1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
! { dg-do run }
! { dg-require-effective-target fortran_large_real }
!
!
! PR fortran/33197
!
! Check implementation of L2 norm (Euclidean vector norm)
!
implicit none
integer,parameter :: qp = selected_real_kind (precision (0.0d0)+1)
real(qp) :: a(3) = [real(qp) :: 1, 2, huge(3.0_qp)]
real(qp) :: b(3) = [real(qp) :: 1, 2, 3]
real(qp) :: c(4) = [real(qp) :: 1, 2, 3, -1]
real(qp) :: e(0) = [real(qp) :: ]
real(qp) :: f(4) = [real(qp) :: 0, 0, 3, 0 ]
real(qp) :: d(4,1) = RESHAPE ([real(qp) :: 1, 2, 3, -1], [4,1])
real(qp) :: g(4,1) = RESHAPE ([real(qp) :: 0, 0, 4, -1], [4,1])
! Check compile-time version
if (abs (NORM2 ([real(qp) :: 1, 2, huge(3.0_qp)]) - huge(3.0_qp)) &
> epsilon(0.0_qp)*huge(3.0_qp)) call abort()
if (abs (SNORM2([real(qp) :: 1, 2, huge(3.0_qp)],3) - huge(3.0_qp)) &
> epsilon(0.0_qp)*huge(3.0_qp)) call abort()
if (abs (SNORM2([real(qp) :: 1, 2, 3],3) - NORM2([real(qp) :: 1, 2, 3])) &
> epsilon(0.0_qp)*SNORM2([real(qp) :: 1, 2, 3],3)) call abort()
if (NORM2([real(qp) :: ]) /= 0.0_qp) call abort()
if (abs (NORM2([real(qp) :: 0, 0, 3, 0]) - 3.0_qp) > epsilon(0.0_qp)) call abort()
! Check TREE version
if (abs (NORM2 (a) - huge(3.0_qp)) &
> epsilon(0.0_qp)*huge(3.0_qp)) call abort()
if (abs (SNORM2(b,3) - NORM2(b)) &
> epsilon(0.0_qp)*SNORM2(b,3)) call abort()
if (abs (SNORM2(c,4) - NORM2(c)) &
> epsilon(0.0_qp)*SNORM2(c,4)) call abort()
if (ANY (abs (abs(d(:,1)) - NORM2(d, 2)) &
> epsilon(0.0_qp))) call abort()
! Check libgfortran version
if (ANY (abs (SNORM2(d,4) - NORM2(d, 1)) &
> epsilon(0.0_qp)*SNORM2(d,4))) call abort()
if (abs (SNORM2(f,4) - NORM2(f, 1)) &
> epsilon(0.0_qp)*SNORM2(d,4)) call abort()
if (ANY (abs (abs(g(:,1)) - NORM2(g, 2)) &
> epsilon(0.0_qp))) call abort()
contains
! NORM2 algorithm based on BLAS, cf.
! http://www.netlib.org/blas/snrm2.f
REAL(qp) FUNCTION SNORM2 (X,n)
INTEGER, INTENT(IN) :: n
REAL(qp), INTENT(IN) :: X(n)
REAL(qp) :: absXi, scale, SSQ
INTEGER :: i
INTRINSIC :: ABS, SQRT
IF (N < 1) THEN
snorm2 = 0.0_qp
ELSE IF (N == 1) THEN
snorm2 = ABS(X(1))
ELSE
scale = 0.0_qp
SSQ = 1.0_qp
DO i = 1, N
IF (X(i) /= 0.0_qp) THEN
absXi = ABS(X(i))
IF (scale < absXi) THEN
SSQ = 1.0_qp + SSQ * (scale/absXi)**2
scale = absXi
ELSE
SSQ = SSQ + (absXi/scale)**2
END IF
END IF
END DO
snorm2 = scale * SQRT(SSQ)
END IF
END FUNCTION SNORM2
end
|