1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
-- CXG2018.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the complex EXP function returns
-- a result that is within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test consists of a generic package that is
-- instantiated to check complex numbers based upon
-- both Float and a long float type.
-- The test for each floating point type is divided into
-- several parts:
-- Special value checks where the result is a known constant.
-- Checks that use an identity for determining the result.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 21 Mar 96 SAIC Initial release for 2.1
-- 17 Aug 96 SAIC Incorporated reviewer comments.
-- 27 Aug 99 RLB Repair on the error result of checks.
-- 02 Apr 03 RLB Added code to discard excess precision in the
-- construction of the test value for the
-- Identity_Test.
--
--!
--
-- References:
--
-- W. J. Cody
-- CELEFUNT: A Portable Test Package for Complex Elementary Functions
-- Algorithm 714, Collected Algorithms from ACM.
-- Published in Transactions On Mathematical Software,
-- Vol. 19, No. 1, March, 1993, pp. 1-21.
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
with System;
with Report;
with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Generic_Complex_Elementary_Functions;
procedure CXG2018 is
Verbose : constant Boolean := False;
-- Note that Max_Samples is the number of samples taken in
-- both the real and imaginary directions. Thus, for Max_Samples
-- of 100 the number of values checked is 10000.
Max_Samples : constant := 100;
E : constant := Ada.Numerics.E;
Pi : constant := Ada.Numerics.Pi;
generic
type Real is digits <>;
package Generic_Check is
procedure Do_Test;
end Generic_Check;
package body Generic_Check is
package Complex_Type is new
Ada.Numerics.Generic_Complex_Types (Real);
use Complex_Type;
package CEF is new
Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
function Exp (X : Complex) return Complex renames CEF.Exp;
function Exp (X : Imaginary) return Complex renames CEF.Exp;
-- flag used to terminate some tests early
Accuracy_Error_Reported : Boolean := False;
-- The following value is a lower bound on the accuracy
-- required. It is normally 0.0 so that the lower bound
-- is computed from Model_Epsilon. However, for tests
-- where the expected result is only known to a certain
-- amount of precision this bound takes on a non-zero
-- value to account for that level of precision.
Error_Low_Bound : Real := 0.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Small instead
-- of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Small;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
-- take into account the low bound on the error
if Max_Error < Error_Low_Bound then
Max_Error := Error_Low_Bound;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Check (Actual, Expected : Complex;
Test_Name : String;
MRE : Real) is
begin
Check (Actual.Re, Expected.Re, Test_Name & " real part", MRE);
Check (Actual.Im, Expected.Im, Test_Name & " imaginary part", MRE);
end Check;
procedure Special_Value_Test is
-- In the following tests the expected result is accurate
-- to the machine precision so the minimum guaranteed error
-- bound can be used.
--
-- The error bounds given assumed z is exact. When using
-- pi there is an extra error of 1.0ME.
-- The pi inside the exp call requires that the complex
-- component have an extra error allowance of 1.0*angle*ME.
-- Thus for pi/2,the Minimum_Error_I is
-- (2.0 + 1.0(pi/2))ME <= 3.6ME.
-- For pi, it is (2.0 + 1.0*pi)ME <= 5.2ME,
-- and for 2pi, it is (2.0 + 1.0(2pi))ME <= 8.3ME.
-- The addition of 1 or i to a result is so that neither of
-- the components of an expected result is 0. This is so
-- that a reasonable relative error is allowed.
