summaryrefslogtreecommitdiff
path: root/gcc/testsuite/go.test/test/bench/meteor-contest.c
blob: 19c43402c8c4bd6580eb7922d2328f2c80b6d3cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.

    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.

    * Neither the name of "The Computer Language Benchmarks Game" nor the
    name of "The Computer Language Shootout Benchmarks" nor the names of
    its contributors may be used to endorse or promote products derived
    from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/

/* The Computer Language Benchmarks Game
 * http://shootout.alioth.debian.org/
 *
 * contributed by Christian Vosteen
 */

#include <stdlib.h>
#include <stdio.h>
#define TRUE 1
#define FALSE 0

/* The board is a 50 cell hexagonal pattern.  For    . . . . .
 * maximum speed the board will be implemented as     . . . . .
 * 50 bits, which will fit into a 64 bit long long   . . . . .
 * int.                                               . . . . .
 *                                                   . . . . .
 * I will represent 0's as empty cells and 1's        . . . . .
 * as full cells.                                    . . . . .
 *                                                    . . . . .
 *                                                   . . . . .
 *                                                    . . . . .
 */

unsigned long long board = 0xFFFC000000000000ULL;

/* The puzzle pieces must be specified by the path followed
 * from one end to the other along 12 hexagonal directions.
 *
 *   Piece 0   Piece 1   Piece 2   Piece 3   Piece 4
 *
 *  O O O O    O   O O   O O O     O O O     O   O
 *         O    O O           O       O       O O
 *                           O         O         O
 *
 *   Piece 5   Piece 6   Piece 7   Piece 8   Piece 9
 *
 *    O O O     O O       O O     O O        O O O O
 *       O O       O O       O       O O O        O
 *                  O       O O
 *
 * I had to make it 12 directions because I wanted all of the
 * piece definitions to fit into the same size arrays.  It is
 * not possible to define piece 4 in terms of the 6 cardinal
 * directions in 4 moves.
 */

#define E     0
#define ESE   1
#define SE    2
#define S     3
#define SW    4
#define WSW   5
#define W     6
#define WNW   7
#define NW    8
#define N     9
#define NE    10
#define ENE   11
#define PIVOT 12

char piece_def[10][4] = {
   {  E,  E,  E, SE},
   { SE,  E, NE,  E},
   {  E,  E, SE, SW},
   {  E,  E, SW, SE},
   { SE,  E, NE,  S},
   {  E,  E, SW,  E},
   {  E, SE, SE, NE},
   {  E, SE, SE,  W},
   {  E, SE,  E,  E},
   {  E,  E,  E, SW}
};


/* To minimize the amount of work done in the recursive solve function below,
 * I'm going to allocate enough space for all legal rotations of each piece
 * at each position on the board. That's 10 pieces x 50 board positions x
 * 12 rotations.  However, not all 12 rotations will fit on every cell, so
 * I'll have to keep count of the actual number that do.
 * The pieces are going to be unsigned long long ints just like the board so
 * they can be bitwise-anded with the board to determine if they fit.
 * I'm also going to record the next possible open cell for each piece and
 * location to reduce the burden on the solve function.
 */
unsigned long long pieces[10][50][12];
int piece_counts[10][50];
char next_cell[10][50][12];

/* Returns the direction rotated 60 degrees clockwise */
char rotate(char dir) {
   return (dir + 2) % PIVOT;
}

/* Returns the direction flipped on the horizontal axis */
char flip(char dir) {
   return (PIVOT - dir) % PIVOT;
}


