1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
|
/* Memory address lowering and addressing mode selection.
Copyright (C) 2004, 2006, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Utility functions for manipulation with TARGET_MEM_REFs -- tree expressions
that directly map to addressing modes of the target. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "tm_p.h"
#include "basic-block.h"
#include "output.h"
#include "tree-pretty-print.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "timevar.h"
#include "flags.h"
#include "tree-inline.h"
#include "tree-affine.h"
/* FIXME: We compute address costs using RTL. */
#include "insn-config.h"
#include "rtl.h"
#include "recog.h"
#include "expr.h"
#include "ggc.h"
#include "target.h"
/* TODO -- handling of symbols (according to Richard Hendersons
comments, http://gcc.gnu.org/ml/gcc-patches/2005-04/msg00949.html):
There are at least 5 different kinds of symbols that we can run up against:
(1) binds_local_p, small data area.
(2) binds_local_p, eg local statics
(3) !binds_local_p, eg global variables
(4) thread local, local_exec
(5) thread local, !local_exec
Now, (1) won't appear often in an array context, but it certainly can.
All you have to do is set -GN high enough, or explicitly mark any
random object __attribute__((section (".sdata"))).
All of these affect whether or not a symbol is in fact a valid address.
The only one tested here is (3). And that result may very well
be incorrect for (4) or (5).
An incorrect result here does not cause incorrect results out the
back end, because the expander in expr.c validizes the address. However
it would be nice to improve the handling here in order to produce more
precise results. */
/* A "template" for memory address, used to determine whether the address is
valid for mode. */
typedef struct GTY (()) mem_addr_template {
rtx ref; /* The template. */
rtx * GTY ((skip)) step_p; /* The point in template where the step should be
filled in. */
rtx * GTY ((skip)) off_p; /* The point in template where the offset should
be filled in. */
} mem_addr_template;
DEF_VEC_O (mem_addr_template);
DEF_VEC_ALLOC_O (mem_addr_template, gc);
/* The templates. Each of the low five bits of the index corresponds to one
component of TARGET_MEM_REF being present, while the high bits identify
the address space. See TEMPL_IDX. */
static GTY(()) VEC (mem_addr_template, gc) *mem_addr_template_list;
#define TEMPL_IDX(AS, SYMBOL, BASE, INDEX, STEP, OFFSET) \
(((int) (AS) << 5) \
| ((SYMBOL != 0) << 4) \
| ((BASE != 0) << 3) \
| ((INDEX != 0) << 2) \
| ((STEP != 0) << 1) \
| (OFFSET != 0))
/* Stores address for memory reference with parameters SYMBOL, BASE, INDEX,
STEP and OFFSET to *ADDR using address mode ADDRESS_MODE. Stores pointers
to where step is placed to *STEP_P and offset to *OFFSET_P. */
static void
gen_addr_rtx (enum machine_mode address_mode,
rtx symbol, rtx base, rtx index, rtx step, rtx offset,
rtx *addr, rtx **step_p, rtx **offset_p)
{
rtx act_elem;
*addr = NULL_RTX;
if (step_p)
*step_p = NULL;
if (offset_p)
*offset_p = NULL;
if (index)
{
act_elem = index;
if (step)
{
act_elem = gen_rtx_MULT (address_mode, act_elem, step);
if (step_p)
*step_p = &XEXP (act_elem, 1);
}
*addr = act_elem;
}
if (base && base != const0_rtx)
{
if (*addr)
*addr = simplify_gen_binary (PLUS, address_mode, base, *addr);
else
*addr = base;
}
if (symbol)
{
act_elem = symbol;
if (offset)
{
act_elem = gen_rtx_PLUS (address_mode, act_elem, offset);
if (offset_p)
*offset_p = &XEXP (act_elem, 1);
if (GET_CODE (symbol) == SYMBOL_REF
|| GET_CODE (symbol) == LABEL_REF
|| GET_CODE (symbol) == CONST)
act_elem = gen_rtx_CONST (address_mode, act_elem);
}
if (*addr)
*addr = gen_rtx_PLUS (address_mode, *addr, act_elem);
else
*addr = act_elem;
}
else if (offset)
{
if (*addr)
{
*addr = gen_rtx_PLUS (address_mode, *addr, offset);
if (offset_p)
*offset_p = &XEXP (*addr, 1);
}
else
{
*addr = offset;
if (offset_p)
*offset_p = addr;
}
}
if (!*addr)
*addr = const0_rtx;
}
/* Returns address for TARGET_MEM_REF with parameters given by ADDR
in address space AS.