Minimum_Error_C : constant := 7.0; -- for exp(Complex)
Minimum_Error_I : constant := 2.0; -- for exp(Imaginary)
begin
Check (Exp (1.0 + 0.0*i) + i,
E + i,
"exp(1+0i)",
Minimum_Error_C);
Check (Exp ((Pi / 2.0) * i) + 1.0,
1.0 + 1.0*i,
"exp(pi/2*i)",
3.6);
Check (Exp (Pi * i) + i,
-1.0 + 1.0*i,
"exp(pi*i)",
5.2);
Check (Exp (Pi * 2.0 * i) + i,
1.0 + i,
"exp(2pi*i)",
8.3);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in special value test");
when others =>
Report.Failed ("exception in special value test");
end Special_Value_Test;
procedure Exact_Result_Test is
No_Error : constant := 0.0;
begin
-- G.1.2(36);6.0
Check (Exp(0.0 + 0.0*i), 1.0 + 0.0 * i, "exp(0+0i)", No_Error);
Check (Exp( 0.0*i), 1.0 + 0.0 * i, "exp(0i)", No_Error);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in Exact_Result Test");
when others =>
Report.Failed ("exception in Exact_Result Test");
end Exact_Result_Test;
procedure Identity_Test (A, B : Real) is
-- For this test we use the identity
-- Exp(Z) = Exp(Z-W) * Exp (W)
-- where W = (1+i)/16
--
-- The second part of this test checks the identity
-- Exp(Z) * Exp(-Z) = 1
--
X, Y : Complex;
Actual1, Actual2 : Complex;
W : constant Complex := (0.0625, 0.0625);
-- the following constant was taken from the CELEFUNC EXP test.
-- This is the value EXP(W) - 1
C : constant Complex := (6.2416044877018563681e-2,
6.6487597751003112768e-2);
begin
if Real'Digits > 20 then
-- constant ExpW is accurate to 20 digits.
-- The low bound is 19 * 10**-20
Error_Low_Bound := 0.00000_00000_00019;
Report.Comment ("complex exp accuracy checked to 20 digits");
end if;
Accuracy_Error_Reported := False; -- reset
for II in 1..Max_Samples loop
X.Re := Real'Machine ((B - A) * Real (II) / Real (Max_Samples)
+ A);
for J in 1..Max_Samples loop
X.Im := Real'Machine ((B - A) * Real (J) / Real (Max_Samples)
+ A);
Actual1 := Exp(X);
-- Exp(X) = Exp(X-W) * Exp (W)
-- = Exp(X-W) * (1 - (1-Exp(W))
-- = Exp(X-W) * (1 + (Exp(W) - 1))
-- = Exp(X-W) * (1 + C)
Y := X - W;
Actual2 := Exp(Y);
Actual2 := Actual2 + Actual2 * C;
Check (Actual1, Actual2,
"Identity_1_Test " & Integer'Image (II) &
Integer'Image (J) & ": Exp((" &
Real'Image (X.Re) & ", " &
Real'Image (X.Im) & ")) ",
20.0); -- 2 exp and 1 multiply and 1 add = 2*7+1*5+1
-- Note: The above is not strictly correct, as multiply
-- has a box error, rather than a relative error.
-- Supposedly, the interval is chosen to avoid the need
-- to worry about this.
-- Exp(X) * Exp(-X) + i = 1 + i
-- The addition of i is to allow a reasonable relative
-- error in the imaginary part
Actual2 := (Actual1 * Exp(-X)) + i;
Check (Actual2, (1.0, 1.0),
"Identity_2_Test " & Integer'Image (II) &
Integer'Image (J) & ": Exp((" &
Real'Image (X.Re) & ", " &
Real'Image (X.Im) & ")) ",
20.0); -- 2 exp and 1 multiply and one add = 2*7+1*5+1
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
end loop;
Error_Low_Bound := 0.0;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Identity_Test" &
" for X=(" & Real'Image (X.Re) &
", " & Real'Image (X.Im) & ")");
when others =>
Report.Failed ("exception in Identity_Test" &
" for X=(" & Real'Image (X.Re) &
", " & Real'Image (X.Im) & ")");
end Identity_Test;
procedure Do_Test is
begin
Special_Value_Test;
Exact_Result_Test;
-- test regions where we can avoid cancellation error problems
-- See Cody page 10.
Identity_Test (0.0625, 1.0);
Identity_Test (15.0, 17.0);
Identity_Test (1.625, 3.0);
end Do_Test;
end Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Float_Check is new Generic_Check (Float);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2018",
"Check the accuracy of the complex EXP function");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
Report.Result;
end CXG2018;
|