/* Returns the new cell index from the specified cell in the
 * specified direction.  The index is only valid if the
 * starting cell and direction have been checked by the
 * out_of_bounds function first.
 */
char shift(char cell, char dir) {
   switch(dir) {
      case E:
         return cell + 1;
      case ESE:
         if((cell / 5) % 2)
            return cell + 7;
         else
            return cell + 6;
      case SE:
         if((cell / 5) % 2)
            return cell + 6;
         else
            return cell + 5;
      case S:
         return cell + 10;
      case SW:
         if((cell / 5) % 2)
            return cell + 5;
         else
            return cell + 4;
      case WSW:
         if((cell / 5) % 2)
            return cell + 4;
         else
            return cell + 3;
      case W:
         return cell - 1;
      case WNW:
         if((cell / 5) % 2)
            return cell - 6;
         else
            return cell - 7;
      case NW:
         if((cell / 5) % 2)
            return cell - 5;
         else
            return cell - 6;
      case N:
         return cell - 10;
      case NE:
         if((cell / 5) % 2)
            return cell - 4;
         else
            return cell - 5;
      case ENE:
         if((cell / 5) % 2)
            return cell - 3;
         else
            return cell - 4;
      default:
         return cell;
   }
}

/* Returns wether the specified cell and direction will land outside
 * of the board.  Used to determine if a piece is at a legal board
 * location or not.
 */
char out_of_bounds(char cell, char dir) {
   char i;
   switch(dir) {
      case E:
         return cell % 5 == 4;
      case ESE:
         i = cell % 10;
         return i == 4 || i == 8 || i == 9 || cell >= 45;
      case SE:
         return cell % 10 == 9 || cell >= 45;
      case S:
         return cell >= 40;
      case SW:
         return cell % 10 == 0 || cell >= 45;
      case WSW:
         i = cell % 10;
         return i == 0 || i == 1 || i == 5 || cell >= 45;
      case W:
         return cell % 5 == 0;
      case WNW:
         i = cell % 10;
         return i == 0 || i == 1 || i == 5 || cell < 5;
      case NW:
         return cell % 10 == 0 || cell < 5;
      case N:
         return cell < 10;
      case NE:
         return cell % 10 == 9 || cell < 5;
      case ENE:
         i = cell % 10;
         return i == 4 || i == 8 || i == 9 || cell < 5;
      default:
         return FALSE;
   }
}

/* Rotate a piece 60 degrees clockwise */
void rotate_piece(int piece) {
   int i;
   for(i = 0; i < 4; i++)
      piece_def[piece][i] = rotate(piece_def[piece][i]);
}

/* Flip a piece along the horizontal axis */
void flip_piece(int piece) {
   int i;
   for(i = 0; i < 4; i++)
      piece_def[piece][i] = flip(piece_def[piece][i]);
}

/* Convenience function to quickly calculate all of the indices for a piece */
void calc_cell_indices(char *cell, int piece, char index) {
   cell[0] = index;
   cell[1] = shift(cell[0], piece_def[piece][0]);
   cell[2] = shift(cell[1], piece_def[piece][1]);
   cell[3] = shift(cell[2], piece_def[piece][2]);
   cell[4] = shift(cell[3], piece_def[piece][3]);
}

/* Convenience function to quickly calculate if a piece fits on the board */
int cells_fit_on_board(char *cell, int piece) {
   return (!out_of_bounds(cell[0], piece_def[piece][0]) &&
         !out_of_bounds(cell[1], piece_def[piece][1]) &&
         !out_of_bounds(cell[2], piece_def[piece][2]) &&
         !out_of_bounds(cell[3], piece_def[piece][3]));
}

/* Returns the lowest index of the cells of a piece.
 * I use the lowest index that a piece occupies as the index for looking up
 * the piece in the solve function.
 */
char minimum_of_cells(char *cell) {
   char minimum = cell[0];
   minimum = cell[1] < minimum ? cell[1] : minimum;
   minimum = cell[2] < minimum ? cell[2] : minimum;
   minimum = cell[3] < minimum ? cell[3] : minimum;
   minimum = cell[4] < minimum ? cell[4] : minimum;
   return minimum;
}

/* Calculate the lowest possible open cell if the piece is placed on the board.
 * Used to later reduce the amount of time searching for open cells in the
 * solve function.
 */
char first_empty_cell(char *cell, char minimum) {
   char first_empty = minimum;
   while(first_empty == cell[0] || first_empty == cell[1] ||
         first_empty == cell[2] || first_empty == cell[3] ||
         first_empty == cell[4])
      first_empty++;
   return first_empty;
}

