summaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2017.a
blob: 50add975f7f23985ccbee5dea4cc66e56ac5d18d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
-- CXG2017.A
--
--                             Grant of Unlimited Rights
--
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained 
--     unlimited rights in the software and documentation contained herein.
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making 
--     this public release, the Government intends to confer upon all 
--     recipients unlimited rights  equal to those held by the Government.  
--     These rights include rights to use, duplicate, release or disclose the 
--     released technical data and computer software in whole or in part, in 
--     any manner and for any purpose whatsoever, and to have or permit others 
--     to do so.
--
--                                    DISCLAIMER
--
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED 
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE 
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--     PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
--      Check that the TANH function returns
--      a result that is within the error bound allowed.
--
-- TEST DESCRIPTION:
--      This test consists of a generic package that is 
--      instantiated to check both Float and a long float type.
--      The test for each floating point type is divided into
--      several parts:
--         Special value checks where the result is a known constant.
--         Checks that use an identity for determining the result.
--
-- SPECIAL REQUIREMENTS
--      The Strict Mode for the numerical accuracy must be
--      selected.  The method by which this mode is selected
--      is implementation dependent.
--
-- APPLICABILITY CRITERIA:
--      This test applies only to implementations supporting the
--      Numerics Annex.
--      This test only applies to the Strict Mode for numerical
--      accuracy.
--
--
-- CHANGE HISTORY:
--      20 Mar 96   SAIC    Initial release for 2.1
--      17 Aug 96   SAIC    Incorporated reviewer comments.
--      03 Jun 98   EDS     Add parens to remove the potential for overflow.
--                          Remove the invocation of Identity_Test that checks
--                          Tanh values that are too close to zero for the
--                          test's error bounds.
--!

--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition 
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science   Volume 142
-- Springer Verlag, 1982
--

with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
procedure CXG2017 is
   Verbose : constant Boolean := False;
   Max_Samples : constant := 1000;

   E  : constant := Ada.Numerics.E;

   generic
      type Real is digits <>;
   package Generic_Check is
      procedure Do_Test;
   end Generic_Check;

   package body Generic_Check is
      package Elementary_Functions is new 
           Ada.Numerics.Generic_Elementary_Functions (Real);

      function Tanh (X : Real) return Real renames
           Elementary_Functions.Tanh;

      function Log (X : Real) return Real renames
           Elementary_Functions.Log;

      -- flag used to terminate some tests early
      Accuracy_Error_Reported : Boolean := False;


      -- The following value is a lower bound on the accuracy
      -- required.  It is normally 0.0 so that the lower bound
      -- is computed from Model_Epsilon.  However, for tests
      -- where the expected result is only known to a certain
      -- amount of precision this bound takes on a non-zero 
      -- value to account for that level of precision.
      Error_Low_Bound : Real := 0.0;

      procedure Check (Actual, Expected : Real;
                       Test_Name : String;
                       MRE : Real) is
         Max_Error : Real;
         Rel_Error : Real;
         Abs_Error : Real;
      begin
         -- In the case where the expected result is very small or 0
         -- we compute the maximum error as a multiple of Model_Small instead
         -- of Model_Epsilon and Expected.
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
         Abs_Error := MRE * Real'Model_Small;
         if Rel_Error > Abs_Error then
            Max_Error := Rel_Error;
         else
            Max_Error := Abs_Error;
         end if; 
         -- take into account the low bound on the error
         if Max_Error < Error_Low_Bound then
            Max_Error := Error_Low_Bound;
         end if;

         if abs (Actual - Expected) > Max_Error then
            Accuracy_Error_Reported := True;
            Report.Failed (Test_Name & 
                           " actual: " & Real'Image (Actual) &
                           " expected: " & Real'Image (Expected) &
                           " difference: " & Real'Image (Actual - Expected) &
                           " max err:" & Real'Image (Max_Error) );
         elsif Verbose then
	    if Actual = Expected then
	       Report.Comment (Test_Name & "  exact result");
	    else
	       Report.Comment (Test_Name & "  passed");
	    end if;
         end if;
      end Check;


