
      end Argument_Range_Check_1;



      procedure Argument_Range_Check_2 (A, B : Real;
                                        Test : String) is
         -- test a evenly distributed selection of 
         -- arguments selected from the range A to B. 
	 -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
	 -- The parameter One_Minus_Exp_Minus_V is the value
	 --   1.0 - Exp (-V) 
	 -- accurate to machine precision.
         -- This procedure is a translation of part of Cody's test 
         X : Real;
         Y : Real;
	 ZX, ZY : Real;
         V : constant := 45.0 / 16.0;
            -- 1/16 - Exp(45/16)
         Coeff : constant := 2.4453321046920570389E-3;

      begin
         Accuracy_Error_Reported := False;
         for I in 1..Max_Samples loop
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
            Y := X - V;
	    if Y < 0.0 then 
	       X := Y + V;
	    end if;

	    ZX := Exp (X);
	    ZY := Exp (Y);

	    -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
            -- where Coeff is 1/16 - Exp(45/16)
	    -- which simplifies to ZX := Exp (X-V);
	    ZX := ZX * 0.0625 - ZX * Coeff;

            -- note that since the expected value is computed, we
            -- must take the error in that computation into account.
          Check (ZY, ZX, 
                 "test " & Test & " -" &
                 Integer'Image (I) &
                 " exp (" & Real'Image (X) & ")",
                 9.0);
           exit when Accuracy_Error_Reported;
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed 
               ("Constraint_Error raised in argument range check 2");
         when others =>
            Report.Failed ("exception in argument range check 2");
      end Argument_Range_Check_2;


      procedure Do_Test is
      begin

         --- test 1 ---
         declare
	    Y : Real;
         begin
            Y := Exp(1.0);
            -- normal accuracy requirements
            Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 1");
            when others =>
               Report.Failed ("exception in test 1");
         end;

         --- test 2 ---
	 declare
	    Y : Real;
         begin
            Y := Exp(16.0) * Exp(-16.0);
            Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 2");
            when others =>
               Report.Failed ("exception in test 2");
         end;

         --- test 3 ---
	 declare
            Y : Real;
         begin
            Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
            Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 3");
            when others =>
               Report.Failed ("exception in test 3");
         end;

         --- test 4 ---
	 declare
            Y : Real;
         begin
            Y := Exp(0.0);
            Check (Y, 1.0, "test 4 -- exp(0.0)", 
                   0.0);   -- no error allowed
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 4");
            when others =>
               Report.Failed ("exception in test 4");
         end;

         --- test 5 ---
         -- constants used here only have 19 digits of precision
         if Real'Digits > 19 then
            Error_Low_Bound := 0.00000_00000_00000_0001;
            Report.Comment ("exp accuracy checked to 19 digits");
         end if;

         Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)), 
                                  1.0, 
                                  "5");
         Error_Low_Bound := 0.0;  -- reset

	 --- test 6 ---
         -- constants used here only have 19 digits of precision
         if Real'Digits > 19 then
            Error_Low_Bound := 0.00000_00000_00000_0001;
            Report.Comment ("exp accuracy checked to 19 digits");
         end if;

         Argument_Range_Check_2 (1.0, 
                                 Sqrt(Real(Real'Machine_Radix)), 
                                 "6");
         Error_Low_Bound := 0.0;  -- reset

      end Do_Test;
   end A_Long_Float_Check;

   -----------------------------------------------------------------------
   -----------------------------------------------------------------------

   package Non_Generic_Check is
      procedure Do_Test;
      subtype Real is Float;
   end Non_Generic_Check;

   package body Non_Generic_Check is

      package Elementary_Functions renames 
           Ada.Numerics.Elementary_Functions;
      function Sqrt (X : Real) return Real renames
           Elementary_Functions.Sqrt;
      function Exp (X : Real) return Real renames
           Elementary_Functions.Exp;


      -- The following value is a lower bound on the accuracy
      -- required.  It is normally 0.0 so that the lower bound
      -- is computed from Model_Epsilon.  However, for tests
      -- where the expected result is only known to a certain
      -- amount of precision this bound takes on a non-zero 
      -- value to account for that level of precision.
      Error_Low_Bound : Real := 0.0;

      procedure Check (Actual, Expected : Real;
                       Test_Name : String;
                       MRE : Real) is
         Max_Error : Real;
         Rel_Error : Real;
         Abs_Error : Real;
      begin
         -- In the case where the expected result is very small or 0
         -- we compute the maximum error as a multiple of Model_Epsilon 
         -- instead of Model_Epsilon and Expected.
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
         Abs_Error := MRE * Real'Model_Epsilon;
         if Rel_Error > Abs_Error then
            Max_Error := Rel_Error;
         else
            Max_Error := Abs_Error;
         end if; 

         -- take into account the low bound on the error
         if Max_Error < Error_Low_Bound then
            Max_Error := Error_Low_Bound;
         end if;

         if abs (Actual - Expected) > Max_Error then
            Accuracy_Error_Reported := True;
            Report.Failed (Test_Name & 
                           " actual: " & Real'Image (Actual) &
                           " expected: " & Real'Image (Expected) &
                           " difference: " & Real'Image (Actual - Expected) &
                           " max err:" & Real'Image (Max_Error) );
         elsif Verbose then
	    if Actual = Expected then
	       Report.Comment (Test_Name & "  exact result");
	    else
	       Report.Comment (Test_Name & "  passed");
	    end if;
         end if;
      end Check;


      procedure Argument_Range_Check_1 (A, B : Real;
                                        Test : String) is
         -- test a evenly distributed selection of 
         -- arguments selected from the range A to B. 
	 -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
	 -- The parameter One_Minus_Exp_Minus_V is the value
	 --   1.0 - Exp (-V) 
	 -- accurate to machine precision.
         -- This procedure is a translation of part of Cody's test 
         X : Real;
         Y : Real;
	 ZX, ZY : Real;
         V : constant := 1.0 / 16.0;
         One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;

      begin
         Accuracy_Error_Reported := False;
         for I in 1..Max_Samples loop
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
            Y := X - V;
	    if Y < 0.0 then 
	       X := Y + V;
	    end if;

