1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
c { dg-do compile }
C To: egcs-bugs@cygnus.com
C Subject: -fPIC problem showing up with fortran on x86
C From: Dave Love <d.love@dl.ac.uk>
C Date: 19 Dec 1997 19:31:41 +0000
C
C
C This illustrates a long-standing problem noted at the end of the g77
C `Actual Bugs' info node and thought to be in the back end. Although
C the report is against gcc 2.7 I can reproduce it (specifically on
C redhat 4.2) with the 971216 egcs snapshot.
C
C g77 version 0.5.21
C gcc -v -fnull-version -o /tmp/gfa00415 -xf77-cpp-input /tmp/gfa00415.f -xnone
C -lf2c -lm
C
C ------------
subroutine dqage(f,a,b,epsabs,epsrel,limit,result,abserr,
* neval,ier,alist,blist,rlist,elist,iord,last)
C --------------------------------------------------
C
C Modified Feb 1989 by Barry W. Brown to eliminate key
C as argument (use key=1) and to eliminate all Fortran
C output.
C
C Purpose: to make this routine usable from within S.
C
C --------------------------------------------------
c***begin prologue dqage
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a1a1
c***keywords automatic integrator, general-purpose,
c integrand examinator, globally adaptive,
c gauss-kronrod
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c definite integral i = integral of f over (a,b),
c hopefully satisfying following claim for accuracy
c abs(i-reslt).le.max(epsabs,epsrel*abs(i)).
c***description
c
c computation of a definite integral
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c key - integer
c key for choice of local integration rule
c a gauss-kronrod pair is used with
c 7 - 15 points if key.lt.2,
c 10 - 21 points if key = 2,
c 15 - 31 points if key = 3,
c 20 - 41 points if key = 4,
c 25 - 51 points if key = 5,
c 30 - 61 points if key.gt.5.
c
c limit - integer
c gives an upperbound on the number of subintervals
c in the partition of (a,b), limit.ge.1.
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c ier.gt.0 abnormal termination of the routine
c the estimates for result and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more
c subdivisions by increasing the value
c of limit.
c however, if this yields no improvement it
c is rather advised to analyze the integrand
c in order to determine the integration
c difficulties. if the position of a local
c difficulty can be determined(e.g.
c singularity, discontinuity within the
c interval) one will probably gain from
c splitting up the interval at this point
c and calling the integrator on the
c subranges. if possible, an appropriate
c special-purpose integrator should be used
c which is designed for handling the type of
c difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c = 3 extremely bad integrand behavior occurs
c at some points of the integration
c interval.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c result, abserr, neval, last, rlist(1) ,
c elist(1) and iord(1) are set to zero.
c alist(1) and blist(1) are set to a and b
c respectively.
c
c alist - double precision
c vector of dimension at least limit, the first
c last elements of which are the left
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c blist - double precision
c vector of dimension at least limit, the first
c last elements of which are the right
c end points of the subintervals in the partition
c of the given integration range (a,b)
c
c rlist - double precision
c vector of dimension at least limit, the first
c last elements of which are the
c integral approximations on the subintervals
c
c elist - double precision
c vector of dimension at least limit, the first
c last elements of which are the moduli of the
c absolute error estimates on the subintervals
c
c iord - integer
c vector of dimension at least limit, the first k
c elements of which are pointers to the
c error estimates over the subintervals,
c such that elist(iord(1)), ...,
c elist(iord(k)) form a decreasing sequence,
c with k = last if last.le.(limit/2+2), and
c k = limit+1-last otherwise
c
c last - integer
c number of subintervals actually produced in the
c subdivision process
c
c***references (none)
c***routines called d1mach,dqk15,dqk21,dqk31,
c dqk41,dqk51,dqk61,dqpsrt
c***end prologue dqage
c
double precision a,abserr,alist,area,area1,area12,area2,a1,a2,b,
* blist,b1,b2,dabs,defabs,defab1,defab2,dmax1,d1mach,elist,epmach,
* epsabs,epsrel,errbnd,errmax,error1,error2,erro12,errsum,f,
* resabs,result,rlist,uflow
integer ier,iord,iroff1,iroff2,k,last,limit,maxerr,neval,
* nrmax
c
dimension alist(limit),blist(limit),elist(limit),iord(limit),
* rlist(limit)
c
external f
c
c list of major variables
c -----------------------
c
c alist - list of left end points of all subintervals
c considered up to now
c blist - list of right end points of all subintervals
c considered up to now
c rlist(i) - approximation to the integral over
c (alist(i),blist(i))
c elist(i) - error estimate applying to rlist(i)
c maxerr - pointer to the interval with largest
c error estimate
c errmax - elist(maxerr)
c area - sum of the integrals over the subintervals
c errsum - sum of the errors over the subintervals
c errbnd - requested accuracy max(epsabs,epsrel*
c abs(result))
c *****1 - variable for the left subinterval
c *****2 - variable for the right subinterval
c last - index for subdivision
c
c
c machine dependent constants
c ---------------------------
c
c epmach is the largest relative spacing.
