1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
|
/* Miscellaneous SSA utility functions.
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "flags.h"
#include "tm_p.h"
#include "target.h"
#include "ggc.h"
#include "langhooks.h"
#include "basic-block.h"
#include "output.h"
#include "function.h"
#include "tree-pretty-print.h"
#include "gimple-pretty-print.h"
#include "bitmap.h"
#include "pointer-set.h"
#include "tree-flow.h"
#include "gimple.h"
#include "tree-inline.h"
#include "timevar.h"
#include "hashtab.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "diagnostic-core.h"
#include "cfgloop.h"
/* Pointer map of variable mappings, keyed by edge. */
static struct pointer_map_t *edge_var_maps;
/* Add a mapping with PHI RESULT and PHI DEF associated with edge E. */
void
redirect_edge_var_map_add (edge e, tree result, tree def, source_location locus)
{
void **slot;
edge_var_map_vector old_head, head;
edge_var_map new_node;
if (edge_var_maps == NULL)
edge_var_maps = pointer_map_create ();
slot = pointer_map_insert (edge_var_maps, e);
old_head = head = (edge_var_map_vector) *slot;
if (!head)
{
head = VEC_alloc (edge_var_map, heap, 5);
*slot = head;
}
new_node.def = def;
new_node.result = result;
new_node.locus = locus;
VEC_safe_push (edge_var_map, heap, head, &new_node);
if (old_head != head)
{
/* The push did some reallocation. Update the pointer map. */
*slot = head;
}
}
/* Clear the var mappings in edge E. */
void
redirect_edge_var_map_clear (edge e)
{
void **slot;
edge_var_map_vector head;
if (!edge_var_maps)
return;
slot = pointer_map_contains (edge_var_maps, e);
if (slot)
{
head = (edge_var_map_vector) *slot;
VEC_free (edge_var_map, heap, head);
*slot = NULL;
}
}
/* Duplicate the redirected var mappings in OLDE in NEWE.
Since we can't remove a mapping, let's just duplicate it. This assumes a
pointer_map can have multiple edges mapping to the same var_map (many to
one mapping), since we don't remove the previous mappings. */
void
redirect_edge_var_map_dup (edge newe, edge olde)
{
void **new_slot, **old_slot;
edge_var_map_vector head;
if (!edge_var_maps)
return;
new_slot = pointer_map_insert (edge_var_maps, newe);
old_slot = pointer_map_contains (edge_var_maps, olde);
if (!old_slot)
return;
head = (edge_var_map_vector) *old_slot;
if (head)
*new_slot = VEC_copy (edge_var_map, heap, head);
else
*new_slot = VEC_alloc (edge_var_map, heap, 5);
}
/* Return the variable mappings for a given edge. If there is none, return
NULL. */
edge_var_map_vector
redirect_edge_var_map_vector (edge e)
{
void **slot;
/* Hey, what kind of idiot would... you'd be surprised. */
if (!edge_var_maps)
return NULL;
slot = pointer_map_contains (edge_var_maps, e);
if (!slot)
return NULL;
return (edge_var_map_vector) *slot;
}
/* Used by redirect_edge_var_map_destroy to free all memory. */
static bool
free_var_map_entry (const void *key ATTRIBUTE_UNUSED,
void **value,
void *data ATTRIBUTE_UNUSED)
{
edge_var_map_vector head = (edge_var_map_vector) *value;
VEC_free (edge_var_map, heap, head);
return true;
}
/* Clear the edge variable mappings. */
void
redirect_edge_var_map_destroy (void)
{
if (edge_var_maps)
{
pointer_map_traverse (edge_var_maps, free_var_map_entry, NULL);
pointer_map_destroy (edge_var_maps);
edge_var_maps = NULL;
}
}
/* Remove the corresponding arguments from the PHI nodes in E's
destination block and redirect it to DEST. Return redirected edge.
The list of removed arguments is stored in a vector accessed
through edge_var_maps. */
edge
ssa_redirect_edge (edge e, basic_block dest)
{
gimple_stmt_iterator gsi;
gimple phi;
redirect_edge_var_map_clear (e);
/* Remove the appropriate PHI arguments in E's destination block. */
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
tree def;
source_location locus ;
phi = gsi_stmt (gsi);
def = gimple_phi_arg_def (phi, e->dest_idx);
locus = gimple_phi_arg_location (phi, e->dest_idx);
if (def == NULL_TREE)
continue;
redirect_edge_var_map_add (e, gimple_phi_result (phi), def, locus);
}
e = redirect_edge_succ_nodup (e, dest);
return e;
}
/* Add PHI arguments queued in PENDING_STMT list on edge E to edge
E->dest. */
void
flush_pending_stmts (edge e)
{
gimple phi;
edge_var_map_vector v;
edge_var_map *vm;
int i;
gimple_stmt_iterator gsi;
v = redirect_edge_var_map_vector (e);
if (!v)
return;
for (gsi = gsi_start_phis (e->dest), i = 0;
!gsi_end_p (gsi) && VEC_iterate (edge_var_map, v, i, vm);
gsi_next (&gsi), i++)
{
tree def;
phi = gsi_stmt (gsi);
def = redirect_edge_var_map_def (vm);
add_phi_arg (phi, def, e, redirect_edge_var_map_location (vm));
}
redirect_edge_var_map_clear (e);
}
/* Given a tree for an expression for which we might want to emit
locations or values in debug information (generally a variable, but
we might deal with other kinds of trees in the future), return the
tree that should be used as the variable of a DEBUG_BIND STMT or
VAR_LOCATION INSN or NOTE. Return NULL if VAR is not to be tracked. */
tree
target_for_debug_bind (tree var)
{
if (!MAY_HAVE_DEBUG_STMTS)
return NULL_TREE;
if (TREE_CODE (var) != VAR_DECL
&& TREE_CODE (var) != PARM_DECL)
return NULL_TREE;
if (DECL_HAS_VALUE_EXPR_P (var))
return target_for_debug_bind (DECL_VALUE_EXPR (var));
if (DECL_IGNORED_P (var))
return NULL_TREE;
if (!is_gimple_reg (var))
return NULL_TREE;
return var;
}
/* Called via walk_tree, look for SSA_NAMEs that have already been
released. */
static tree
find_released_ssa_name (tree *tp, int *walk_subtrees, void *data_)
{
struct walk_stmt_info *wi = (struct walk_stmt_info *) data_;
if (wi && wi->is_lhs)
return NULL_TREE;
if (TREE_CODE (*tp) == SSA_NAME)
{
if (SSA_NAME_IN_FREE_LIST (*tp))
return *tp;
*walk_subtrees = 0;
}
else if (IS_TYPE_OR_DECL_P (*tp))
*walk_subtrees = 0;
return NULL_TREE;
}
/* Insert a DEBUG BIND stmt before the DEF of VAR if VAR is referenced
by other DEBUG stmts, and replace uses of the DEF with the
newly-created debug temp. */
void
insert_debug_temp_for_var_def (gimple_stmt_iterator *gsi, tree var)
{
imm_use_iterator imm_iter;
use_operand_p use_p;
gimple stmt;
gimple def_stmt = NULL;
int usecount = 0;
tree value = NULL;
if (!MAY_HAVE_DEBUG_STMTS)
return;
/* If this name has already been registered for replacement, do nothing
as anything that uses this name isn't in SSA form. */
if (name_registered_for_update_p (var))
return;
/* Check whether there are debug stmts that reference this variable and,
if there are, decide whether we should use a debug temp. */
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
{
stmt = USE_STMT (use_p);
if (!gimple_debug_bind_p (stmt))
continue;
if (usecount++)
break;
if (gimple_debug_bind_get_value (stmt) != var)
{
/* Count this as an additional use, so as to make sure we
use a temp unless VAR's definition has a SINGLE_RHS that
can be shared. */
usecount++;
break;
}
}
if (!usecount)
return;
if (gsi)
def_stmt = gsi_stmt (*gsi);
else
def_stmt = SSA_NAME_DEF_STMT (var);
/* If we didn't get an insertion point, and the stmt has already
been removed, we won't be able to insert the debug bind stmt, so
we'll have to drop debug information. */
if (gimple_code (def_stmt) == GIMPLE_PHI)
{
value = degenerate_phi_result (def_stmt);
if (value && walk_tree (&value, find_released_ssa_name, NULL, NULL))
value = NULL;
/* error_mark_node is what fixup_noreturn_call changes PHI arguments
to. */
else if (value == error_mark_node)
value = NULL;
}
else if (is_gimple_assign (def_stmt))
{
bool no_value = false;
if (!dom_info_available_p (CDI_DOMINATORS))
{
struct walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
/* When removing blocks without following reverse dominance
order, we may sometimes encounter SSA_NAMEs that have
already been released, referenced in other SSA_DEFs that
we're about to release. Consider:
<bb X>:
v_1 = foo;
<bb Y>:
w_2 = v_1 + bar;
# DEBUG w => w_2
If we deleted BB X first, propagating the value of w_2
won't do us any good. It's too late to recover their
original definition of v_1: when it was deleted, it was
only referenced in other DEFs, it couldn't possibly know
it should have been retained, and propagating every
single DEF just in case it might have to be propagated
into a DEBUG STMT would probably be too wasteful.
