1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
/* { dg-require-effective-target vect_int } */
#include <stdlib.h>
#include <stdarg.h>
#include "tree-vect.h"
#define N 4
struct extraction
{
int a[N][N];
int b[N][N];
};
static int a[N][N] = {{1,2,3,11},{4,5,6,12},{7,8,9,13},{34,45,67,83}};
static int b[N][N] = {{17,28,15,23},{0,2,3,24},{4,31,82,25},{29,31,432,256}};
static int c[N][N] = {{1,2,3,11},{4,9,13,34},{45,67,83,13},{34,45,67,83}};
volatile int y;
__attribute__ ((noinline))
int main1 (int x) {
int i,j;
struct extraction *p;
p = (struct extraction *) malloc (sizeof (struct extraction));
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
p->a[i][j] = a[i][j];
p->b[i][j] = b[i][j];
/* Because Y is volatile, the compiler cannot move this check out
of the loop. */
if (y)
abort (); /* to avoid vectorization */
}
}
/* Vectorizable: distance > number of iterations. */
for (i = 1; i < N; i++)
{
for (j = 0; j < N; j++)
{
*((int *)p + x + i + j) = *((int *)p + x + i + j + 5);
}
}
/* check results: */
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
if (p->a[i][j] != c[i][j])
abort();
}
}
return 0;
}
int main (void)
{
check_vect ();
return main1 (N);
}
/* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
/* { dg-final { scan-tree-dump-times "Alignment of access forced using versioning" 2 "vect" { target vect_no_align } } } */
/* { dg-final { scan-tree-dump-times "possible dependence between data-refs" 0 "vect" } } */
/* { dg-final { cleanup-tree-dump "vect" } } */
|