1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
|
-- CXG2015.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the ARCSIN and ARCCOS functions return
-- results that are within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test consists of a generic package that is
-- instantiated to check both Float and a long float type.
-- The test for each floating point type is divided into
-- several parts:
-- Special value checks where the result is a known constant.
-- Checks in a specific range where a Taylor series can be
-- used to compute an accurate result for comparison.
-- Exception checks.
-- The Taylor series tests are a direct translation of the
-- FORTRAN code found in the reference.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 18 Mar 96 SAIC Initial release for 2.1
-- 24 Apr 96 SAIC Fixed error bounds.
-- 17 Aug 96 SAIC Added reference information and improved
-- checking for machines with more than 23
-- digits of precision.
-- 03 Feb 97 PWB.CTA Removed checks with explicit Cycle => 2.0*Pi
-- 22 Dec 99 RLB Added model range checking to "exact" results,
-- in order to avoid too strictly requiring a specific
-- result, and too weakly checking results.
--
-- CHANGE NOTE:
-- According to Ken Dritz, author of the Numerics Annex of the RM,
-- one should never specify the cycle 2.0*Pi for the trigonometric
-- functions. In particular, if the machine number for the first
-- argument is not an exact multiple of the machine number for the
-- explicit cycle, then the specified exact results cannot be
-- reasonably expected. The affected checks in this test have been
-- marked as comments, with the additional notation "pwb-math".
-- Phil Brashear
--!
--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science Volume 142
-- Springer Verlag, 1982
--
-- CELEFUNT: A Portable Test Package for Complex Elementary Functions
-- ACM Collected Algorithms number 714
with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
procedure CXG2015 is
Verbose : constant Boolean := False;
Max_Samples : constant := 1000;
-- CRC Standard Mathematical Tables; 23rd Edition; pg 738
Sqrt2 : constant :=
1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
Sqrt3 : constant :=
1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
Pi : constant := Ada.Numerics.Pi;
-- relative error bound from G.2.4(7);6.0
Minimum_Error : constant := 4.0;
generic
type Real is digits <>;
Half_PI_Low : in Real; -- The machine number closest to, but not greater
-- than PI/2.0.
Half_PI_High : in Real;-- The machine number closest to, but not less
-- than PI/2.0.
PI_Low : in Real; -- The machine number closest to, but not greater
-- than PI.
PI_High : in Real; -- The machine number closest to, but not less
-- than PI.
package Generic_Check is
procedure Do_Test;
end Generic_Check;
package body Generic_Check is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real);
function Arcsin (X : Real) return Real renames
Elementary_Functions.Arcsin;
function Arcsin (X, Cycle : Real) return Real renames
Elementary_Functions.Arcsin;
function Arccos (X : Real) return Real renames
Elementary_Functions.ArcCos;
function Arccos (X, Cycle : Real) return Real renames
Elementary_Functions.ArcCos;
-- needed for support
function Log (X, Base : Real) return Real renames
Elementary_Functions.Log;
-- flag used to terminate some tests early
Accuracy_Error_Reported : Boolean := False;
-- The following value is a lower bound on the accuracy
-- required. It is normally 0.0 so that the lower bound
-- is computed from Model_Epsilon. However, for tests
-- where the expected result is only known to a certain
-- amount of precision this bound takes on a non-zero
-- value to account for that level of precision.
Error_Low_Bound : Real := 0.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon instead
-- of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
-- take into account the low bound on the error
if Max_Error < Error_Low_Bound then
Max_Error := Error_Low_Bound;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Special_Value_Test is
-- In the following tests the expected result is accurate
-- to the machine precision so the minimum guaranteed error
-- bound can be used.
type Data_Point is
record
Degrees,
Radians,
Argument,
Error_Bound : Real;
end record;
type Test_Data_Type is array (Positive range <>) of Data_Point;
-- the values in the following tables only involve static
-- expressions so no loss of precision occurs. However,
-- rounding can be an issue with expressions involving Pi
-- and square roots. The error bound specified in the
-- table takes the sqrt error into account but not the
-- error due to Pi. The Pi error is added in in the
-- radians test below.