/* Generate the unsigned long long int that will later be anded with the
 * board to determine if it fits.
 */
unsigned long long bitmask_from_cells(char *cell) {
   unsigned long long piece_mask = 0ULL;
   int i;
   for(i = 0; i < 5; i++)
      piece_mask |= 1ULL << cell[i];
   return piece_mask;
}

/* Record the piece and other important information in arrays that will
 * later be used by the solve function.
 */
void record_piece(int piece, int minimum, char first_empty,
      unsigned long long piece_mask) {
   pieces[piece][minimum][piece_counts[piece][minimum]] = piece_mask;
   next_cell[piece][minimum][piece_counts[piece][minimum]] = first_empty;
   piece_counts[piece][minimum]++;
}


/* Fill the entire board going cell by cell.  If any cells are "trapped"
 * they will be left alone.
 */
void fill_contiguous_space(char *board, int index) {
   if(board[index] == 1)
      return;
   board[index] = 1;
   if(!out_of_bounds(index, E))
      fill_contiguous_space(board, shift(index, E));
   if(!out_of_bounds(index, SE))
      fill_contiguous_space(board, shift(index, SE));
   if(!out_of_bounds(index, SW))
      fill_contiguous_space(board, shift(index, SW));
   if(!out_of_bounds(index, W))
      fill_contiguous_space(board, shift(index, W));
   if(!out_of_bounds(index, NW))
      fill_contiguous_space(board, shift(index, NW));
   if(!out_of_bounds(index, NE))
      fill_contiguous_space(board, shift(index, NE));
}


/* To thin the number of pieces, I calculate if any of them trap any empty
 * cells at the edges.  There are only a handful of exceptions where the
 * the board can be solved with the trapped cells.  For example:  piece 8 can
 * trap 5 cells in the corner, but piece 3 can fit in those cells, or piece 0
 * can split the board in half where both halves are viable.
 */
int has_island(char *cell, int piece) {
   char temp_board[50];
   char c;
   int i;
   for(i = 0; i < 50; i++)
      temp_board[i] = 0;
   for(i = 0; i < 5; i++)
      temp_board[((int)cell[i])] = 1;
   i = 49;
   while(temp_board[i] == 1)
      i--;
   fill_contiguous_space(temp_board, i);
   c = 0;
   for(i = 0; i < 50; i++)
      if(temp_board[i] == 0)
         c++;
   if(c == 0 || (c == 5 && piece == 8) || (c == 40 && piece == 8) ||
         (c % 5 == 0 && piece == 0))
      return FALSE;
   else
      return TRUE;
}


/* Calculate all six rotations of the specified piece at the specified index.
 * We calculate only half of piece 3's rotations.  This is because any solution
 * found has an identical solution rotated 180 degrees.  Thus we can reduce the
 * number of attempted pieces in the solve algorithm by not including the 180-
 * degree-rotated pieces of ONE of the pieces.  I chose piece 3 because it gave
 * me the best time ;)
 */
 void calc_six_rotations(char piece, char index) {
   char rotation, cell[5];
   char minimum, first_empty;
   unsigned long long piece_mask;

   for(rotation = 0; rotation < 6; rotation++) {
      if(piece != 3 || rotation < 3) {
         calc_cell_indices(cell, piece, index);
         if(cells_fit_on_board(cell, piece) && !has_island(cell, piece)) {
            minimum = minimum_of_cells(cell);
            first_empty = first_empty_cell(cell, minimum);
            piece_mask = bitmask_from_cells(cell);
            record_piece(piece, minimum, first_empty, piece_mask);
         }
      }
      rotate_piece(piece);
   }
}

/* Calculate every legal rotation for each piece at each board location. */
void calc_pieces(void) {
   char piece, index;

   for(piece = 0; piece < 10; piece++) {
      for(index = 0; index < 50; index++) {
         calc_six_rotations(piece, index);
         flip_piece(piece);
         calc_six_rotations(piece, index);
      }
   }
}