When dominator information is not readily available, we
check for and accept some loss of debug information. But
if it is available, there's no excuse for us to remove
blocks in the wrong order, so we don't even check for
dead SSA NAMEs. SSA verification shall catch any
errors. */
if ((!gsi && !gimple_bb (def_stmt))
|| walk_gimple_op (def_stmt, find_released_ssa_name, &wi))
no_value = true;
}
if (!no_value)
value = gimple_assign_rhs_to_tree (def_stmt);
}
if (value)
{
/* If there's a single use of VAR, and VAR is the entire debug
expression (usecount would have been incremented again
otherwise), and the definition involves only constants and
SSA names, then we can propagate VALUE into this single use,
avoiding the temp.
We can also avoid using a temp if VALUE can be shared and
propagated into all uses, without generating expressions that
wouldn't be valid gimple RHSs.
Other cases that would require unsharing or non-gimple RHSs
are deferred to a debug temp, although we could avoid temps
at the expense of duplication of expressions. */
if (CONSTANT_CLASS_P (value)
|| gimple_code (def_stmt) == GIMPLE_PHI
|| (usecount == 1
&& (!gimple_assign_single_p (def_stmt)
|| is_gimple_min_invariant (value)))
|| is_gimple_reg (value))
value = unshare_expr (value);
else
{
gimple def_temp;
tree vexpr = make_node (DEBUG_EXPR_DECL);
def_temp = gimple_build_debug_bind (vexpr,
unshare_expr (value),
def_stmt);
DECL_ARTIFICIAL (vexpr) = 1;
TREE_TYPE (vexpr) = TREE_TYPE (value);
if (DECL_P (value))
DECL_MODE (vexpr) = DECL_MODE (value);
else
DECL_MODE (vexpr) = TYPE_MODE (TREE_TYPE (value));
if (gsi)
gsi_insert_before (gsi, def_temp, GSI_SAME_STMT);
else
{
gimple_stmt_iterator ngsi = gsi_for_stmt (def_stmt);
gsi_insert_before (&ngsi, def_temp, GSI_SAME_STMT);
}
value = vexpr;
}
}
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, var)
{
if (!gimple_debug_bind_p (stmt))
continue;
if (value)
{
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
/* unshare_expr is not needed here. vexpr is either a
SINGLE_RHS, that can be safely shared, some other RHS
that was unshared when we found it had a single debug
use, or a DEBUG_EXPR_DECL, that can be safely
shared. */
SET_USE (use_p, value);
/* If we didn't replace uses with a debug decl fold the
resulting expression. Otherwise we end up with invalid IL. */
if (TREE_CODE (value) != DEBUG_EXPR_DECL)
fold_stmt_inplace (stmt);
}
else
gimple_debug_bind_reset_value (stmt);
update_stmt (stmt);
}
}
/* Insert a DEBUG BIND stmt before STMT for each DEF referenced by
other DEBUG stmts, and replace uses of the DEF with the
newly-created debug temp. */
void
insert_debug_temps_for_defs (gimple_stmt_iterator *gsi)
{
gimple stmt;
ssa_op_iter op_iter;
def_operand_p def_p;
if (!MAY_HAVE_DEBUG_STMTS)
return;
stmt = gsi_stmt (*gsi);
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
{
tree var = DEF_FROM_PTR (def_p);
if (TREE_CODE (var) != SSA_NAME)
continue;
insert_debug_temp_for_var_def (gsi, var);
}
}
/* Reset all debug stmts that use SSA_NAME(s) defined in STMT. */
void
reset_debug_uses (gimple stmt)
{
ssa_op_iter op_iter;
def_operand_p def_p;
imm_use_iterator imm_iter;
gimple use_stmt;
if (!MAY_HAVE_DEBUG_STMTS)
return;
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
{
tree var = DEF_FROM_PTR (def_p);
if (TREE_CODE (var) != SSA_NAME)
continue;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, var)
{
if (!gimple_debug_bind_p (use_stmt))
continue;
gimple_debug_bind_reset_value (use_stmt);
update_stmt (use_stmt);
}
}
}
/* Delete SSA DEFs for SSA versions in the TOREMOVE bitmap, removing
dominated stmts before their dominators, so that release_ssa_defs
stands a chance of propagating DEFs into debug bind stmts. */
void
release_defs_bitset (bitmap toremove)
{
unsigned j;
bitmap_iterator bi;
/* Performing a topological sort is probably overkill, this will
most likely run in slightly superlinear time, rather than the
pathological quadratic worst case. */
while (!bitmap_empty_p (toremove))
EXECUTE_IF_SET_IN_BITMAP (toremove, 0, j, bi)
{
bool remove_now = true;
tree var = ssa_name (j);
gimple stmt;
imm_use_iterator uit;
FOR_EACH_IMM_USE_STMT (stmt, uit, var)
{
ssa_op_iter dit;
def_operand_p def_p;
/* We can't propagate PHI nodes into debug stmts. */
if (gimple_code (stmt) == GIMPLE_PHI
|| is_gimple_debug (stmt))
continue;
/* If we find another definition to remove that uses
the one we're looking at, defer the removal of this
one, so that it can be propagated into debug stmts
after the other is. */
FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, dit, SSA_OP_DEF)
{
tree odef = DEF_FROM_PTR (def_p);
if (bitmap_bit_p (toremove, SSA_NAME_VERSION (odef)))
{
remove_now = false;
break;
}
}
if (!remove_now)
BREAK_FROM_IMM_USE_STMT (uit);
}
if (remove_now)
{
gimple def = SSA_NAME_DEF_STMT (var);
gimple_stmt_iterator gsi = gsi_for_stmt (def);
if (gimple_code (def) == GIMPLE_PHI)
remove_phi_node (&gsi, true);
else
{
gsi_remove (&gsi, true);
release_defs (def);
}
bitmap_clear_bit (toremove, j);
}
}
}
/* Return true if SSA_NAME is malformed and mark it visited.