If REALLY_EXPAND is false, just make fake registers instead
of really expanding the operands, and perform the expansion in-place
by using one of the "templates". */
rtx
addr_for_mem_ref (struct mem_address *addr, addr_space_t as,
bool really_expand)
{
enum machine_mode address_mode = targetm.addr_space.address_mode (as);
rtx address, sym, bse, idx, st, off;
struct mem_addr_template *templ;
if (addr->step && !integer_onep (addr->step))
st = immed_double_int_const (tree_to_double_int (addr->step), address_mode);
else
st = NULL_RTX;
if (addr->offset && !integer_zerop (addr->offset))
off = immed_double_int_const
(double_int_sext (tree_to_double_int (addr->offset),
TYPE_PRECISION (TREE_TYPE (addr->offset))),
address_mode);
else
off = NULL_RTX;
if (!really_expand)
{
unsigned int templ_index
= TEMPL_IDX (as, addr->symbol, addr->base, addr->index, st, off);
if (templ_index
>= VEC_length (mem_addr_template, mem_addr_template_list))
VEC_safe_grow_cleared (mem_addr_template, gc, mem_addr_template_list,
templ_index + 1);
/* Reuse the templates for addresses, so that we do not waste memory. */
templ = VEC_index (mem_addr_template, mem_addr_template_list, templ_index);
if (!templ->ref)
{
sym = (addr->symbol ?
gen_rtx_SYMBOL_REF (address_mode, ggc_strdup ("test_symbol"))
: NULL_RTX);
bse = (addr->base ?
gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1)
: NULL_RTX);
idx = (addr->index ?
gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2)
: NULL_RTX);
gen_addr_rtx (address_mode, sym, bse, idx,
st? const0_rtx : NULL_RTX,
off? const0_rtx : NULL_RTX,
&templ->ref,
&templ->step_p,
&templ->off_p);
}
if (st)
*templ->step_p = st;
if (off)
*templ->off_p = off;
return templ->ref;
}
/* Otherwise really expand the expressions. */
sym = (addr->symbol
? expand_expr (addr->symbol, NULL_RTX, address_mode, EXPAND_NORMAL)
: NULL_RTX);
bse = (addr->base
? expand_expr (addr->base, NULL_RTX, address_mode, EXPAND_NORMAL)
: NULL_RTX);
idx = (addr->index
? expand_expr (addr->index, NULL_RTX, address_mode, EXPAND_NORMAL)
: NULL_RTX);
gen_addr_rtx (address_mode, sym, bse, idx, st, off, &address, NULL, NULL);
return address;
}
/* Returns address of MEM_REF in TYPE. */
tree
tree_mem_ref_addr (tree type, tree mem_ref)
{
tree addr;
tree act_elem;
tree step = TMR_STEP (mem_ref), offset = TMR_OFFSET (mem_ref);
tree addr_base = NULL_TREE, addr_off = NULL_TREE;
addr_base = fold_convert (type, TMR_BASE (mem_ref));
act_elem = TMR_INDEX (mem_ref);
if (act_elem)
{
if (step)
act_elem = fold_build2 (MULT_EXPR, sizetype, act_elem, step);
addr_off = act_elem;
}
act_elem = TMR_INDEX2 (mem_ref);
if (act_elem)
{
if (addr_off)
addr_off = fold_build2 (PLUS_EXPR, sizetype, addr_off, act_elem);
else
addr_off = act_elem;
}
if (offset && !integer_zerop (offset))
{
offset = fold_convert (sizetype, offset);
if (addr_off)
addr_off = fold_build2 (PLUS_EXPR, sizetype, addr_off, offset);
else
addr_off = offset;
}
if (addr_off)
addr = fold_build2 (POINTER_PLUS_EXPR, type, addr_base, addr_off);
else
addr = addr_base;
return addr;
}
/* Returns true if a memory reference in MODE and with parameters given by
