1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 1998, 2008 Red Hat, Inc.
ARM Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* Forward declares. */
static int vfp_type_p (ffi_type *);
static void layout_vfp_args (ffi_cif *);
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments
The vfp_space parameter is the load area for VFP regs, the return
value is cif->vfp_used (word bitset of VFP regs used for passing
arguments). These are only used for the VFP hard-float ABI.
*/
int ffi_prep_args(char *stack, extended_cif *ecif, float *vfp_space)
{
register unsigned int i, vi = 0;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( ecif->cif->flags == FFI_TYPE_STRUCT ) {
*(void **) argp = ecif->rvalue;
argp += 4;
}
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
(i != 0);
i--, p_arg++)
{
size_t z;
/* Allocated in VFP registers. */
if (ecif->cif->abi == FFI_VFP
&& vi < ecif->cif->vfp_nargs && vfp_type_p (*p_arg))
{
float* vfp_slot = vfp_space + ecif->cif->vfp_args[vi++];
if ((*p_arg)->type == FFI_TYPE_FLOAT)
*((float*)vfp_slot) = *((float*)*p_argv);
else if ((*p_arg)->type == FFI_TYPE_DOUBLE)
*((double*)vfp_slot) = *((double*)*p_argv);
else
memcpy(vfp_slot, *p_argv, (*p_arg)->size);
p_argv++;
continue;
}
/* Align if necessary */
if (((*p_arg)->alignment - 1) & (unsigned) argp) {
argp = (char *) ALIGN(argp, (*p_arg)->alignment);
}
if ((*p_arg)->type == FFI_TYPE_STRUCT)
argp = (char *) ALIGN(argp, 4);
z = (*p_arg)->size;
if (z < sizeof(int))
{
z = sizeof(int);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
break;
case FFI_TYPE_STRUCT:
memcpy(argp, *p_argv, (*p_arg)->size);
break;
default:
FFI_ASSERT(0);
}
}
else if (z == sizeof(int))
{
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
}
else
{
memcpy(argp, *p_argv, z);
}
p_argv++;
argp += z;
}
/* Indicate the VFP registers used. */
return ecif->cif->vfp_used;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
int type_code;
/* Round the stack up to a multiple of 8 bytes. This isn't needed
everywhere, but it is on some platforms, and it doesn't harm anything
when it isn't needed. */
cif->bytes = (cif->bytes + 7) & ~7;
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
cif->flags = (unsigned) FFI_TYPE_SINT64;
break;
case FFI_TYPE_STRUCT:
if (cif->abi == FFI_VFP
&& (type_code = vfp_type_p (cif->rtype)) != 0)
{
/* A Composite Type passed in VFP registers, either
FFI_TYPE_STRUCT_VFP_FLOAT or FFI_TYPE_STRUCT_VFP_DOUBLE. */
cif->flags = (unsigned) type_code;
}
else if (cif->rtype->size <= 4)
/* A Composite Type not larger than 4 bytes is returned in r0. */
cif->flags = (unsigned)FFI_TYPE_INT;
else
/* A Composite Type larger than 4 bytes, or whose size cannot
be determined statically ... is stored in memory at an
address passed [in r0]. */
cif->flags = (unsigned)FFI_TYPE_STRUCT;
break;
default:
cif->flags = FFI_TYPE_INT;
break;
}
/* Map out the register placements of VFP register args.
The VFP hard-float calling conventions are slightly more sophisticated than
the base calling conventions, so we do it here instead of in ffi_prep_args(). */
if (cif->abi == FFI_VFP)
layout_vfp_args (cif);
return FFI_OK;
}
/* Prototypes for assembly functions, in sysv.S */
extern void ffi_call_SYSV (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
extern void ffi_call_VFP (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
extended_cif ecif;
int small_struct = (cif->flags == FFI_TYPE_INT
&& cif->rtype->type == FFI_TYPE_STRUCT);
int vfp_struct = (cif->flags == FFI_TYPE_STRUCT_VFP_FLOAT
|| cif->flags == FFI_TYPE_STRUCT_VFP_DOUBLE);
ecif.cif = cif;
ecif.avalue = avalue;
unsigned int temp;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if ((rvalue == NULL) &&
(cif->flags == FFI_TYPE_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
else if (small_struct)
ecif.rvalue = &temp;
else if (vfp_struct)
{
/* Largest case is double x 4. */
ecif.rvalue = alloca(32);
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_SYSV:
ffi_call_SYSV (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue);
break;
case FFI_VFP:
ffi_call_VFP (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue);
break;
default:
FFI_ASSERT(0);
break;
}
if (small_struct)
memcpy (rvalue, &temp, cif->rtype->size);
else if (vfp_struct)
memcpy (rvalue, ecif.rvalue, cif->rtype->size);
}
/** private members **/
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif, float *vfp_stack);
void ffi_closure_SYSV (ffi_closure *);
void ffi_closure_VFP (ffi_closure *);
/* This function is jumped to by the trampoline */
unsigned int
ffi_closure_SYSV_inner (closure, respp, args, vfp_args)
ffi_closure *closure;
void **respp;
void *args;
void *vfp_args;
{
// our various things...