IS_VIRTUAL is true if this SSA_NAME was found inside a virtual
operand. */
static bool
verify_ssa_name (tree ssa_name, bool is_virtual)
{
if (TREE_CODE (ssa_name) != SSA_NAME)
{
error ("expected an SSA_NAME object");
return true;
}
if (TREE_TYPE (ssa_name) != TREE_TYPE (SSA_NAME_VAR (ssa_name)))
{
error ("type mismatch between an SSA_NAME and its symbol");
return true;
}
if (SSA_NAME_IN_FREE_LIST (ssa_name))
{
error ("found an SSA_NAME that had been released into the free pool");
return true;
}
if (is_virtual && is_gimple_reg (ssa_name))
{
error ("found a virtual definition for a GIMPLE register");
return true;
}
if (is_virtual && SSA_NAME_VAR (ssa_name) != gimple_vop (cfun))
{
error ("virtual SSA name for non-VOP decl");
return true;
}
if (!is_virtual && !is_gimple_reg (ssa_name))
{
error ("found a real definition for a non-register");
return true;
}
if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
&& !gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
{
error ("found a default name with a non-empty defining statement");
return true;
}
return false;
}
/* Return true if the definition of SSA_NAME at block BB is malformed.
STMT is the statement where SSA_NAME is created.
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
it means that the block in that array slot contains the
definition of SSA_NAME.
IS_VIRTUAL is true if SSA_NAME is created by a VDEF. */
static bool
verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
gimple stmt, bool is_virtual)
{
if (verify_ssa_name (ssa_name, is_virtual))
goto err;
if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == RESULT_DECL
&& DECL_BY_REFERENCE (SSA_NAME_VAR (ssa_name)))
{
error ("RESULT_DECL should be read only when DECL_BY_REFERENCE is set");
goto err;
}
if (definition_block[SSA_NAME_VERSION (ssa_name)])
{
error ("SSA_NAME created in two different blocks %i and %i",
definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
goto err;
}
definition_block[SSA_NAME_VERSION (ssa_name)] = bb;
if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
{
error ("SSA_NAME_DEF_STMT is wrong");
fprintf (stderr, "Expected definition statement:\n");
print_gimple_stmt (stderr, SSA_NAME_DEF_STMT (ssa_name), 4, TDF_VOPS);
fprintf (stderr, "\nActual definition statement:\n");
print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
goto err;
}
return false;
err:
fprintf (stderr, "while verifying SSA_NAME ");
print_generic_expr (stderr, ssa_name, 0);
fprintf (stderr, " in statement\n");
print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
return true;
}
/* Return true if the use of SSA_NAME at statement STMT in block BB is
malformed.
DEF_BB is the block where SSA_NAME was found to be created.
IDOM contains immediate dominator information for the flowgraph.
CHECK_ABNORMAL is true if the caller wants to check whether this use
is flowing through an abnormal edge (only used when checking PHI
arguments).
If NAMES_DEFINED_IN_BB is not NULL, it contains a bitmap of ssa names
that are defined before STMT in basic block BB. */
static bool
verify_use (basic_block bb, basic_block def_bb, use_operand_p use_p,
gimple stmt, bool check_abnormal, bitmap names_defined_in_bb)
{
bool err = false;
tree ssa_name = USE_FROM_PTR (use_p);
if (!TREE_VISITED (ssa_name))
if (verify_imm_links (stderr, ssa_name))
err = true;
TREE_VISITED (ssa_name) = 1;
if (gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name))
&& SSA_NAME_IS_DEFAULT_DEF (ssa_name))
; /* Default definitions have empty statements. Nothing to do. */
else if (!def_bb)
{
error ("missing definition");
err = true;
}
else if (bb != def_bb
&& !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
{
error ("definition in block %i does not dominate use in block %i",
def_bb->index, bb->index);
err = true;
}
else if (bb == def_bb
&& names_defined_in_bb != NULL
&& !bitmap_bit_p (names_defined_in_bb, SSA_NAME_VERSION (ssa_name)))
{
error ("definition in block %i follows the use", def_bb->index);
err = true;
}
if (check_abnormal
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
{
error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
err = true;
}
/* Make sure the use is in an appropriate list by checking the previous
element to make sure it's the same. */
if (use_p->prev == NULL)
{
error ("no immediate_use list");
err = true;
}
else
{
tree listvar;
if (use_p->prev->use == NULL)
listvar = use_p->prev->loc.ssa_name;
else
listvar = USE_FROM_PTR (use_p->prev);
if (listvar != ssa_name)
{
error ("wrong immediate use list");
err = true;
}
}
if (err)
{
fprintf (stderr, "for SSA_NAME: ");
print_generic_expr (stderr, ssa_name, TDF_VOPS);
fprintf (stderr, " in statement:\n");
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
}
return err;
}
/* Return true if any of the arguments for PHI node PHI at block BB is
malformed.
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
it means that the block in that array slot contains the
definition of SSA_NAME. */
static bool
verify_phi_args (gimple phi, basic_block bb, basic_block *definition_block)
{
edge e;
bool err = false;
size_t i, phi_num_args = gimple_phi_num_args (phi);
if (EDGE_COUNT (bb->preds) != phi_num_args)
{
error ("incoming edge count does not match number of PHI arguments");
err = true;
goto error;
}
for (i = 0; i < phi_num_args; i++)
{
use_operand_p op_p = gimple_phi_arg_imm_use_ptr (phi, i);
tree op = USE_FROM_PTR (op_p);
e = EDGE_PRED (bb, i);
if (op == NULL_TREE)
{
error ("PHI argument is missing for edge %d->%d",
e->src->index,
e->dest->index);
err = true;
goto error;
}
if (TREE_CODE (op) != SSA_NAME && !is_gimple_min_invariant (op))
{
error ("PHI argument is not SSA_NAME, or invariant");
err = true;
}
if (TREE_CODE (op) == SSA_NAME)
{
err = verify_ssa_name (op, !is_gimple_reg (gimple_phi_result (phi)));
err |= verify_use (e->src, definition_block[SSA_NAME_VERSION (op)],
op_p, phi, e->flags & EDGE_ABNORMAL, NULL);
}
if (TREE_CODE (op) == ADDR_EXPR)
{
tree base = TREE_OPERAND (op, 0);
while (handled_component_p (base))
base = TREE_OPERAND (base, 0);
if ((TREE_CODE (base) == VAR_DECL
|| TREE_CODE (base) == PARM_DECL
|| TREE_CODE (base) == RESULT_DECL)
&& !TREE_ADDRESSABLE (base))
{
error ("address taken, but ADDRESSABLE bit not set");
err = true;
}
}
if (e->dest != bb)
{
error ("wrong edge %d->%d for PHI argument",
e->src->index, e->dest->index);
err = true;
}
if (err)
{
fprintf (stderr, "PHI argument\n");
print_generic_stmt (stderr, op, TDF_VOPS);
goto error;
}
}
error:
if (err)
{
fprintf (stderr, "for PHI node\n");
print_gimple_stmt (stderr, phi, 0, TDF_VOPS|TDF_MEMSYMS);
}
return err;
}
/* Verify common invariants in the SSA web.