ADDR is valid on the current target. */
static bool
valid_mem_ref_p (enum machine_mode mode, addr_space_t as,
struct mem_address *addr)
{
rtx address;
address = addr_for_mem_ref (addr, as, false);
if (!address)
return false;
return memory_address_addr_space_p (mode, address, as);
}
/* Checks whether a TARGET_MEM_REF with type TYPE and parameters given by ADDR
is valid on the current target and if so, creates and returns the
TARGET_MEM_REF. If VERIFY is false omit the verification step. */
static tree
create_mem_ref_raw (tree type, tree alias_ptr_type, struct mem_address *addr,
bool verify)
{
tree base, index2;
if (verify
&& !valid_mem_ref_p (TYPE_MODE (type), TYPE_ADDR_SPACE (type), addr))
return NULL_TREE;
if (addr->step && integer_onep (addr->step))
addr->step = NULL_TREE;
if (addr->offset)
addr->offset = fold_convert (alias_ptr_type, addr->offset);
else
addr->offset = build_int_cst (alias_ptr_type, 0);
if (addr->symbol)
{
base = addr->symbol;
index2 = addr->base;
}
else if (addr->base
&& POINTER_TYPE_P (TREE_TYPE (addr->base)))
{
base = addr->base;
index2 = NULL_TREE;
}
else
{
base = build_int_cst (ptr_type_node, 0);
index2 = addr->base;
}
/* If possible use a plain MEM_REF instead of a TARGET_MEM_REF.
??? As IVOPTs does not follow restrictions to where the base
pointer may point to create a MEM_REF only if we know that
base is valid. */
if ((TREE_CODE (base) == ADDR_EXPR || TREE_CODE (base) == INTEGER_CST)
&& (!index2 || integer_zerop (index2))
&& (!addr->index || integer_zerop (addr->index)))
return fold_build2 (MEM_REF, type, base, addr->offset);
return build5 (TARGET_MEM_REF, type,
base, addr->offset, addr->index, addr->step, index2);
}
/* Returns true if OBJ is an object whose address is a link time constant. */
static bool
fixed_address_object_p (tree obj)
{
return (TREE_CODE (obj) == VAR_DECL
&& (TREE_STATIC (obj)
|| DECL_EXTERNAL (obj))
&& ! DECL_DLLIMPORT_P (obj));
}
/* If ADDR contains an address of object that is a link time constant,
move it to PARTS->symbol. */
static void
move_fixed_address_to_symbol (struct mem_address *parts, aff_tree *addr)
{
unsigned i;
tree val = NULL_TREE;
for (i = 0; i < addr->n; i++)
{
if (!double_int_one_p (addr->elts[i].coef))
continue;
val = addr->elts[i].val;
if (TREE_CODE (val) == ADDR_EXPR
&& fixed_address_object_p (TREE_OPERAND (val, 0)))
break;
}
if (i == addr->n)
return;
parts->symbol = val;
aff_combination_remove_elt (addr, i);
}
/* If ADDR contains an instance of BASE_HINT, move it to PARTS->base. */
static void
move_hint_to_base (tree type, struct mem_address *parts, tree base_hint,
aff_tree *addr)
{
unsigned i;
tree val = NULL_TREE;
int qual;
for (i = 0; i < addr->n; i++)
{
if (!double_int_one_p (addr->elts[i].coef))
continue;
val = addr->elts[i].val;
if (operand_equal_p (val, base_hint, 0))
break;
}
if (i == addr->n)
return;
/* Cast value to appropriate pointer type. We cannot use a pointer
to TYPE directly, as the back-end will assume registers of pointer
type are aligned, and just the base itself may not actually be.