Arcsin_Test_Data : constant Test_Data_Type := (
-- degrees radians sine error_bound test #
--( 0.0, 0.0, 0.0, 0.0 ), -- 1 - In Exact_Result_Test.
( 30.0, Pi/6.0, 0.5, 4.0 ), -- 2
( 60.0, Pi/3.0, Sqrt3/2.0, 5.0 ), -- 3
--( 90.0, Pi/2.0, 1.0, 4.0 ), -- 4 - In Exact_Result_Test.
--(-90.0, -Pi/2.0, -1.0, 4.0 ), -- 5 - In Exact_Result_Test.
(-60.0, -Pi/3.0, -Sqrt3/2.0, 5.0 ), -- 6
(-30.0, -Pi/6.0, -0.5, 4.0 ), -- 7
( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
(-45.0, -Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
Arccos_Test_Data : constant Test_Data_Type := (
-- degrees radians cosine error_bound test #
--( 0.0, 0.0, 1.0, 0.0 ), -- 1 - In Exact_Result_Test.
( 30.0, Pi/6.0, Sqrt3/2.0, 5.0 ), -- 2
( 60.0, Pi/3.0, 0.5, 4.0 ), -- 3
--( 90.0, Pi/2.0, 0.0, 4.0 ), -- 4 - In Exact_Result_Test.
(120.0, 2.0*Pi/3.0, -0.5, 4.0 ), -- 5
(150.0, 5.0*Pi/6.0, -Sqrt3/2.0, 5.0 ), -- 6
--(180.0, Pi, -1.0, 4.0 ), -- 7 - In Exact_Result_Test.
( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
(135.0, 3.0*Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
Cycle_Error,
Radian_Error : Real;
begin
for I in Arcsin_Test_Data'Range loop
-- note exact result requirements A.5.1(38);6.0 and
-- G.2.4(12);6.0
if Arcsin_Test_Data (I).Error_Bound = 0.0 then
Cycle_Error := 0.0;
Radian_Error := 0.0;
else
Cycle_Error := Arcsin_Test_Data (I).Error_Bound;
-- allow for rounding error in the specification of Pi
Radian_Error := Cycle_Error + 1.0;
end if;
Check (Arcsin (Arcsin_Test_Data (I).Argument),
Arcsin_Test_Data (I).Radians,
"test" & Integer'Image (I) &
" arcsin(" &
Real'Image (Arcsin_Test_Data (I).Argument) &
")",
Radian_Error);
--pwb-math Check (Arcsin (Arcsin_Test_Data (I).Argument, 2.0 * Pi),
--pwb-math Arcsin_Test_Data (I).Radians,
--pwb-math "test" & Integer'Image (I) &
--pwb-math " arcsin(" &
--pwb-math Real'Image (Arcsin_Test_Data (I).Argument) &
--pwb-math ", 2pi)",
--pwb-math Cycle_Error);
Check (Arcsin (Arcsin_Test_Data (I).Argument, 360.0),
Arcsin_Test_Data (I).Degrees,
"test" & Integer'Image (I) &
" arcsin(" &
Real'Image (Arcsin_Test_Data (I).Argument) &
", 360)",
Cycle_Error);
end loop;
for I in Arccos_Test_Data'Range loop
-- note exact result requirements A.5.1(39);6.0 and
-- G.2.4(12);6.0
if Arccos_Test_Data (I).Error_Bound = 0.0 then
Cycle_Error := 0.0;
Radian_Error := 0.0;
else
Cycle_Error := Arccos_Test_Data (I).Error_Bound;
-- allow for rounding error in the specification of Pi
Radian_Error := Cycle_Error + 1.0;
end if;
Check (Arccos (Arccos_Test_Data (I).Argument),
Arccos_Test_Data (I).Radians,
"test" & Integer'Image (I) &
" arccos(" &
Real'Image (Arccos_Test_Data (I).Argument) &
")",
Radian_Error);
--pwb-math Check (Arccos (Arccos_Test_Data (I).Argument, 2.0 * Pi),
--pwb-math Arccos_Test_Data (I).Radians,
--pwb-math "test" & Integer'Image (I) &
--pwb-math " arccos(" &
--pwb-math Real'Image (Arccos_Test_Data (I).Argument) &
--pwb-math ", 2pi)",
--pwb-math Cycle_Error);
Check (Arccos (Arccos_Test_Data (I).Argument, 360.0),
Arccos_Test_Data (I).Degrees,
"test" & Integer'Image (I) &
" arccos(" &
Real'Image (Arccos_Test_Data (I).Argument) &
