1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
-- CXG2011.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the log function returns
-- results that are within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test consists of a generic package that is
-- instantiated to check both Float and a long float type.
-- The test for each floating point type is divided into
-- several parts:
-- Special value checks where the result is a known constant.
-- Checks in a range where a Taylor series can be used to compute
-- the expected result.
-- Checks that use an identity for determining the result.
-- Exception checks.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 1 Mar 96 SAIC Initial release for 2.1
-- 22 Aug 96 SAIC Improved Check routine
-- 02 DEC 97 EDS Log (0.0) must raise Constraint_Error,
-- not Argument_Error
--!
--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science Volume 142
-- Springer Verlag, 1982
--
with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
procedure CXG2011 is
Verbose : constant Boolean := False;
Max_Samples : constant := 1000;
-- CRC Handbook Page 738
Ln10 : constant := 2.30258_50929_94045_68401_79914_54684_36420_76011_01489;
Ln2 : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755_00134;
generic
type Real is digits <>;
package Generic_Check is
procedure Do_Test;
end Generic_Check;
package body Generic_Check is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real);
function Sqrt (X : Real'Base) return Real'Base renames
Elementary_Functions.Sqrt;
function Exp (X : Real'Base) return Real'Base renames
Elementary_Functions.Exp;
function Log (X : Real'Base) return Real'Base renames
Elementary_Functions.Log;
function Log (X, Base : Real'Base) return Real'Base renames
Elementary_Functions.Log;
-- flag used to terminate some tests early
Accuracy_Error_Reported : Boolean := False;
-- The following value is a lower bound on the accuracy
-- required. It is normally 0.0 so that the lower bound
-- is computed from Model_Epsilon. However, for tests
-- where the expected result is only known to a certain
-- amount of precision this bound takes on a non-zero
-- value to account for that level of precision.
Error_Low_Bound : Real := 0.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon
-- instead of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
-- take into account the low bound on the error
if Max_Error < Error_Low_Bound then
Max_Error := Error_Low_Bound;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Special_Value_Test is
begin
--- test 1 ---
declare
Y : Real;
begin
Y := Log(1.0);
Check (Y, 0.0, "special value test 1 -- log(1)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
Y : Real;
begin
Y := Log(10.0);
Check (Y, Ln10, "special value test 2 -- log(10)", 4.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
Y : Real;
begin
Y := Log (2.0);
Check (Y, Ln2, "special value test 3 -- log(2)", 4.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 3");
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
Y : Real;
begin
Y := Log (2.0 ** 18, 2.0);
Check (Y, 18.0, "special value test 4 -- log(2**18,2)", 4.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 4");
when others =>
Report.Failed ("exception in test 4");
end;
end Special_Value_Test;
procedure Taylor_Series_Test is
-- Use a 4 term taylor series expansion to check a selection of
-- arguments very near 1.0.
-- The range is chosen so that the 4 term taylor series will
-- provide accuracy to machine precision. Cody pg 49-50.
Half_Range : constant Real := Real'Model_Epsilon * 50.0;
A : constant Real := 1.0 - Half_Range;
B : constant Real := 1.0 + Half_Range;
X : Real;
Xm1 : Real;
Expected : Real;
Actual : Real;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Xm1 := X - 1.0;
-- The following is the first 4 terms of the taylor series
-- that has been rearranged to minimize error in the calculation
Expected := (Xm1 * (1.0/3.0 - Xm1/4.0) - 0.5) * Xm1 * Xm1 + Xm1;
Actual := Log (X);
Check (Actual, Expected,
"Taylor Series Test -" &
Integer'Image (I) &
" log (" & Real'Image (X) & ")",
4.0);
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Taylor Series Test");
when others =>
Report.Failed ("exception in Taylor Series Test");
end Taylor_Series_Test;
procedure Log_Difference_Identity is
-- Check using the identity ln(x) = ln(17x/16) - ln(17/16)
-- over the range A to B.
-- The selected range assures that both X and 17x/16 will
-- have the same exponents and neither argument gets too close
-- to 1. Cody pg 50.