We use void pointer to the type's address space instead. */
qual = ENCODE_QUAL_ADDR_SPACE (TYPE_ADDR_SPACE (type));
type = build_qualified_type (void_type_node, qual);
parts->base = fold_convert (build_pointer_type (type), val);
aff_combination_remove_elt (addr, i);
}
/* If ADDR contains an address of a dereferenced pointer, move it to
PARTS->base. */
static void
move_pointer_to_base (struct mem_address *parts, aff_tree *addr)
{
unsigned i;
tree val = NULL_TREE;
for (i = 0; i < addr->n; i++)
{
if (!double_int_one_p (addr->elts[i].coef))
continue;
val = addr->elts[i].val;
if (POINTER_TYPE_P (TREE_TYPE (val)))
break;
}
if (i == addr->n)
return;
parts->base = val;
aff_combination_remove_elt (addr, i);
}
/* Moves the loop variant part V in linear address ADDR to be the index
of PARTS. */
static void
move_variant_to_index (struct mem_address *parts, aff_tree *addr, tree v)
{
unsigned i;
tree val = NULL_TREE;
gcc_assert (!parts->index);
for (i = 0; i < addr->n; i++)
{
val = addr->elts[i].val;
if (operand_equal_p (val, v, 0))
break;
}
if (i == addr->n)
return;
parts->index = fold_convert (sizetype, val);
parts->step = double_int_to_tree (sizetype, addr->elts[i].coef);
aff_combination_remove_elt (addr, i);
}
/* Adds ELT to PARTS. */
static void
add_to_parts (struct mem_address *parts, tree elt)
{
tree type;
if (!parts->index)
{
parts->index = fold_convert (sizetype, elt);
return;
}
if (!parts->base)
{
parts->base = elt;
return;
}
/* Add ELT to base. */
type = TREE_TYPE (parts->base);
if (POINTER_TYPE_P (type))
parts->base = fold_build2 (POINTER_PLUS_EXPR, type,
parts->base,
fold_convert (sizetype, elt));
else
parts->base = fold_build2 (PLUS_EXPR, type,
parts->base, elt);
}
/* Finds the most expensive multiplication in ADDR that can be
expressed in an addressing mode and move the corresponding
element(s) to PARTS. */
static void
most_expensive_mult_to_index (tree type, struct mem_address *parts,
aff_tree *addr, bool speed)
{
addr_space_t as = TYPE_ADDR_SPACE (type);
enum machine_mode address_mode = targetm.addr_space.address_mode (as);
HOST_WIDE_INT coef;
double_int best_mult, amult, amult_neg;
unsigned best_mult_cost = 0, acost;
tree mult_elt = NULL_TREE, elt;
unsigned i, j;
enum tree_code op_code;
best_mult = double_int_zero;
for (i = 0; i < addr->n; i++)
{
if (!double_int_fits_in_shwi_p (addr->elts[i].coef))
continue;
coef = double_int_to_shwi (addr->elts[i].coef);
if (coef == 1
|| !multiplier_allowed_in_address_p (coef, TYPE_MODE (type), as))
continue;
acost = multiply_by_cost (coef, address_mode, speed);
if (acost > best_mult_cost)
{
best_mult_cost = acost;
best_mult = addr->elts[i].coef;
}
}
if (!best_mult_cost)
return;
/* Collect elements multiplied by best_mult. */
for (i = j = 0; i < addr->n; i++)
{
amult = addr->elts[i].coef;
amult_neg = double_int_ext_for_comb (double_int_neg (amult), addr);
if (double_int_equal_p (amult, best_mult))
op_code = PLUS_EXPR;
else if (double_int_equal_p (amult_neg, best_mult))
op_code = MINUS_EXPR;
else
{
addr->elts[j] = addr->elts[i];
j++;
continue;
}
elt = fold_convert (sizetype, addr->elts[i].val);
if (mult_elt)
mult_elt = fold_build2 (op_code, sizetype, mult_elt, elt);
else if (op_code == PLUS_EXPR)
mult_elt = elt;
else
mult_elt = fold_build1 (NEGATE_EXPR, sizetype, elt);
}
addr->n = j;
parts->index = mult_elt;
parts->step = double_int_to_tree (sizetype, best_mult);
}
/* Splits address ADDR for a memory access of type TYPE into PARTS.