TODO: verify the variable annotations. */
DEBUG_FUNCTION void
verify_ssa (bool check_modified_stmt)
{
size_t i;
basic_block bb;
basic_block *definition_block = XCNEWVEC (basic_block, num_ssa_names);
ssa_op_iter iter;
tree op;
enum dom_state orig_dom_state = dom_info_state (CDI_DOMINATORS);
bitmap names_defined_in_bb = BITMAP_ALLOC (NULL);
gcc_assert (!need_ssa_update_p (cfun));
verify_stmts ();
timevar_push (TV_TREE_SSA_VERIFY);
/* Keep track of SSA names present in the IL. */
for (i = 1; i < num_ssa_names; i++)
{
tree name = ssa_name (i);
if (name)
{
gimple stmt;
TREE_VISITED (name) = 0;
stmt = SSA_NAME_DEF_STMT (name);
if (!gimple_nop_p (stmt))
{
basic_block bb = gimple_bb (stmt);
verify_def (bb, definition_block,
name, stmt, !is_gimple_reg (name));
}
}
}
calculate_dominance_info (CDI_DOMINATORS);
/* Now verify all the uses and make sure they agree with the definitions
found in the previous pass. */
FOR_EACH_BB (bb)
{
edge e;
gimple phi;
edge_iterator ei;
gimple_stmt_iterator gsi;
/* Make sure that all edges have a clear 'aux' field. */
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->aux)
{
error ("AUX pointer initialized for edge %d->%d", e->src->index,
e->dest->index);
goto err;
}
}
/* Verify the arguments for every PHI node in the block. */
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
phi = gsi_stmt (gsi);
if (verify_phi_args (phi, bb, definition_block))
goto err;
bitmap_set_bit (names_defined_in_bb,
SSA_NAME_VERSION (gimple_phi_result (phi)));
}
/* Now verify all the uses and vuses in every statement of the block. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
use_operand_p use_p;
bool has_err;
int count;
unsigned i;
if (check_modified_stmt && gimple_modified_p (stmt))
{
error ("stmt (%p) marked modified after optimization pass: ",
(void *)stmt);
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
goto err;
}
if (is_gimple_assign (stmt)
&& TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
{
tree lhs, base_address;
lhs = gimple_assign_lhs (stmt);
base_address = get_base_address (lhs);
if (base_address
&& SSA_VAR_P (base_address)
&& !gimple_vdef (stmt)
&& optimize > 0)
{
error ("statement makes a memory store, but has no VDEFS");
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS);
goto err;
}
}
else if (gimple_debug_bind_p (stmt)
&& !gimple_debug_bind_has_value_p (stmt))
continue;
/* Verify the single virtual operand and its constraints. */
has_err = false;
if (gimple_vdef (stmt))
{
if (gimple_vdef_op (stmt) == NULL_DEF_OPERAND_P)
{
error ("statement has VDEF operand not in defs list");
has_err = true;
}
if (!gimple_vuse (stmt))
{
error ("statement has VDEF but no VUSE operand");
has_err = true;
}
else if (SSA_NAME_VAR (gimple_vdef (stmt))
!= SSA_NAME_VAR (gimple_vuse (stmt)))
{
error ("VDEF and VUSE do not use the same symbol");
has_err = true;
}
has_err |= verify_ssa_name (gimple_vdef (stmt), true);
}
if (gimple_vuse (stmt))
{
if (gimple_vuse_op (stmt) == NULL_USE_OPERAND_P)
{
error ("statement has VUSE operand not in uses list");
has_err = true;
}
has_err |= verify_ssa_name (gimple_vuse (stmt), true);
}
if (has_err)
{
error ("in statement");
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS|TDF_MEMSYMS);
goto err;
}
count = 0;
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE|SSA_OP_DEF)
{
if (verify_ssa_name (op, false))
{
error ("in statement");
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS|TDF_MEMSYMS);
goto err;
}
count++;
}
for (i = 0; i < gimple_num_ops (stmt); i++)
{
op = gimple_op (stmt, i);
if (op && TREE_CODE (op) == SSA_NAME && --count < 0)
{
error ("number of operands and imm-links don%'t agree"
" in statement");
print_gimple_stmt (stderr, stmt, 0, TDF_VOPS|TDF_MEMSYMS);
goto err;
}
}
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE|SSA_OP_VUSE)
{
op = USE_FROM_PTR (use_p);
if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
use_p, stmt, false, names_defined_in_bb))
goto err;
}
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_DEFS)
{
if (SSA_NAME_DEF_STMT (op) != stmt)
{
error ("SSA_NAME_DEF_STMT is wrong");
fprintf (stderr, "Expected definition statement:\n");
print_gimple_stmt (stderr, stmt, 4, TDF_VOPS);
fprintf (stderr, "\nActual definition statement:\n");
print_gimple_stmt (stderr, SSA_NAME_DEF_STMT (op),
4, TDF_VOPS);
goto err;
}
bitmap_set_bit (names_defined_in_bb, SSA_NAME_VERSION (op));
}
}
bitmap_clear (names_defined_in_bb);
}
free (definition_block);
/* Restore the dominance information to its prior known state, so
that we do not perturb the compiler's subsequent behavior. */
if (orig_dom_state == DOM_NONE)
free_dominance_info (CDI_DOMINATORS);
else
set_dom_info_availability (CDI_DOMINATORS, orig_dom_state);
BITMAP_FREE (names_defined_in_bb);
timevar_pop (TV_TREE_SSA_VERIFY);
return;
err:
internal_error ("verify_ssa failed");
}
/* Return true if the uid in both int tree maps are equal. */
int
int_tree_map_eq (const void *va, const void *vb)
{
const struct int_tree_map *a = (const struct int_tree_map *) va;
const struct int_tree_map *b = (const struct int_tree_map *) vb;
return (a->uid == b->uid);
}
/* Hash a UID in a int_tree_map. */
unsigned int
int_tree_map_hash (const void *item)
{
return ((const struct int_tree_map *)item)->uid;
}
/* Return true if the DECL_UID in both trees are equal. */
int
uid_decl_map_eq (const void *va, const void *vb)
{
const_tree a = (const_tree) va;
const_tree b = (const_tree) vb;
return (a->decl_minimal.uid == b->decl_minimal.uid);
}
/* Hash a tree in a uid_decl_map. */
unsigned int
uid_decl_map_hash (const void *item)
{
return ((const_tree)item)->decl_minimal.uid;
}
/* Return true if the DECL_UID in both trees are equal. */
static int
uid_ssaname_map_eq (const void *va, const void *vb)
{
const_tree a = (const_tree) va;
const_tree b = (const_tree) vb;
return (a->ssa_name.var->decl_minimal.uid == b->ssa_name.var->decl_minimal.uid);
}
/* Hash a tree in a uid_decl_map. */
static unsigned int
uid_ssaname_map_hash (const void *item)
{
return ((const_tree)item)->ssa_name.var->decl_minimal.uid;
}
/* Initialize global DFA and SSA structures. */
void
init_tree_ssa (struct function *fn)
{
fn->gimple_df = ggc_alloc_cleared_gimple_df ();
fn->gimple_df->referenced_vars = htab_create_ggc (20, uid_decl_map_hash,
uid_decl_map_eq, NULL);
fn->gimple_df->default_defs = htab_create_ggc (20, uid_ssaname_map_hash,
uid_ssaname_map_eq, NULL);
pt_solution_reset (&fn->gimple_df->escaped);
init_ssanames (fn, 0);
init_phinodes ();
}
/* Deallocate memory associated with SSA data structures for FNDECL. */
void
delete_tree_ssa (void)
{
referenced_var_iterator rvi;
tree var;
/* Remove annotations from every referenced local variable. */
FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
{
if (is_global_var (var))
continue;
if (var_ann (var))
{
ggc_free (var_ann (var));
*DECL_VAR_ANN_PTR (var) = NULL;
}
}
htab_delete (gimple_referenced_vars (cfun));
cfun->gimple_df->referenced_vars = NULL;
fini_ssanames ();
fini_phinodes ();
/* We no longer maintain the SSA operand cache at this point. */
if (ssa_operands_active ())
fini_ssa_operands ();
delete_alias_heapvars ();
htab_delete (cfun->gimple_df->default_defs);
cfun->gimple_df->default_defs = NULL;
pt_solution_reset (&cfun->gimple_df->escaped);
if (cfun->gimple_df->decls_to_pointers != NULL)
pointer_map_destroy (cfun->gimple_df->decls_to_pointers);
cfun->gimple_df->decls_to_pointers = NULL;
cfun->gimple_df->modified_noreturn_calls = NULL;
cfun->gimple_df = NULL;
/* We no longer need the edge variable maps. */
redirect_edge_var_map_destroy ();
}
/* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
useless type conversion, otherwise return false.