/* Calculate all 32 possible states for a 5-bit row and all rows that will
 * create islands that follow any of the 32 possible rows.  These pre-
 * calculated 5-bit rows will be used to find islands in a partially solved
 * board in the solve function.
 */
#define ROW_MASK 0x1F
#define TRIPLE_MASK 0x7FFF
char all_rows[32] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
      17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31};
int bad_even_rows[32][32];
int bad_odd_rows[32][32];
int bad_even_triple[32768];
int bad_odd_triple[32768];

int rows_bad(char row1, char row2, int even) {
   /* even is referring to row1 */
   int i, in_zeroes, group_okay;
   char block, row2_shift;
   /* Test for blockages at same index and shifted index */
   if(even)
      row2_shift = ((row2 << 1) & ROW_MASK) | 0x01;
   else
      row2_shift = (row2 >> 1) | 0x10;
   block = ((row1 ^ row2) & row2) & ((row1 ^ row2_shift) & row2_shift);
   /* Test for groups of 0's */
   in_zeroes = FALSE;
   group_okay = FALSE;
   for(i = 0; i < 5; i++) {
      if(row1 & (1 << i)) {
         if(in_zeroes) {
            if(!group_okay)
               return TRUE;
            in_zeroes = FALSE;
            group_okay = FALSE;
         }
      } else {
         if(!in_zeroes)
            in_zeroes = TRUE;
         if(!(block & (1 << i)))
            group_okay = TRUE;
      }
   }
   if(in_zeroes)
      return !group_okay;
   else
      return FALSE;
}

/* Check for cases where three rows checked sequentially cause a false
 * positive.  One scenario is when 5 cells may be surrounded where piece 5
 * or 7 can fit.  The other scenario is when piece 2 creates a hook shape.
 */
int triple_is_okay(char row1, char row2, char row3, int even) {
   if(even) {
      /* There are four cases:
       * row1: 00011  00001  11001  10101
       * row2: 01011  00101  10001  10001
       * row3: 011??  00110  ?????  ?????
       */
      return ((row1 == 0x03) && (row2 == 0x0B) && ((row3 & 0x1C) == 0x0C)) ||
            ((row1 == 0x01) && (row2 == 0x05) && (row3 == 0x06)) ||
            ((row1 == 0x19) && (row2 == 0x11)) ||
            ((row1 == 0x15) && (row2 == 0x11));
   } else {
      /* There are two cases:
       * row1: 10011  10101
       * row2: 10001  10001
       * row3: ?????  ?????
       */
      return ((row1 == 0x13) && (row2 == 0x11)) ||
            ((row1 == 0x15) && (row2 == 0x11));
   }
}


void calc_rows(void) {
   int row1, row2, row3;
   int result1, result2;
   for(row1 = 0; row1 < 32; row1++) {
      for(row2 = 0; row2 < 32; row2++) {
         bad_even_rows[row1][row2] = rows_bad(row1, row2, TRUE);
         bad_odd_rows[row1][row2] = rows_bad(row1, row2, FALSE);
      }
   }
   for(row1 = 0; row1 < 32; row1++) {
      for(row2 = 0; row2 < 32; row2++) {
         for(row3 = 0; row3 < 32; row3++) {
            result1 = bad_even_rows[row1][row2];
            result2 = bad_odd_rows[row2][row3];
            if(result1 == FALSE && result2 == TRUE
                  && triple_is_okay(row1, row2, row3, TRUE))
               bad_even_triple[row1+(row2*32)+(row3*1024)] = FALSE;
            else
               bad_even_triple[row1+(row2*32)+(row3*1024)] = result1 || result2;

            result1 = bad_odd_rows[row1][row2];
            result2 = bad_even_rows[row2][row3];
            if(result1 == FALSE && result2 == TRUE
                  && triple_is_okay(row1, row2, row3, FALSE))
               bad_odd_triple[row1+(row2*32)+(row3*1024)] = FALSE;
            else
               bad_odd_triple[row1+(row2*32)+(row3*1024)] = result1 || result2;
         }
      }
   }
}