ffi_cif *cif;
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will re-set RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif, vfp_args);
(closure->fun) (cif, *respp, arg_area, closure->user_data);
return cif->flags;
}
/*@-exportheader@*/
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
void **avalue, ffi_cif *cif,
/* Used only under VFP hard-float ABI. */
float *vfp_stack)
/*@=exportheader@*/
{
register unsigned int i, vi = 0;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( cif->flags == FFI_TYPE_STRUCT ) {
*rvalue = *(void **) argp;
argp += 4;
}
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
size_t alignment;
if (cif->abi == FFI_VFP
&& vi < cif->vfp_nargs && vfp_type_p (*p_arg))
{
*p_argv++ = (void*)(vfp_stack + cif->vfp_args[vi++]);
continue;
}
alignment = (*p_arg)->alignment;
if (alignment < 4)
alignment = 4;
/* Align if necessary */
if ((alignment - 1) & (unsigned) argp) {
argp = (char *) ALIGN(argp, alignment);
}
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
p_argv++;
argp += z;
}
return;
}
/* How to make a trampoline. */
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
({ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned char *insns = (unsigned char *)(CTX); \
*(unsigned int*) &__tramp[0] = 0xe92d000f; /* stmfd sp!, {r0-r3} */ \
*(unsigned int*) &__tramp[4] = 0xe59f0000; /* ldr r0, [pc] */ \
*(unsigned int*) &__tramp[8] = 0xe59ff000; /* ldr pc, [pc] */ \
*(unsigned int*) &__tramp[12] = __ctx; \
*(unsigned int*) &__tramp[16] = __fun; \
__clear_cache((&__tramp[0]), (&__tramp[19])); /* Clear data mapping. */ \
__clear_cache(insns, insns + 3 * sizeof (unsigned int)); \
/* Clear instruction \
mapping. */ \
})
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
void (*closure_func)(ffi_closure*) = NULL;
if (cif->abi == FFI_SYSV)
closure_func = &ffi_closure_SYSV;
else if (cif->abi == FFI_VFP)
closure_func = &ffi_closure_VFP;
else
FFI_ASSERT (0);
FFI_INIT_TRAMPOLINE (&closure->tramp[0], \
closure_func, \
codeloc);
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/* Below are routines for VFP hard-float support. */
static int rec_vfp_type_p (ffi_type *t, int *elt, int *elnum)
{
switch (t->type)
{
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
*elt = (int) t->type;
*elnum = 1;
return 1;
case FFI_TYPE_STRUCT_VFP_FLOAT:
*elt = FFI_TYPE_FLOAT;
*elnum = t->size / sizeof (float);
return 1;
case FFI_TYPE_STRUCT_VFP_DOUBLE:
*elt = FFI_TYPE_DOUBLE;
*elnum = t->size / sizeof (double);
return 1;
case FFI_TYPE_STRUCT:;
{
int base_elt = 0, total_elnum = 0;
ffi_type **el = t->elements;
while (*el)
{
int el_elt = 0, el_elnum = 0;
if (! rec_vfp_type_p (*el, &el_elt, &el_elnum)
|| (base_elt && base_elt != el_elt)
|| total_elnum + el_elnum > 4)
return 0;
base_elt = el_elt;
total_elnum += el_elnum;
el++;
}
*elnum = total_elnum;
*elt = base_elt;
return 1;
}
default: ;
}
return 0;
}
static int vfp_type_p (ffi_type *t)
{
int elt, elnum;
if (rec_vfp_type_p (t, &elt, &elnum))
{
if (t->type == FFI_TYPE_STRUCT)
{
if (elnum == 1)
t->type = elt;
else
t->type = (elt == FFI_TYPE_FLOAT
? FFI_TYPE_STRUCT_VFP_FLOAT
: FFI_TYPE_STRUCT_VFP_DOUBLE);
}
return (int) t->type;
}
return 0;
}
static void place_vfp_arg (ffi_cif *cif, ffi_type *t)
{
int reg = cif->vfp_reg_free;
int nregs = t->size / sizeof (float);
int align = ((t->type == FFI_TYPE_STRUCT_VFP_FLOAT
|| t->type == FFI_TYPE_FLOAT) ? 1 : 2);
/* Align register number. */
if ((reg & 1) && align == 2)
reg++;
while (reg + nregs <= 16)
{
int s, new_used = 0;
for (s = reg; s < reg + nregs; s++)
{
new_used |= (1 << s);
if (cif->vfp_used & (1 << s))
{
reg += align;
goto next_reg;
}
}
/* Found regs to allocate. */
cif->vfp_used |= new_used;
cif->vfp_args[cif->vfp_nargs++] = reg;
/* Update vfp_reg_free. */
if (cif->vfp_used & (1 << cif->vfp_reg_free))
{
reg += nregs;
while (cif->vfp_used & (1 << reg))
reg += 1;
cif->vfp_reg_free = reg;
}
return;
next_reg: ;
}
}
static void layout_vfp_args (ffi_cif *cif)
{
int i;
/* Init VFP fields */
cif->vfp_used = 0;
cif->vfp_nargs = 0;
cif->vfp_reg_free = 0;
memset (cif->vfp_args, -1, 16); /* Init to -1. */
for (i = 0; i < cif->nargs; i++)
{
ffi_type *t = cif->arg_types[i];
if (vfp_type_p (t))
place_vfp_arg (cif, t);
}
}
|