This function implicitly defines the middle-end type system. With
the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
the following invariants shall be fulfilled:
1) useless_type_conversion_p is transitive.
If a < b and b < c then a < c.
2) useless_type_conversion_p is not symmetric.
From a < b does not follow a > b.
3) Types define the available set of operations applicable to values.
A type conversion is useless if the operations for the target type
is a subset of the operations for the source type. For example
casts to void* are useless, casts from void* are not (void* can't
be dereferenced or offsetted, but copied, hence its set of operations
is a strict subset of that of all other data pointer types). Casts
to const T* are useless (can't be written to), casts from const T*
to T* are not. */
bool
useless_type_conversion_p (tree outer_type, tree inner_type)
{
/* Do the following before stripping toplevel qualifiers. */
if (POINTER_TYPE_P (inner_type)
&& POINTER_TYPE_P (outer_type))
{
/* Do not lose casts between pointers to different address spaces. */
if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
!= TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
return false;
/* Do not lose casts to restrict qualified pointers. */
if ((TYPE_RESTRICT (outer_type)
!= TYPE_RESTRICT (inner_type))
&& TYPE_RESTRICT (outer_type))
return false;
/* If the outer type is (void *) or a pointer to an incomplete
record type or a pointer to an unprototyped function,
then the conversion is not necessary. */
if (VOID_TYPE_P (TREE_TYPE (outer_type))
|| ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
&& (TREE_CODE (TREE_TYPE (outer_type))
== TREE_CODE (TREE_TYPE (inner_type)))
&& !prototype_p (TREE_TYPE (outer_type))
&& useless_type_conversion_p (TREE_TYPE (TREE_TYPE (outer_type)),
TREE_TYPE (TREE_TYPE (inner_type)))))
return true;
}
/* From now on qualifiers on value types do not matter. */
inner_type = TYPE_MAIN_VARIANT (inner_type);
outer_type = TYPE_MAIN_VARIANT (outer_type);
if (inner_type == outer_type)
return true;
/* If we know the canonical types, compare them. */
if (TYPE_CANONICAL (inner_type)
&& TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
return true;
/* Changes in machine mode are never useless conversions unless we
deal with aggregate types in which case we defer to later checks. */
if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type)
&& !AGGREGATE_TYPE_P (inner_type))
return false;
/* If both the inner and outer types are integral types, then the
conversion is not necessary if they have the same mode and
signedness and precision, and both or neither are boolean. */
if (INTEGRAL_TYPE_P (inner_type)
&& INTEGRAL_TYPE_P (outer_type))
{
/* Preserve changes in signedness or precision. */
if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
|| TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
return false;
/* We don't need to preserve changes in the types minimum or
maximum value in general as these do not generate code
unless the types precisions are different. */
return true;
}
/* Scalar floating point types with the same mode are compatible. */
else if (SCALAR_FLOAT_TYPE_P (inner_type)
&& SCALAR_FLOAT_TYPE_P (outer_type))
return true;
/* Fixed point types with the same mode are compatible. */
else if (FIXED_POINT_TYPE_P (inner_type)
&& FIXED_POINT_TYPE_P (outer_type))
return true;
/* We need to take special care recursing to pointed-to types. */
else if (POINTER_TYPE_P (inner_type)
&& POINTER_TYPE_P (outer_type))
{
/* Do not lose casts to function pointer types. */
if ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
&& !useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type)))
return false;
/* We do not care for const qualification of the pointed-to types
as const qualification has no semantic value to the middle-end. */
/* Otherwise pointers/references are equivalent. */
return true;
}
/* Recurse for complex types. */
else if (TREE_CODE (inner_type) == COMPLEX_TYPE
&& TREE_CODE (outer_type) == COMPLEX_TYPE)
return useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type));
/* Recurse for vector types with the same number of subparts. */
else if (TREE_CODE (inner_type) == VECTOR_TYPE
&& TREE_CODE (outer_type) == VECTOR_TYPE
&& TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
return useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type));
else if (TREE_CODE (inner_type) == ARRAY_TYPE
&& TREE_CODE (outer_type) == ARRAY_TYPE)
{
/* Preserve string attributes. */
if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
return false;
/* Conversions from array types with unknown extent to
array types with known extent are not useless. */
if (!TYPE_DOMAIN (inner_type)
&& TYPE_DOMAIN (outer_type))
return false;
/* Nor are conversions from array types with non-constant size to
array types with constant size or to different size. */
if (TYPE_SIZE (outer_type)
&& TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
&& (!TYPE_SIZE (inner_type)
|| TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
|| !tree_int_cst_equal (TYPE_SIZE (outer_type),
TYPE_SIZE (inner_type))))
return false;
/* Check conversions between arrays with partially known extents.
If the array min/max values are constant they have to match.
Otherwise allow conversions to unknown and variable extents.
In particular this declares conversions that may change the
mode to BLKmode as useless. */
if (TYPE_DOMAIN (inner_type)
&& TYPE_DOMAIN (outer_type)
&& TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
{
tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
/* After gimplification a variable min/max value carries no
additional information compared to a NULL value. All that
matters has been lowered to be part of the IL. */
if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
inner_min = NULL_TREE;
if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
outer_min = NULL_TREE;
if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
inner_max = NULL_TREE;
if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
outer_max = NULL_TREE;
/* Conversions NULL / variable <- cst are useless, but not
the other way around. */
if (outer_min
&& (!inner_min
|| !tree_int_cst_equal (inner_min, outer_min)))
return false;
if (outer_max
&& (!inner_max
|| !tree_int_cst_equal (inner_max, outer_max)))
return false;
}
/* Recurse on the element check. */
return useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type));
}
else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
|| TREE_CODE (inner_type) == METHOD_TYPE)
&& TREE_CODE (inner_type) == TREE_CODE (outer_type))
{
tree outer_parm, inner_parm;
/* If the return types are not compatible bail out. */
if (!useless_type_conversion_p (TREE_TYPE (outer_type),
TREE_TYPE (inner_type)))
return false;
/* Method types should belong to a compatible base class. */
if (TREE_CODE (inner_type) == METHOD_TYPE
&& !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
TYPE_METHOD_BASETYPE (inner_type)))
return false;
/* A conversion to an unprototyped argument list is ok. */
if (!prototype_p (outer_type))
return true;
/* If the unqualified argument types are compatible the conversion
is useless. */
if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
return true;
for (outer_parm = TYPE_ARG_TYPES (outer_type),
inner_parm = TYPE_ARG_TYPES (inner_type);
outer_parm && inner_parm;
outer_parm = TREE_CHAIN (outer_parm),
inner_parm = TREE_CHAIN (inner_parm))
if (!useless_type_conversion_p
(TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
return false;
/* If there is a mismatch in the number of arguments the functions
are not compatible. */
if (outer_parm || inner_parm)
return false;
/* Defer to the target if necessary. */
if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
return targetm.comp_type_attributes (outer_type, inner_type) != 0;
return true;
}
/* For aggregates we rely on TYPE_CANONICAL exclusively and require
explicit conversions for types involving to be structurally
compared types. */
else if (AGGREGATE_TYPE_P (inner_type)
&& TREE_CODE (inner_type) == TREE_CODE (outer_type))
return false;
return false;
}
/* Return true if a conversion from either type of TYPE1 and TYPE2
to the other is not required. Otherwise return false. */
bool
types_compatible_p (tree type1, tree type2)
{
return (type1 == type2
|| (useless_type_conversion_p (type1, type2)
&& useless_type_conversion_p (type2, type1)));
}
/* Return true if EXPR is a useless type conversion, otherwise return
false. */
bool
tree_ssa_useless_type_conversion (tree expr)
{
/* If we have an assignment that merely uses a NOP_EXPR to change
the top of the RHS to the type of the LHS and the type conversion
is "safe", then strip away the type conversion so that we can
enter LHS = RHS into the const_and_copies table. */
if (CONVERT_EXPR_P (expr)
|| TREE_CODE (expr) == VIEW_CONVERT_EXPR
|| TREE_CODE (expr) == NON_LVALUE_EXPR)
return useless_type_conversion_p
(TREE_TYPE (expr),
TREE_TYPE (TREE_OPERAND (expr, 0)));
return false;
}
/* Strip conversions from EXP according to
tree_ssa_useless_type_conversion and return the resulting
expression. */
tree
tree_ssa_strip_useless_type_conversions (tree exp)
{
while (tree_ssa_useless_type_conversion (exp))
exp = TREE_OPERAND (exp, 0);
return exp;
}
/* Internal helper for walk_use_def_chains. VAR, FN and DATA are as
described in walk_use_def_chains.