If BASE_HINT is non-NULL, it specifies an SSA name to be used
preferentially as base of the reference, and IV_CAND is the selected
iv candidate used in ADDR.
TODO -- be more clever about the distribution of the elements of ADDR
to PARTS. Some architectures do not support anything but single
register in address, possibly with a small integer offset; while
create_mem_ref will simplify the address to an acceptable shape
later, it would be more efficient to know that asking for complicated
addressing modes is useless. */
static void
addr_to_parts (tree type, aff_tree *addr, tree iv_cand,
tree base_hint, struct mem_address *parts,
bool speed)
{
tree part;
unsigned i;
parts->symbol = NULL_TREE;
parts->base = NULL_TREE;
parts->index = NULL_TREE;
parts->step = NULL_TREE;
if (!double_int_zero_p (addr->offset))
parts->offset = double_int_to_tree (sizetype, addr->offset);
else
parts->offset = NULL_TREE;
/* Try to find a symbol. */
move_fixed_address_to_symbol (parts, addr);
/* No need to do address parts reassociation if the number of parts
is <= 2 -- in that case, no loop invariant code motion can be
exposed. */
if (!base_hint && (addr->n > 2))
move_variant_to_index (parts, addr, iv_cand);
/* First move the most expensive feasible multiplication
to index. */
if (!parts->index)
most_expensive_mult_to_index (type, parts, addr, speed);
/* Try to find a base of the reference. Since at the moment
there is no reliable way how to distinguish between pointer and its
offset, this is just a guess. */
if (!parts->symbol && base_hint)
move_hint_to_base (type, parts, base_hint, addr);
if (!parts->symbol && !parts->base)
move_pointer_to_base (parts, addr);
/* Then try to process the remaining elements. */
for (i = 0; i < addr->n; i++)
{
part = fold_convert (sizetype, addr->elts[i].val);
if (!double_int_one_p (addr->elts[i].coef))
part = fold_build2 (MULT_EXPR, sizetype, part,
double_int_to_tree (sizetype, addr->elts[i].coef));
add_to_parts (parts, part);
}
if (addr->rest)
add_to_parts (parts, fold_convert (sizetype, addr->rest));
}
/* Force the PARTS to register. */
static void
gimplify_mem_ref_parts (gimple_stmt_iterator *gsi, struct mem_address *parts)
{
if (parts->base)
parts->base = force_gimple_operand_gsi_1 (gsi, parts->base,
is_gimple_mem_ref_addr, NULL_TREE,
true, GSI_SAME_STMT);
if (parts->index)
parts->index = force_gimple_operand_gsi (gsi, parts->index,
true, NULL_TREE,
true, GSI_SAME_STMT);
}
/* Creates and returns a TARGET_MEM_REF for address ADDR. If necessary
computations are emitted in front of GSI. TYPE is the mode
of created memory reference. IV_CAND is the selected iv candidate in ADDR,
and BASE_HINT is non NULL if IV_CAND comes from a base address
object. */
tree
create_mem_ref (gimple_stmt_iterator *gsi, tree type, aff_tree *addr,
tree alias_ptr_type, tree iv_cand, tree base_hint, bool speed)
{
tree mem_ref, tmp;
tree atype;
struct mem_address parts;
addr_to_parts (type, addr, iv_cand, base_hint, &parts, speed);