/* Calculate islands while solving the board.
 */
int boardHasIslands(char cell) {
   /* Too low on board, don't bother checking */
   if(cell >= 40)
      return FALSE;
   int current_triple = (board >> ((cell / 5) * 5)) & TRIPLE_MASK;
   if((cell / 5) % 2)
      return bad_odd_triple[current_triple];
   else
      return bad_even_triple[current_triple];
}


/* The recursive solve algorithm.  Try to place each permutation in the upper-
 * leftmost empty cell.  Mark off available pieces as it goes along.
 * Because the board is a bit mask, the piece number and bit mask must be saved
 * at each successful piece placement.  This data is used to create a 50 char
 * array if a solution is found.
 */
short avail = 0x03FF;
char sol_nums[10];
unsigned long long sol_masks[10];
signed char solutions[2100][50];
int solution_count = 0;
int max_solutions = 2100;

void record_solution(void) {
   int sol_no, index;
   unsigned long long sol_mask;
   for(sol_no = 0; sol_no < 10; sol_no++) {
      sol_mask = sol_masks[sol_no];
      for(index = 0; index < 50; index++) {
         if(sol_mask & 1ULL) {
            solutions[solution_count][index] = sol_nums[sol_no];
            /* Board rotated 180 degrees is a solution too! */
            solutions[solution_count+1][49-index] = sol_nums[sol_no];
         }
         sol_mask = sol_mask >> 1;
      }
   }
   solution_count += 2;
}

void solve(int depth, int cell) {
   int piece, rotation, max_rots;
   unsigned long long *piece_mask;
   short piece_no_mask;

   if(solution_count >= max_solutions)
      return;

   while(board & (1ULL << cell))
      cell++;

   for(piece = 0; piece < 10; piece++) {
      piece_no_mask = 1 << piece;
      if(!(avail & piece_no_mask))
         continue;
      avail ^= piece_no_mask;
      max_rots = piece_counts[piece][cell];
      piece_mask = pieces[piece][cell];
      for(rotation = 0; rotation < max_rots; rotation++) {
         if(!(board & *(piece_mask + rotation))) {
            sol_nums[depth] = piece;
            sol_masks[depth] = *(piece_mask + rotation);
            if(depth == 9) {
               /* Solution found!!!!!11!!ONE! */
               record_solution();
               avail ^= piece_no_mask;
               return;
            }
            board |= *(piece_mask + rotation);
            if(!boardHasIslands(next_cell[piece][cell][rotation]))
               solve(depth + 1, next_cell[piece][cell][rotation]);
            board ^= *(piece_mask + rotation);
         }
      }
      avail ^= piece_no_mask;
   }
}


/* qsort comparator - used to find first and last solutions */
int solution_sort(const void *elem1, const void *elem2) {
   signed char *char1 = (signed char *) elem1;
   signed char *char2 = (signed char *) elem2;
   int i = 0;
   while(i < 50 && char1[i] == char2[i])
      i++;
   return char1[i] - char2[i];
}


/* pretty print a board in the specified hexagonal format */
void pretty(signed char *b) {
   int i;
   for(i = 0; i < 50; i += 10) {
      printf("%c %c %c %c %c \n %c %c %c %c %c \n", b[i]+'0', b[i+1]+'0',
            b[i+2]+'0', b[i+3]+'0', b[i+4]+'0', b[i+5]+'0', b[i+6]+'0',
            b[i+7]+'0', b[i+8]+'0', b[i+9]+'0');
   }
   printf("\n");
}

int main(int argc, char **argv) {
   if(argc > 1)
      max_solutions = atoi(argv[1]);
   calc_pieces();
   calc_rows();
   solve(0, 0);
   printf("%d solutions found\n\n", solution_count);
   qsort(solutions, solution_count, 50 * sizeof(signed char), solution_sort);
   pretty(solutions[0]);
   pretty(solutions[solution_count-1]);
   return 0;
}