VISITED is a pointer set used to mark visited SSA_NAMEs to avoid
infinite loops. We used to have a bitmap for this to just mark
SSA versions we had visited. But non-sparse bitmaps are way too
expensive, while sparse bitmaps may cause quadratic behavior.
IS_DFS is true if the caller wants to perform a depth-first search
when visiting PHI nodes. A DFS will visit each PHI argument and
call FN after each one. Otherwise, all the arguments are
visited first and then FN is called with each of the visited
arguments in a separate pass. */
static bool
walk_use_def_chains_1 (tree var, walk_use_def_chains_fn fn, void *data,
struct pointer_set_t *visited, bool is_dfs)
{
gimple def_stmt;
if (pointer_set_insert (visited, var))
return false;
def_stmt = SSA_NAME_DEF_STMT (var);
if (gimple_code (def_stmt) != GIMPLE_PHI)
{
/* If we reached the end of the use-def chain, call FN. */
return fn (var, def_stmt, data);
}
else
{
size_t i;
/* When doing a breadth-first search, call FN before following the
use-def links for each argument. */
if (!is_dfs)
for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
if (fn (gimple_phi_arg_def (def_stmt, i), def_stmt, data))
return true;
/* Follow use-def links out of each PHI argument. */
for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
{
tree arg = gimple_phi_arg_def (def_stmt, i);
/* ARG may be NULL for newly introduced PHI nodes. */
if (arg
&& TREE_CODE (arg) == SSA_NAME
&& walk_use_def_chains_1 (arg, fn, data, visited, is_dfs))
return true;
}
/* When doing a depth-first search, call FN after following the
use-def links for each argument. */
if (is_dfs)
for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
if (fn (gimple_phi_arg_def (def_stmt, i), def_stmt, data))
return true;
}
return false;
}
/* Walk use-def chains starting at the SSA variable VAR. Call
function FN at each reaching definition found. FN takes three
arguments: VAR, its defining statement (DEF_STMT) and a generic
pointer to whatever state information that FN may want to maintain
(DATA). FN is able to stop the walk by returning true, otherwise
in order to continue the walk, FN should return false.
Note, that if DEF_STMT is a PHI node, the semantics are slightly
different. The first argument to FN is no longer the original
variable VAR, but the PHI argument currently being examined. If FN
wants to get at VAR, it should call PHI_RESULT (PHI).
If IS_DFS is true, this function will:
1- walk the use-def chains for all the PHI arguments, and,
2- call (*FN) (ARG, PHI, DATA) on all the PHI arguments.
If IS_DFS is false, the two steps above are done in reverse order
(i.e., a breadth-first search). */
void
walk_use_def_chains (tree var, walk_use_def_chains_fn fn, void *data,
bool is_dfs)
{
gimple def_stmt;
gcc_assert (TREE_CODE (var) == SSA_NAME);
def_stmt = SSA_NAME_DEF_STMT (var);
/* We only need to recurse if the reaching definition comes from a PHI
node. */
if (gimple_code (def_stmt) != GIMPLE_PHI)
(*fn) (var, def_stmt, data);
else
{
struct pointer_set_t *visited = pointer_set_create ();
walk_use_def_chains_1 (var, fn, data, visited, is_dfs);
pointer_set_destroy (visited);
}
}
/* Emit warnings for uninitialized variables. This is done in two passes.
The first pass notices real uses of SSA names with undefined values.
Such uses are unconditionally uninitialized, and we can be certain that
such a use is a mistake. This pass is run before most optimizations,
so that we catch as many as we can.
The second pass follows PHI nodes to find uses that are potentially
uninitialized. In this case we can't necessarily prove that the use
is really uninitialized. This pass is run after most optimizations,
so that we thread as many jumps and possible, and delete as much dead
code as possible, in order to reduce false positives. We also look
again for plain uninitialized variables, since optimization may have
changed conditionally uninitialized to unconditionally uninitialized. */
/* Emit a warning for T, an SSA_NAME, being uninitialized. The exact
warning text is in MSGID and LOCUS may contain a location or be null. */
void
warn_uninit (tree t, const char *gmsgid, void *data)
{
tree var = SSA_NAME_VAR (t);
gimple context = (gimple) data;
location_t location;
expanded_location xloc, floc;
if (!ssa_undefined_value_p (t))
return;
/* TREE_NO_WARNING either means we already warned, or the front end
wishes to suppress the warning. */
if (TREE_NO_WARNING (var))
return;
/* Do not warn if it can be initialized outside this module. */
if (is_global_var (var))
return;
location = (context != NULL && gimple_has_location (context))
? gimple_location (context)
: DECL_SOURCE_LOCATION (var);
xloc = expand_location (location);
floc = expand_location (DECL_SOURCE_LOCATION (cfun->decl));
if (warning_at (location, OPT_Wuninitialized, gmsgid, var))
{
TREE_NO_WARNING (var) = 1;
if (location == DECL_SOURCE_LOCATION (var))
return;
if (xloc.file != floc.file
|| xloc.line < floc.line
|| xloc.line > LOCATION_LINE (cfun->function_end_locus))
inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
}
}
struct walk_data {
gimple stmt;
bool always_executed;
bool warn_possibly_uninitialized;
};
/* Called via walk_tree, look for SSA_NAMEs that have empty definitions
and warn about them. */
static tree
warn_uninitialized_var (tree *tp, int *walk_subtrees, void *data_)