      procedure Special_Value_Test is
         -- In the following tests the expected result is accurate
         -- to the machine precision so the minimum guaranteed error
         -- bound can be used.
         Minimum_Error : constant := 8.0;
         E2 : constant := E * E;
      begin
         Check (Tanh (1.0),
                (E - 1.0 / E) / (E + 1.0 / E),  
                "tanh(1)",
                Minimum_Error);
         Check (Tanh (2.0),
                (E2 - 1.0 / E2) / (E2 + 1.0 / E2),  
                "tanh(2)",
                Minimum_Error);
      exception
         when Constraint_Error => 
            Report.Failed ("Constraint_Error raised in special value test");
         when others =>
            Report.Failed ("exception in special value test");
      end Special_Value_Test;



      procedure Exact_Result_Test is
         No_Error : constant := 0.0;
      begin
         -- A.5.1(38);6.0
         Check (Tanh (0.0),  0.0, "tanh(0)", No_Error);
      exception
         when Constraint_Error => 
            Report.Failed ("Constraint_Error raised in Exact_Result Test");
         when others =>
            Report.Failed ("exception in Exact_Result Test");
      end Exact_Result_Test;


      procedure Identity_Test (A, B : Real) is
      -- For this test we use the identity
      --    TANH(u+v) = [TANH(u) + TANH(v)] / [1 + TANH(u)*TANH(v)]
      -- which is transformed to
      --    TANH(x) = [TANH(y)+C] / [1 + TANH(y) * C]
      -- where C = TANH(1/8) and y = x - 1/8
      --
      -- see Cody pg 248-249 for details on the error analysis.
      -- The net result is a relative error bound of 16 * Model_Epsilon.
      --
      -- The second part of this test checks the identity
      --    TANH(-x) = -TANH(X)

         X, Y : Real; 
         Actual1, Actual2 : Real;
         C : constant := 1.2435300177159620805e-1;
      begin
         if Real'Digits > 20 then
            -- constant C is accurate to 20 digits.  Set the low bound
            -- on the error to 16*10**-20
            Error_Low_Bound := 0.00000_00000_00000_00016;
            Report.Comment ("tanh accuracy checked to 20 digits");
         end if;

         Accuracy_Error_Reported := False;  -- reset
         for I in 1..Max_Samples loop
            X :=  (B - A) * (Real (I) / Real (Max_Samples)) + A;
            Actual1 := Tanh(X);
           
            -- TANH(x) = [TANH(y)+C] / [1 + TANH(y) * C]
            Y := X - (1.0 / 8.0);
            Actual2 := (Tanh (Y) + C) / (1.0 + Tanh(Y) * C);
 
            Check (Actual1, Actual2,
                   "Identity_1_Test " & Integer'Image (I) & ": tanh(" &
		   Real'Image (X) & ") ",
                   16.0);

            -- TANH(-x) = -TANH(X)
            Actual2 := Tanh(-X);
            Check (-Actual1, Actual2,
                   "Identity_2_Test " & Integer'Image (I) & ": tanh(" &
		   Real'Image (X) & ") ",
                   16.0);

            if Accuracy_Error_Reported then
              -- only report the first error in this test in order to keep
              -- lots of failures from producing a huge error log
              return;
            end if;

         end loop;
         Error_Low_Bound := 0.0;   -- reset
      exception
         when Constraint_Error => 
            Report.Failed 
               ("Constraint_Error raised in Identity_Test" &
                " for X=" & Real'Image (X));
         when others =>
            Report.Failed ("exception in Identity_Test" &
                " for X=" & Real'Image (X));
      end Identity_Test;



      procedure Do_Test is
      begin
         Special_Value_Test;
         Exact_Result_Test;
            -- cover a large range
         Identity_Test (1.0, Real'Safe_Last);
      end Do_Test;
   end Generic_Check;

   -----------------------------------------------------------------------
   -----------------------------------------------------------------------
   package Float_Check is new Generic_Check (Float);

   -- check the floating point type with the most digits
   type A_Long_Float is digits System.Max_Digits;
   package A_Long_Float_Check is new Generic_Check (A_Long_Float);

   -----------------------------------------------------------------------
   -----------------------------------------------------------------------


begin
   Report.Test ("CXG2017",
                "Check the accuracy of the TANH function"); 

   if Verbose then
      Report.Comment ("checking Standard.Float");
   end if;

   Float_Check.Do_Test;

   if Verbose then
      Report.Comment ("checking a digits" & 
                      Integer'Image (System.Max_Digits) &
                      " floating point type");
   end if;

   A_Long_Float_Check.Do_Test;


   Report.Result;
end CXG2017;