", 360)",
Cycle_Error);
end loop;
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in special value test");
when others =>
Report.Failed ("exception in special value test");
end Special_Value_Test;
procedure Check_Exact (Actual, Expected_Low, Expected_High : Real;
Test_Name : String) is
-- If the expected result is not a model number, then Expected_Low is
-- the first machine number less than the (exact) expected
-- result, and Expected_High is the first machine number greater than
-- the (exact) expected result. If the expected result is a model
-- number, Expected_Low = Expected_High = the result.
Model_Expected_Low : Real := Expected_Low;
Model_Expected_High : Real := Expected_High;
begin
-- Calculate the first model number nearest to, but below (or equal)
-- to the expected result:
while Real'Model (Model_Expected_Low) /= Model_Expected_Low loop
-- Try the next machine number lower:
Model_Expected_Low := Real'Adjacent(Model_Expected_Low, 0.0);
end loop;
-- Calculate the first model number nearest to, but above (or equal)
-- to the expected result:
while Real'Model (Model_Expected_High) /= Model_Expected_High loop
-- Try the next machine number higher:
Model_Expected_High := Real'Adjacent(Model_Expected_High, 100.0);
end loop;
if Actual < Model_Expected_Low or Actual > Model_Expected_High then
Accuracy_Error_Reported := True;
if Actual < Model_Expected_Low then
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected low: " & Real'Image (Model_Expected_Low) &
" expected high: " & Real'Image (Model_Expected_High) &
" difference: " & Real'Image (Actual - Expected_Low));
else
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected low: " & Real'Image (Model_Expected_Low) &
" expected high: " & Real'Image (Model_Expected_High) &
" difference: " & Real'Image (Expected_High - Actual));
end if;
elsif Verbose then
Report.Comment (Test_Name & " passed");
end if;
end Check_Exact;
procedure Exact_Result_Test is
begin
-- A.5.1(38)
Check_Exact (Arcsin (0.0), 0.0, 0.0, "arcsin(0)");
Check_Exact (Arcsin (0.0, 45.0), 0.0, 0.0, "arcsin(0,45)");
-- A.5.1(39)
Check_Exact (Arccos (1.0), 0.0, 0.0, "arccos(1)");
Check_Exact (Arccos (1.0, 75.0), 0.0, 0.0, "arccos(1,75)");
-- G.2.4(11-13)
Check_Exact (Arcsin (1.0), Half_PI_Low, Half_PI_High, "arcsin(1)");
Check_Exact (Arcsin (1.0, 360.0), 90.0, 90.0, "arcsin(1,360)");
Check_Exact (Arcsin (-1.0), -Half_PI_High, -Half_PI_Low, "arcsin(-1)");
Check_Exact (Arcsin (-1.0, 360.0), -90.0, -90.0, "arcsin(-1,360)");
Check_Exact (Arccos (0.0), Half_PI_Low, Half_PI_High, "arccos(0)");
Check_Exact (Arccos (0.0, 360.0), 90.0, 90.0, "arccos(0,360)");
Check_Exact (Arccos (-1.0), PI_Low, PI_High, "arccos(-1)");
Check_Exact (Arccos (-1.0, 360.0), 180.0, 180.0, "arccos(-1,360)");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in Exact_Result Test");
when others =>
Report.Failed ("Exception in Exact_Result Test");
end Exact_Result_Test;
procedure Arcsin_Taylor_Series_Test is
-- the following range is chosen so that the Taylor series
-- used will produce a result accurate to machine precision.