c uflow is the smallest positive magnitude.
c
c***first executable statement dqage
epmach = d1mach(4)
uflow = d1mach(1)
c
c test on validity of parameters
c ------------------------------
c
ier = 0
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
alist(1) = a
blist(1) = b
rlist(1) = 0.0d+00
elist(1) = 0.0d+00
iord(1) = 0
if(epsabs.le.0.0d+00.and.
* epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)) ier = 6
if(ier.eq.6) go to 999
c
c first approximation to the integral
c -----------------------------------
c
neval = 0
call dqk15(f,a,b,result,abserr,defabs,resabs)
last = 1
rlist(1) = result
elist(1) = abserr
iord(1) = 1
c
c test on accuracy.
c
errbnd = dmax1(epsabs,epsrel*dabs(result))
if(abserr.le.0.5d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2
if(limit.eq.1) ier = 1
if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs)
* .or.abserr.eq.0.0d+00) go to 60
c
c initialization
c --------------
c
c
errmax = abserr
maxerr = 1
area = result
errsum = abserr
nrmax = 1
iroff1 = 0
iroff2 = 0
c
c main do-loop
c ------------
c
do 30 last = 2,limit
c
c bisect the subinterval with the largest error estimate.
c
a1 = alist(maxerr)
b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
a2 = b1
b2 = blist(maxerr)
call dqk15(f,a1,b1,area1,error1,resabs,defab1)
call dqk15(f,a2,b2,area2,error2,resabs,defab2)
c
c improve previous approximations to integral
c and error and test for accuracy.
c
neval = neval+1
area12 = area1+area2
erro12 = error1+error2
errsum = errsum+erro12-errmax
area = area+area12-rlist(maxerr)
if(defab1.eq.error1.or.defab2.eq.error2) go to 5
if(dabs(rlist(maxerr)-area12).le.0.1d-04*dabs(area12)
* .and.erro12.ge.0.99d+00*errmax) iroff1 = iroff1+1
if(last.gt.10.and.erro12.gt.errmax) iroff2 = iroff2+1
5 rlist(maxerr) = area1
rlist(last) = area2
errbnd = dmax1(epsabs,epsrel*dabs(area))
if(errsum.le.errbnd) go to 8
c
c test for roundoff error and eventually set error flag.
c
if(iroff1.ge.6.or.iroff2.ge.20) ier = 2
c
c set error flag in the case that the number of subintervals
c equals limit.
c
if(last.eq.limit) ier = 1
c
c set error flag in the case of bad integrand behavior
c at a point of the integration range.
c
if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*
* epmach)*(dabs(a2)+0.1d+04*uflow)) ier = 3
c
c append the newly-created intervals to the list.
c
8 if(error2.gt.error1) go to 10
alist(last) = a2
blist(maxerr) = b1
blist(last) = b2
elist(maxerr) = error1
elist(last) = error2
go to 20
10 alist(maxerr) = a2
alist(last) = a1
blist(last) = b1
rlist(maxerr) = area2
rlist(last) = area1
elist(maxerr) = error2
elist(last) = error1
c
c call subroutine dqpsrt to maintain the descending ordering
c in the list of error estimates and select the subinterval
c with the largest error estimate (to be bisected next).
c
20 call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
if(ier.ne.0.or.errsum.le.errbnd) go to 40
30 continue
c
c compute final result.
c ---------------------
c
40 result = 0.0d+00
do 50 k=1,last
result = result+rlist(k)
50 continue
abserr = errsum
60 neval = 30*neval+15
999 return
end
|