A : constant Real := 1.0 / Sqrt (2.0);
B : constant Real := 15.0 / 16.0;
X : Real;
Expected : Real;
Actual : Real;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
-- magic argument purification
X := Real'Machine (Real'Machine (X+8.0) - 8.0);
Expected := Log (X + X / 16.0) - Log (17.0/16.0);
Actual := Log (X);
Check (Actual, Expected,
"Log Difference Identity -" &
Integer'Image (I) &
" log (" & Real'Image (X) & ")",
4.0);
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Log Difference Identity Test");
when others =>
Report.Failed ("exception in Log Difference Identity Test");
end Log_Difference_Identity;
procedure Log_Product_Identity is
-- Check using the identity ln(x**2) = 2ln(x)
-- over the range A to B.
-- This large range is chosen to minimize the possibility of
-- undetected systematic errors. Cody pg 53.
A : constant Real := 16.0;
B : constant Real := 240.0;
X : Real;
Expected : Real;
Actual : Real;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
-- magic argument purification
X := Real'Machine (Real'Machine (X+8.0) - 8.0);
Expected := 2.0 * Log (X);
Actual := Log (X*X);
Check (Actual, Expected,
"Log Product Identity -" &
Integer'Image (I) &
" log (" & Real'Image (X) & ")",
4.0);
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Log Product Identity Test");
when others =>
Report.Failed ("exception in Log Product Identity Test");
end Log_Product_Identity;
procedure Log10_Test is
-- Check using the identity log(x) = log(11x/10) - log(1.1)
-- over the range A to B. See Cody pg 52.
A : constant Real := 1.0 / Sqrt (10.0);
B : constant Real := 0.9;
X : Real;
Expected : Real;
Actual : Real;
begin
if Real'Digits > 17 then
-- constant used below is accuract to 17 digits
Error_Low_Bound := 0.00000_00000_00000_01;
Report.Comment ("log accuracy checked to 19 digits");
end if;
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Expected := Log (X + X/10.0, 10.0)
- 3.77060_15822_50407_5E-4 - 21.0 / 512.0;
Actual := Log (X, 10.0);
Check (Actual, Expected,
"Log 10 Test -" &
Integer'Image (I) &
" log (" & Real'Image (X) & ")",
4.0);
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
exit when Accuracy_Error_Reported;
end loop;
Error_Low_Bound := 0.0; -- reset
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Log 10 Test");
when others =>
Report.Failed ("exception in Log 10 Test");
end Log10_Test;
procedure Exception_Test is
X1, X2, X3, X4 : Real;
begin
begin
X1 := Log (0.0);
Report.Failed ("exception not raised for LOG(0)");
exception
-- Log (0.0) must raise Constraint_Error, not Argument_Error,
-- as per A.5.1(28,29). Was incorrect in ACVC 2.1 release.
when Ada.Numerics.Argument_Error =>
Report.Failed ("Argument_Error raised instead of" &
" Constraint_Error for LOG(0)--A.5.1(28,29)");
when Constraint_Error => null; -- ok
when others =>
Report.Failed ("wrong exception raised for LOG(0)");
end;
begin
X2 := Log ( 1.0, 0.0);
Report.Failed ("exception not raised for LOG(1,0)");
exception
when Ada.Numerics.Argument_Error => null; -- ok
when Constraint_Error =>
Report.Failed ("constraint_error raised instead of" &
" argument_error for LOG(1,0)");
when others =>
Report.Failed ("wrong exception raised for LOG(1,0)");
end;
begin
X3 := Log (1.0, 1.0);
Report.Failed ("exception not raised for LOG(1,1)");
exception
when Ada.Numerics.Argument_Error => null; -- ok
when Constraint_Error =>
Report.Failed ("constraint_error raised instead of" &
" argument_error for LOG(1,1)");
when others =>
Report.Failed ("wrong exception raised for LOG(1,1)");
end;
begin
X4 := Log (1.0, -10.0);
Report.Failed ("exception not raised for LOG(1,-10)");
exception
when Ada.Numerics.Argument_Error => null; -- ok
when Constraint_Error =>
Report.Failed ("constraint_error raised instead of" &
" argument_error for LOG(1,-10)");
when others =>
Report.Failed ("wrong exception raised for LOG(1,-10)");
end;
-- optimizer thwarting
if Report.Ident_Bool (False) then
Report.Comment (Real'Image (X1+X2+X3+X4));
end if;
end Exception_Test;
procedure Do_Test is
begin
Special_Value_Test;
Taylor_Series_Test;
Log_Difference_Identity;
Log_Product_Identity;
Log10_Test;
Exception_Test;
end Do_Test;
end Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Float_Check is new Generic_Check (Float);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2011",
"Check the accuracy of the log function");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
Report.Result;
end CXG2011;
|