--
-- The following formula is used for the Taylor series:
-- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
-- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
-- where xsq = x * x
--
A : constant := -0.125;
B : constant := 0.125;
X : Real;
Y, Y_Sq : Real;
Actual, Sum, Xm : Real;
-- terms in Taylor series
K : constant Integer := Integer (
Log (
Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
10.0)) + 1;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
-- make sure there is no error in x-1, x, and x+1
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Y := X;
Y_Sq := Y * Y;
Sum := 0.0;
Xm := Real (K + K + 1);
for M in 1 .. K loop
Sum := Y_Sq * (Sum + 1.0/Xm);
Xm := Xm - 2.0;
Sum := Sum * (Xm /(Xm + 1.0));
end loop;
Sum := Sum * Y;
Actual := Y + Sum;
Sum := (Y - Actual) + Sum;
if not Real'Machine_Rounds then
Actual := Actual + (Sum + Sum);
end if;
Check (Actual, Arcsin (X),
"Taylor Series test" & Integer'Image (I) & ": arcsin(" &
Real'Image (X) & ") ",
Minimum_Error);
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Arcsin_Taylor_Series_Test" &
" for X=" & Real'Image (X));
when others =>
Report.Failed ("exception in Arcsin_Taylor_Series_Test" &
" for X=" & Real'Image (X));
end Arcsin_Taylor_Series_Test;
procedure Arccos_Taylor_Series_Test is
-- the following range is chosen so that the Taylor series
-- used will produce a result accurate to machine precision.
--
-- The following formula is used for the Taylor series:
-- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
-- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
-- arccos(x) = pi/2 - TS(x)
A : constant := -0.125;
B : constant := 0.125;
C1, C2 : Real;
X : Real;
Y, Y_Sq : Real;
Actual, Sum, Xm, S : Real;
-- terms in Taylor series
K : constant Integer := Integer (
Log (
Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
10.0)) + 1;
begin
if Real'Digits > 23 then
-- constants in this section only accurate to 23 digits
Error_Low_Bound := 0.00000_00000_00000_00000_001;
Report.Comment ("arctan accuracy checked to 23 digits");
end if;
-- C1 + C2 equals Pi/2 accurate to 23 digits
if Real'Machine_Radix = 10 then
C1 := 1.57;
C2 := 7.9632679489661923132E-4;
else
C1 := 201.0 / 128.0;
C2 := 4.8382679489661923132E-4;
end if;
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
-- make sure there is no error in x-1, x, and x+1
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Y := X;
Y_Sq := Y * Y;
Sum := 0.0;
Xm := Real (K + K + 1);
for M in 1 .. K loop
Sum := Y_Sq * (Sum + 1.0/Xm);
Xm := Xm - 2.0;
Sum := Sum * (Xm /(Xm + 1.0));
end loop;
Sum := Sum * Y;
-- at this point we have arcsin(x).
-- We compute arccos(x) = pi/2 - arcsin(x).