{
struct walk_stmt_info *wi = (struct walk_stmt_info *) data_;
struct walk_data *data = (struct walk_data *) wi->info;
tree t = *tp;
/* We do not care about LHS. */
if (wi->is_lhs)
{
/* Except for operands of dereferences. */
if (!INDIRECT_REF_P (t)
&& TREE_CODE (t) != MEM_REF)
return NULL_TREE;
t = TREE_OPERAND (t, 0);
}
switch (TREE_CODE (t))
{
case ADDR_EXPR:
/* Taking the address of an uninitialized variable does not
count as using it. */
*walk_subtrees = 0;
break;
case VAR_DECL:
{
/* A VAR_DECL in the RHS of a gimple statement may mean that
this variable is loaded from memory. */
use_operand_p vuse;
tree op;
/* If there is not gimple stmt,
or alias information has not been computed,
then we cannot check VUSE ops. */
if (data->stmt == NULL)
return NULL_TREE;
/* If the load happens as part of a call do not warn about it. */
if (is_gimple_call (data->stmt))
return NULL_TREE;
vuse = gimple_vuse_op (data->stmt);
if (vuse == NULL_USE_OPERAND_P)
return NULL_TREE;
op = USE_FROM_PTR (vuse);
if (t != SSA_NAME_VAR (op)
|| !SSA_NAME_IS_DEFAULT_DEF (op))
return NULL_TREE;
/* If this is a VUSE of t and it is the default definition,
then warn about op. */
t = op;
/* Fall through into SSA_NAME. */
}
case SSA_NAME:
/* We only do data flow with SSA_NAMEs, so that's all we
can warn about. */
if (data->always_executed)
warn_uninit (t, "%qD is used uninitialized in this function",
data->stmt);
else if (data->warn_possibly_uninitialized)
warn_uninit (t, "%qD may be used uninitialized in this function",
data->stmt);
*walk_subtrees = 0;
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
/* The total store transformation performed during gimplification
creates uninitialized variable uses. If all is well, these will
be optimized away, so don't warn now. */
if (TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
*walk_subtrees = 0;
break;
default:
if (IS_TYPE_OR_DECL_P (t))
*walk_subtrees = 0;
break;
}
return NULL_TREE;
}
unsigned int
warn_uninitialized_vars (bool warn_possibly_uninitialized)
{
gimple_stmt_iterator gsi;
basic_block bb;
struct walk_data data;
data.warn_possibly_uninitialized = warn_possibly_uninitialized;
FOR_EACH_BB (bb)
{
data.always_executed = dominated_by_p (CDI_POST_DOMINATORS,
single_succ (ENTRY_BLOCK_PTR), bb);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
struct walk_stmt_info wi;
data.stmt = gsi_stmt (gsi);
if (is_gimple_debug (data.stmt))
continue;
memset (&wi, 0, sizeof (wi));
wi.info = &data;
walk_gimple_op (gsi_stmt (gsi), warn_uninitialized_var, &wi);
}
}
return 0;
}
static unsigned int
execute_early_warn_uninitialized (void)
{
/* Currently, this pass runs always but
execute_late_warn_uninitialized only runs with optimization. With
optimization we want to warn about possible uninitialized as late
as possible, thus don't do it here. However, without
optimization we need to warn here about "may be uninitialized".
*/
calculate_dominance_info (CDI_POST_DOMINATORS);
warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
/* Post-dominator information can not be reliably updated. Free it
after the use. */
free_dominance_info (CDI_POST_DOMINATORS);
return 0;
}
static bool
gate_warn_uninitialized (void)
{
return warn_uninitialized != 0;
}
struct gimple_opt_pass pass_early_warn_uninitialized =
{
{
GIMPLE_PASS,
"*early_warn_uninitialized", /* name */
gate_warn_uninitialized, /* gate */
execute_early_warn_uninitialized, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_UNINIT, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0 /* todo_flags_finish */
}
};
/* If necessary, rewrite the base of the reference tree *TP from
a MEM_REF to a plain or converted symbol. */
static void
maybe_rewrite_mem_ref_base (tree *tp)
{
tree sym;
while (handled_component_p (*tp))
tp = &TREE_OPERAND (*tp, 0);
if (TREE_CODE (*tp) == MEM_REF
&& TREE_CODE (TREE_OPERAND (*tp, 0)) == ADDR_EXPR
&& integer_zerop (TREE_OPERAND (*tp, 1))
&& (sym = TREE_OPERAND (TREE_OPERAND (*tp, 0), 0))
&& DECL_P (sym)
&& !TREE_ADDRESSABLE (sym)
&& symbol_marked_for_renaming (sym))
{
if (!useless_type_conversion_p (TREE_TYPE (*tp),
TREE_TYPE (sym)))
*tp = build1 (VIEW_CONVERT_EXPR,
TREE_TYPE (*tp), sym);
else
*tp = sym;
}
}
/* For a tree REF return its base if it is the base of a MEM_REF
that cannot be rewritten into SSA form. Otherwise return NULL_TREE. */
static tree
non_rewritable_mem_ref_base (tree ref)
{
tree base = ref;
/* A plain decl does not need it set. */
if (DECL_P (ref))
return NULL_TREE;
while (handled_component_p (base))
base = TREE_OPERAND (base, 0);
/* But watch out for MEM_REFs we cannot lower to a
VIEW_CONVERT_EXPR. */
if (TREE_CODE (base) == MEM_REF
&& TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
{
tree decl = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
if (DECL_P (decl)
&& (!integer_zerop (TREE_OPERAND (base, 1))
|| (DECL_SIZE (decl)
!= TYPE_SIZE (TREE_TYPE (base)))
|| TREE_THIS_VOLATILE (decl) != TREE_THIS_VOLATILE (base)))
return decl;
}
return NULL_TREE;
}
/* For an lvalue tree LHS return true if it cannot be rewritten into SSA form.
Otherwise return true. */
static bool
non_rewritable_lvalue_p (tree lhs)
{
/* A plain decl is always rewritable. */
if (DECL_P (lhs))
return false;
/* A decl that is wrapped inside a MEM-REF that covers
it full is also rewritable.
