1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
// $G $D/$F.go && $L $F.$A && ./$A.out
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Generate primes up to 100 using channels, checking the results.
// This sieve is Eratosthenesque and only considers odd candidates.
// See discussion at <http://blog.onideas.ws/eratosthenes.go>.
package main
import (
"container/heap"
"container/ring"
"container/vector"
)
// Return a chan of odd numbers, starting from 5.
func odds() chan int {
out := make(chan int, 50)
go func() {
n := 5
for {
out <- n
n += 2
}
}()
return out
}
// Return a chan of odd multiples of the prime number p, starting from p*p.
func multiples(p int) chan int {
out := make(chan int, 10)
go func() {
n := p * p
for {
out <- n
n += 2 * p
}
}()
return out
}
type PeekCh struct {
head int
ch chan int
}
// Heap of PeekCh, sorting by head values.
type PeekChHeap struct {
*vector.Vector
}
func (h *PeekChHeap) Less(i, j int) bool {
return h.At(i).(*PeekCh).head < h.At(j).(*PeekCh).head
}
// Return a channel to serve as a sending proxy to 'out'.
// Use a goroutine to receive values from 'out' and store them
// in an expanding buffer, so that sending to 'out' never blocks.
func sendproxy(out chan<- int) chan<- int {
proxy := make(chan int, 10)
go func() {
n := 16 // the allocated size of the circular queue
first := ring.New(n)
last := first
var c chan<- int
var e int
for {
c = out
if first == last {
// buffer empty: disable output
c = nil
} else {
e = first.Value.(int)
}
select {
case e = <-proxy:
last.Value = e
if last.Next() == first {
// buffer full: expand it
last.Link(ring.New(n))
n *= 2
}
last = last.Next()
case c <- e:
first = first.Next()
}
}
}()
return proxy
}
// Return a chan int of primes.
func Sieve() chan int {
// The output values.
out := make(chan int, 10)
out <- 2
out <- 3
// The channel of all composites to be eliminated in increasing order.
composites := make(chan int, 50)
// The feedback loop.
primes := make(chan int, 10)
primes <- 3
// Merge channels of multiples of 'primes' into 'composites'.
go func() {
h := &PeekChHeap{new(vector.Vector)}
min := 15
for {
m := multiples(<-primes)
head := <-m
for min < head {
composites <- min
minchan := heap.Pop(h).(*PeekCh)
min = minchan.head
minchan.head = <-minchan.ch
heap.Push(h, minchan)
}
for min == head {
minchan := heap.Pop(h).(*PeekCh)
min = minchan.head
minchan.head = <-minchan.ch
heap.Push(h, minchan)
}
composites <- head
heap.Push(h, &PeekCh{<-m, m})
}
}()
// Sieve out 'composites' from 'candidates'.
go func() {
// In order to generate the nth prime we only need multiples of
// primes ≤ sqrt(nth prime). Thus, the merging goroutine will
// receive from 'primes' much slower than this goroutine
// will send to it, making the buffer accumulate and block this
// goroutine from sending, causing a deadlock. The solution is to
// use a proxy goroutine to do automatic buffering.
primes := sendproxy(primes)
candidates := odds()
p := <-candidates
for {
c := <-composites
for p < c {
primes <- p
out <- p
p = <-candidates
}
if p == c {
p = <-candidates
}
}
}()
return out
}
func main() {
primes := Sieve()
a := []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}
for i := 0; i < len(a); i++ {
if x := <-primes; x != a[i] {
println(x, " != ", a[i])
panic("fail")
}
}
}
|