-- The following code segment is translated directly from
-- the CELEFUNT FORTRAN implementation
S := C1 + C2;
Sum := ((C1 - S) + C2) - Sum;
Actual := S + Sum;
Sum := ((S - Actual) + Sum) - Y;
S := Actual;
Actual := S + Sum;
Sum := (S - Actual) + Sum;
if not Real'Machine_Rounds then
Actual := Actual + (Sum + Sum);
end if;
Check (Actual, Arccos (X),
"Taylor Series test" & Integer'Image (I) & ": arccos(" &
Real'Image (X) & ") ",
Minimum_Error);
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
exit when Accuracy_Error_Reported;
end loop;
Error_Low_Bound := 0.0; -- reset
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Arccos_Taylor_Series_Test" &
" for X=" & Real'Image (X));
when others =>
Report.Failed ("exception in Arccos_Taylor_Series_Test" &
" for X=" & Real'Image (X));
end Arccos_Taylor_Series_Test;
procedure Identity_Test is
-- test the identity arcsin(-x) = -arcsin(x)
-- range chosen to be most of the valid range of the argument.
A : constant := -0.999;
B : constant := 0.999;
X : Real;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
-- make sure there is no error in x-1, x, and x+1
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Check (Arcsin(-X), -Arcsin (X),
"Identity test" & Integer'Image (I) & ": arcsin(" &
Real'Image (X) & ") ",
8.0); -- 2 arcsin evaluations => twice the error bound
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
end Identity_Test;
procedure Exception_Test is
X1, X2 : Real := 0.0;
begin
begin
X1 := Arcsin (1.1);
Report.Failed ("no exception for Arcsin (1.1)");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error instead of " &
"Argument_Error for Arcsin (1.1)");
when Ada.Numerics.Argument_Error =>
null; -- expected result
when others =>
Report.Failed ("wrong exception for Arcsin(1.1)");
end;
begin
X2 := Arccos (-1.1);
Report.Failed ("no exception for Arccos (-1.1)");
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error instead of " &
"Argument_Error for Arccos (-1.1)");
when Ada.Numerics.Argument_Error =>
null; -- expected result
when others =>
Report.Failed ("wrong exception for Arccos(-1.1)");
end;
-- optimizer thwarting
if Report.Ident_Bool (False) then
Report.Comment (Real'Image (X1 + X2));
end if;
end Exception_Test;
procedure Do_Test is
begin
Special_Value_Test;
Exact_Result_Test;
Arcsin_Taylor_Series_Test;
Arccos_Taylor_Series_Test;
Identity_Test;
Exception_Test;
end Do_Test;
end Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
-- These expressions must be truly static, which is why we have to do them
-- outside of the generic, and we use the named numbers. Note that we know
-- that PI is not a machine number (it is irrational), and it should be
-- represented to more digits than supported by the target machine.
Float_Half_PI_Low : constant := Float'Adjacent(PI/2.0, 0.0);
Float_Half_PI_High : constant := Float'Adjacent(PI/2.0, 10.0);
Float_PI_Low : constant := Float'Adjacent(PI, 0.0);
Float_PI_High : constant := Float'Adjacent(PI, 10.0);
package Float_Check is new Generic_Check (Float,
Half_PI_Low => Float_Half_PI_Low,
Half_PI_High => Float_Half_PI_High,
PI_Low => Float_PI_Low,
PI_High => Float_PI_High);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
A_Long_Float_Half_PI_Low : constant := A_Long_Float'Adjacent(PI/2.0, 0.0);
A_Long_Float_Half_PI_High : constant := A_Long_Float'Adjacent(PI/2.0, 10.0);
A_Long_Float_PI_Low : constant := A_Long_Float'Adjacent(PI, 0.0);
A_Long_Float_PI_High : constant := A_Long_Float'Adjacent(PI, 10.0);
package A_Long_Float_Check is new Generic_Check (A_Long_Float,
Half_PI_Low => A_Long_Float_Half_PI_Low,
Half_PI_High => A_Long_Float_Half_PI_High,
PI_Low => A_Long_Float_PI_Low,
PI_High => A_Long_Float_PI_High);
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2015",
"Check the accuracy of the ARCSIN and ARCCOS functions");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
Report.Result;
end CXG2015;
|