??? The following could be relaxed allowing component
references that do not change the access size. */
if (TREE_CODE (lhs) == MEM_REF
&& TREE_CODE (TREE_OPERAND (lhs, 0)) == ADDR_EXPR
&& integer_zerop (TREE_OPERAND (lhs, 1)))
{
tree decl = TREE_OPERAND (TREE_OPERAND (lhs, 0), 0);
if (DECL_P (decl)
&& DECL_SIZE (decl) == TYPE_SIZE (TREE_TYPE (lhs))
&& (TREE_THIS_VOLATILE (decl) == TREE_THIS_VOLATILE (lhs)))
return false;
}
return true;
}
/* When possible, clear TREE_ADDRESSABLE bit or set DECL_GIMPLE_REG_P bit and
mark the variable VAR for conversion into SSA. Return true when updating
stmts is required. */
static bool
maybe_optimize_var (tree var, bitmap addresses_taken, bitmap not_reg_needs)
{
bool update_vops = false;
/* Global Variables, result decls cannot be changed. */
if (is_global_var (var)
|| TREE_CODE (var) == RESULT_DECL
|| bitmap_bit_p (addresses_taken, DECL_UID (var)))
return false;
/* If the variable is not in the list of referenced vars then we
do not need to touch it nor can we rename it. */
if (!referenced_var_lookup (cfun, DECL_UID (var)))
return false;
if (TREE_ADDRESSABLE (var)
/* Do not change TREE_ADDRESSABLE if we need to preserve var as
a non-register. Otherwise we are confused and forget to
add virtual operands for it. */
&& (!is_gimple_reg_type (TREE_TYPE (var))
|| !bitmap_bit_p (not_reg_needs, DECL_UID (var))))
{
TREE_ADDRESSABLE (var) = 0;
if (is_gimple_reg (var))
mark_sym_for_renaming (var);
update_vops = true;
if (dump_file)
{
fprintf (dump_file, "No longer having address taken: ");
print_generic_expr (dump_file, var, 0);
fprintf (dump_file, "\n");
}
}
if (!DECL_GIMPLE_REG_P (var)
&& !bitmap_bit_p (not_reg_needs, DECL_UID (var))
&& (TREE_CODE (TREE_TYPE (var)) == COMPLEX_TYPE
|| TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE)
&& !TREE_THIS_VOLATILE (var)
&& (TREE_CODE (var) != VAR_DECL || !DECL_HARD_REGISTER (var)))
{
DECL_GIMPLE_REG_P (var) = 1;
mark_sym_for_renaming (var);
update_vops = true;
if (dump_file)
{
fprintf (dump_file, "Now a gimple register: ");
print_generic_expr (dump_file, var, 0);
fprintf (dump_file, "\n");
}
}
return update_vops;
}
/* Compute TREE_ADDRESSABLE and DECL_GIMPLE_REG_P for local variables. */
void
execute_update_addresses_taken (void)
{
gimple_stmt_iterator gsi;
basic_block bb;
bitmap addresses_taken = BITMAP_ALLOC (NULL);
bitmap not_reg_needs = BITMAP_ALLOC (NULL);
bool update_vops = false;
tree var;
unsigned i;
timevar_push (TV_ADDRESS_TAKEN);
/* Collect into ADDRESSES_TAKEN all variables whose address is taken within
the function body. */
FOR_EACH_BB (bb)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
enum gimple_code code = gimple_code (stmt);
tree decl;
/* Note all addresses taken by the stmt. */
gimple_ior_addresses_taken (addresses_taken, stmt);
/* If we have a call or an assignment, see if the lhs contains
a local decl that requires not to be a gimple register. */
if (code == GIMPLE_ASSIGN || code == GIMPLE_CALL)
{
tree lhs = gimple_get_lhs (stmt);
if (lhs
&& TREE_CODE (lhs) != SSA_NAME
&& non_rewritable_lvalue_p (lhs))
{
decl = get_base_address (lhs);
if (DECL_P (decl))
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
}
}
if (gimple_assign_single_p (stmt))
{
tree rhs = gimple_assign_rhs1 (stmt);
if ((decl = non_rewritable_mem_ref_base (rhs)))
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
}
else if (code == GIMPLE_CALL)
{
for (i = 0; i < gimple_call_num_args (stmt); ++i)
{
tree arg = gimple_call_arg (stmt, i);
if ((decl = non_rewritable_mem_ref_base (arg)))
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
}
}
else if (code == GIMPLE_ASM)
{
for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
{
tree link = gimple_asm_output_op (stmt, i);
tree lhs = TREE_VALUE (link);
if (TREE_CODE (lhs) != SSA_NAME)
{
decl = get_base_address (lhs);
if (DECL_P (decl)
&& (non_rewritable_lvalue_p (lhs)
/* We cannot move required conversions from
the lhs to the rhs in asm statements, so
require we do not need any. */
|| !useless_type_conversion_p
(TREE_TYPE (lhs), TREE_TYPE (decl))))
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
}
}
for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
{
tree link = gimple_asm_input_op (stmt, i);
if ((decl = non_rewritable_mem_ref_base (TREE_VALUE (link))))
bitmap_set_bit (not_reg_needs, DECL_UID (decl));
}
}
}
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
size_t i;
gimple phi = gsi_stmt (gsi);
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
tree op = PHI_ARG_DEF (phi, i), var;
if (TREE_CODE (op) == ADDR_EXPR
&& (var = get_base_address (TREE_OPERAND (op, 0))) != NULL
&& DECL_P (var))
bitmap_set_bit (addresses_taken, DECL_UID (var));
}
}
}
/* We cannot iterate over all referenced vars because that can contain
unused vars from BLOCK trees, which causes code generation differences
for -g vs. -g0. */
for (var = DECL_ARGUMENTS (cfun->decl); var; var = DECL_CHAIN (var))
update_vops |= maybe_optimize_var (var, addresses_taken, not_reg_needs);
FOR_EACH_VEC_ELT (tree, cfun->local_decls, i, var)
update_vops |= maybe_optimize_var (var, addresses_taken, not_reg_needs);
/* Operand caches need to be recomputed for operands referencing the updated
variables. */
if (update_vops)
{
FOR_EACH_BB (bb)
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
/* Re-write TARGET_MEM_REFs of symbols we want to
rewrite into SSA form. */
if (gimple_assign_single_p (stmt))
{
tree lhs = gimple_assign_lhs (stmt);
tree rhs, *rhsp = gimple_assign_rhs1_ptr (stmt);
tree sym;
/* We shouldn't have any fancy wrapping of
component-refs on the LHS, but look through
VIEW_CONVERT_EXPRs as that is easy. */
while (TREE_CODE (lhs) == VIEW_CONVERT_EXPR)
lhs = TREE_OPERAND (lhs, 0);
if (TREE_CODE (lhs) == MEM_REF
&& TREE_CODE (TREE_OPERAND (lhs, 0)) == ADDR_EXPR
&& integer_zerop (TREE_OPERAND (lhs, 1))
&& (sym = TREE_OPERAND (TREE_OPERAND (lhs, 0), 0))
&& DECL_P (sym)
&& !TREE_ADDRESSABLE (sym)
&& symbol_marked_for_renaming (sym))
lhs = sym;
else
lhs = gimple_assign_lhs (stmt);
/* Rewrite the RHS and make sure the resulting assignment
is validly typed. */
maybe_rewrite_mem_ref_base (rhsp);
rhs = gimple_assign_rhs1 (stmt);
if (gimple_assign_lhs (stmt) != lhs
&& !useless_type_conversion_p (TREE_TYPE (lhs),
TREE_TYPE (rhs)))
rhs = fold_build1 (VIEW_CONVERT_EXPR,
TREE_TYPE (lhs), rhs);
if (gimple_assign_lhs (stmt) != lhs)
gimple_assign_set_lhs (stmt, lhs);
if (gimple_assign_rhs1 (stmt) != rhs)
{
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
gimple_assign_set_rhs_from_tree (&gsi, rhs);
}
}
else if (gimple_code (stmt) == GIMPLE_CALL)
{
unsigned i;
for (i = 0; i < gimple_call_num_args (stmt); ++i)
{
tree *argp = gimple_call_arg_ptr (stmt, i);
maybe_rewrite_mem_ref_base (argp);
}
}
else if (gimple_code (stmt) == GIMPLE_ASM)
{
unsigned i;
for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
{
tree link = gimple_asm_output_op (stmt, i);
maybe_rewrite_mem_ref_base (&TREE_VALUE (link));
}
for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
{
tree link = gimple_asm_input_op (stmt, i);
maybe_rewrite_mem_ref_base (&TREE_VALUE (link));
}
}
else if (gimple_debug_bind_p (stmt)
&& gimple_debug_bind_has_value_p (stmt))
{
tree *valuep = gimple_debug_bind_get_value_ptr (stmt);
tree decl;
maybe_rewrite_mem_ref_base (valuep);
decl = non_rewritable_mem_ref_base (*valuep);
if (decl && symbol_marked_for_renaming (decl))
gimple_debug_bind_reset_value (stmt);
}
if (gimple_references_memory_p (stmt)
|| is_gimple_debug (stmt))
update_stmt (stmt);
}
/* Update SSA form here, we are called as non-pass as well. */
if (number_of_loops () > 1 && loops_state_satisfies_p (LOOP_CLOSED_SSA))
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
else
update_ssa (TODO_update_ssa);
}
BITMAP_FREE (not_reg_needs);
BITMAP_FREE (addresses_taken);
timevar_pop (TV_ADDRESS_TAKEN);
}
struct gimple_opt_pass pass_update_address_taken =
{
{
GIMPLE_PASS,
"addressables", /* name */
NULL, /* gate */
NULL, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_ADDRESS_TAKEN, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_address_taken
| TODO_dump_func /* todo_flags_finish */
}
};
|