gimplify_mem_ref_parts (gsi, &parts);
mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
if (mem_ref)
return mem_ref;
/* The expression is too complicated. Try making it simpler. */
if (parts.step && !integer_onep (parts.step))
{
/* Move the multiplication to index. */
gcc_assert (parts.index);
parts.index = force_gimple_operand_gsi (gsi,
fold_build2 (MULT_EXPR, sizetype,
parts.index, parts.step),
true, NULL_TREE, true, GSI_SAME_STMT);
parts.step = NULL_TREE;
mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
if (mem_ref)
return mem_ref;
}
if (parts.symbol)
{
tmp = parts.symbol;
gcc_assert (is_gimple_val (tmp));
/* Add the symbol to base, eventually forcing it to register. */
if (parts.base)
{
gcc_assert (useless_type_conversion_p
(sizetype, TREE_TYPE (parts.base)));
if (parts.index)
{
atype = TREE_TYPE (tmp);
parts.base = force_gimple_operand_gsi_1 (gsi,
fold_build2 (POINTER_PLUS_EXPR, atype,
tmp,
fold_convert (sizetype, parts.base)),
is_gimple_mem_ref_addr, NULL_TREE, true, GSI_SAME_STMT);
}
else
{
parts.index = parts.base;
parts.base = tmp;
}
}
else
parts.base = tmp;
parts.symbol = NULL_TREE;
mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
if (mem_ref)
return mem_ref;
}
if (parts.index)
{
/* Add index to base. */
if (parts.base)
{
atype = TREE_TYPE (parts.base);
parts.base = force_gimple_operand_gsi_1 (gsi,
fold_build2 (POINTER_PLUS_EXPR, atype,
parts.base,
parts.index),
is_gimple_mem_ref_addr, NULL_TREE, true, GSI_SAME_STMT);
}
else
parts.base = parts.index;
parts.index = NULL_TREE;
mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
if (mem_ref)
return mem_ref;
}
if (parts.offset && !integer_zerop (parts.offset))
{
/* Try adding offset to base. */
if (parts.base)
{
atype = TREE_TYPE (parts.base);
parts.base = force_gimple_operand_gsi_1 (gsi,
fold_build2 (POINTER_PLUS_EXPR, atype,
parts.base,
fold_convert (sizetype, parts.offset)),
is_gimple_mem_ref_addr, NULL_TREE, true, GSI_SAME_STMT);
}
else
parts.base = parts.offset;
parts.offset = NULL_TREE;
mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts, true);
if (mem_ref)
return mem_ref;
}
/* Verify that the address is in the simplest possible shape
(only a register). If we cannot create such a memory reference,
something is really wrong. */
gcc_assert (parts.symbol == NULL_TREE);
gcc_assert (parts.index == NULL_TREE);
gcc_assert (!parts.step || integer_onep (parts.step));
gcc_assert (!parts.offset || integer_zerop (parts.offset));
gcc_unreachable ();
}
/* Copies components of the address from OP to ADDR. */
void
get_address_description (tree op, struct mem_address *addr)
{
if (TREE_CODE (TMR_BASE (op)) == ADDR_EXPR)
{
addr->symbol = TMR_BASE (op);
addr->base = TMR_INDEX2 (op);
}
else
{
addr->symbol = NULL_TREE;
if (TMR_INDEX2 (op))
{
gcc_assert (integer_zerop (TMR_BASE (op)));
addr->base = TMR_INDEX2 (op);
}
else
addr->base = TMR_BASE (op);
}
addr->index = TMR_INDEX (op);
addr->step = TMR_STEP (op);