	    ZX := Exp (X);
	    ZY := Exp (Y);

	    -- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
	    -- which simplifies to ZX := Exp (X-V);
	    ZX := ZX - ZX * One_Minus_Exp_Minus_V;

            -- note that since the expected value is computed, we
            -- must take the error in that computation into account.
          Check (ZY, ZX, 
                 "test " & Test & " -" &
                 Integer'Image (I) &
                 " exp (" & Real'Image (X) & ")",
                 9.0);
           exit when Accuracy_Error_Reported;
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed 
               ("Constraint_Error raised in argument range check 1");
         when others =>
            Report.Failed ("exception in argument range check 1");
      end Argument_Range_Check_1;



      procedure Argument_Range_Check_2 (A, B : Real;
                                        Test : String) is
         -- test a evenly distributed selection of 
         -- arguments selected from the range A to B. 
	 -- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
	 -- The parameter One_Minus_Exp_Minus_V is the value
	 --   1.0 - Exp (-V) 
	 -- accurate to machine precision.
         -- This procedure is a translation of part of Cody's test 
         X : Real;
         Y : Real;
	 ZX, ZY : Real;
         V : constant := 45.0 / 16.0;
            -- 1/16 - Exp(45/16)
         Coeff : constant := 2.4453321046920570389E-3;

      begin
         Accuracy_Error_Reported := False;
         for I in 1..Max_Samples loop
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
            Y := X - V;
	    if Y < 0.0 then 
	       X := Y + V;
	    end if;

	    ZX := Exp (X);
	    ZY := Exp (Y);

	    -- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
            -- where Coeff is 1/16 - Exp(45/16)
	    -- which simplifies to ZX := Exp (X-V);
	    ZX := ZX * 0.0625 - ZX * Coeff;

            -- note that since the expected value is computed, we
            -- must take the error in that computation into account.
          Check (ZY, ZX, 
                 "test " & Test & " -" &
                 Integer'Image (I) &
                 " exp (" & Real'Image (X) & ")",
                 9.0);
           exit when Accuracy_Error_Reported;
         end loop;
      exception
         when Constraint_Error => 
            Report.Failed 
               ("Constraint_Error raised in argument range check 2");
         when others =>
            Report.Failed ("exception in argument range check 2");
      end Argument_Range_Check_2;


      procedure Do_Test is
      begin

         --- test 1 ---
         declare
	    Y : Real;
         begin
            Y := Exp(1.0);
            -- normal accuracy requirements
            Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 1");
            when others =>
               Report.Failed ("exception in test 1");
         end;

         --- test 2 ---
	 declare
	    Y : Real;
         begin
            Y := Exp(16.0) * Exp(-16.0);
            Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 2");
            when others =>
               Report.Failed ("exception in test 2");
         end;

         --- test 3 ---
	 declare
            Y : Real;
         begin
            Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
            Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 3");
            when others =>
               Report.Failed ("exception in test 3");
         end;

         --- test 4 ---
	 declare
            Y : Real;
         begin
            Y := Exp(0.0);
            Check (Y, 1.0, "test 4 -- exp(0.0)", 
                   0.0);   -- no error allowed
         exception
            when Constraint_Error => 
               Report.Failed ("Constraint_Error raised in test 4");
            when others =>
               Report.Failed ("exception in test 4");
         end;

         --- test 5 ---
         -- constants used here only have 19 digits of precision
         if Real'Digits > 19 then
            Error_Low_Bound := 0.00000_00000_00000_0001;
            Report.Comment ("exp accuracy checked to 19 digits");
         end if;

         Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)), 
                                  1.0, 
                                  "5");
         Error_Low_Bound := 0.0;  -- reset

	 --- test 6 ---
         -- constants used here only have 19 digits of precision
         if Real'Digits > 19 then
            Error_Low_Bound := 0.00000_00000_00000_0001;
            Report.Comment ("exp accuracy checked to 19 digits");
         end if;

         Argument_Range_Check_2 (1.0, 
                                 Sqrt(Real(Real'Machine_Radix)), 
                                 "6");
         Error_Low_Bound := 0.0;  -- reset

      end Do_Test;
   end Non_Generic_Check;

   -----------------------------------------------------------------------
   -----------------------------------------------------------------------

begin
   Report.Test ("CXG2010",
                "Check the accuracy of the exp function"); 

   -- the test only applies to machines with a radix of 2,4,8, or 16
   case Float'Machine_Radix is
      when 2 | 4 | 8 | 16 => null;
      when others =>
	     Report.Not_Applicable ("only applicable to binary radix");
	     Report.Result;
	     return;
   end case;

   if Verbose then
      Report.Comment ("checking Standard.Float");
   end if;

   Float_Check.Do_Test;

   if Verbose then
      Report.Comment ("checking a digits" & 
                      Integer'Image (System.Max_Digits) &
                      " floating point type");
   end if;

   A_Long_Float_Check.Do_Test;

   if Verbose then
      Report.Comment ("checking non-generic package");
   end if;

   Non_Generic_Check.Do_Test;

   Report.Result;
end CXG2010;