addr->offset = TMR_OFFSET (op);
}
/* Copies the additional information attached to target_mem_ref FROM to TO. */
void
copy_mem_ref_info (tree to, tree from)
{
/* And the info about the original reference. */
TREE_SIDE_EFFECTS (to) = TREE_SIDE_EFFECTS (from);
TREE_THIS_VOLATILE (to) = TREE_THIS_VOLATILE (from);
}
/* Move constants in target_mem_ref REF to offset. Returns the new target
mem ref if anything changes, NULL_TREE otherwise. */
tree
maybe_fold_tmr (tree ref)
{
struct mem_address addr;
bool changed = false;
tree ret, off;
get_address_description (ref, &addr);
if (addr.base
&& TREE_CODE (addr.base) == INTEGER_CST
&& !integer_zerop (addr.base))
{
addr.offset = fold_binary_to_constant (PLUS_EXPR,
TREE_TYPE (addr.offset),
addr.offset, addr.base);
addr.base = NULL_TREE;
changed = true;
}
if (addr.symbol
&& TREE_CODE (TREE_OPERAND (addr.symbol, 0)) == MEM_REF)
{
addr.offset = fold_binary_to_constant
(PLUS_EXPR, TREE_TYPE (addr.offset),
addr.offset,
TREE_OPERAND (TREE_OPERAND (addr.symbol, 0), 1));
addr.symbol = TREE_OPERAND (TREE_OPERAND (addr.symbol, 0), 0);
changed = true;
}
else if (addr.symbol
&& handled_component_p (TREE_OPERAND (addr.symbol, 0)))
{
HOST_WIDE_INT offset;
addr.symbol = build_fold_addr_expr
(get_addr_base_and_unit_offset
(TREE_OPERAND (addr.symbol, 0), &offset));
addr.offset = int_const_binop (PLUS_EXPR,
addr.offset, size_int (offset), 0);
changed = true;
}
if (addr.index && TREE_CODE (addr.index) == INTEGER_CST)
{
off = addr.index;
if (addr.step)
{
off = fold_binary_to_constant (MULT_EXPR, sizetype,
off, addr.step);
addr.step = NULL_TREE;
}
addr.offset = fold_binary_to_constant (PLUS_EXPR,
TREE_TYPE (addr.offset),
addr.offset, off);
addr.index = NULL_TREE;
changed = true;
}
if (!changed)
return NULL_TREE;
/* If we have propagated something into this TARGET_MEM_REF and thus
ended up folding it, always create a new TARGET_MEM_REF regardless
if it is valid in this for on the target - the propagation result
wouldn't be anyway. */
ret = create_mem_ref_raw (TREE_TYPE (ref),
TREE_TYPE (addr.offset), &addr, false);
copy_mem_ref_info (ret, ref);
return ret;
}
/* Dump PARTS to FILE. */
extern void dump_mem_address (FILE *, struct mem_address *);
void
dump_mem_address (FILE *file, struct mem_address *parts)
{
if (parts->symbol)
{
fprintf (file, "symbol: ");
print_generic_expr (file, TREE_OPERAND (parts->symbol, 0), TDF_SLIM);
fprintf (file, "\n");
}
if (parts->base)
{
fprintf (file, "base: ");
print_generic_expr (file, parts->base, TDF_SLIM);
fprintf (file, "\n");
}
if (parts->index)
{
fprintf (file, "index: ");
print_generic_expr (file, parts->index, TDF_SLIM);
fprintf (file, "\n");
}
if (parts->step)
{
fprintf (file, "step: ");
print_generic_expr (file, parts->step, TDF_SLIM);
fprintf (file, "\n");
}
if (parts->offset)
{
fprintf (file, "offset: ");
print_generic_expr (file, parts->offset, TDF_SLIM);
fprintf (file, "\n");
}
}
#include "gt-tree-ssa-address.h"
|