1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/*****************************************************************************
* BID64 multiply
*****************************************************************************
*
* Algorithm description:
*
* if(number_digits(coefficient_x)+number_digits(coefficient_y) guaranteed
* below 16)
* return get_BID64(sign_x^sign_y, exponent_x + exponent_y - dec_bias,
* coefficient_x*coefficient_y)
* else
* get long product: coefficient_x*coefficient_y
* determine number of digits to round off (extra_digits)
* rounding is performed as a 128x128-bit multiplication by
* 2^M[extra_digits]/10^extra_digits, followed by a shift
* M[extra_digits] is sufficiently large for required accuracy
*
****************************************************************************/
#include "bid_internal.h"
#if DECIMAL_CALL_BY_REFERENCE
void
bid64_mul (UINT64 * pres, UINT64 * px,
UINT64 *
py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
_EXC_INFO_PARAM) {
UINT64 x, y;
#else
UINT64
bid64_mul (UINT64 x,
UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
_EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
UINT128 P, PU, C128, Q_high, Q_low, Stemp;
UINT64 sign_x, sign_y, coefficient_x, coefficient_y;
UINT64 C64, remainder_h, carry, CY, res;
UINT64 valid_x, valid_y;
int_double tempx, tempy;
int extra_digits, exponent_x, exponent_y, bin_expon_cx, bin_expon_cy,
bin_expon_product;
int rmode, digits_p, bp, amount, amount2, final_exponent, round_up;
unsigned status, uf_status;
#if DECIMAL_CALL_BY_REFERENCE
#if !DECIMAL_GLOBAL_ROUNDING
_IDEC_round rnd_mode = *prnd_mode;
#endif
x = *px;
y = *py;
#endif
valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x);
valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y);
// unpack arguments, check for NaN or Infinity
if (!valid_x) {
#ifdef SET_STATUS_FLAGS
if ((y & SNAN_MASK64) == SNAN_MASK64) // y is sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
// x is Inf. or NaN
// test if x is NaN
if ((x & NAN_MASK64) == NAN_MASK64) {
#ifdef SET_STATUS_FLAGS
if ((x & SNAN_MASK64) == SNAN_MASK64) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (coefficient_x & QUIET_MASK64);
}
// x is Infinity?
if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
// check if y is 0
if (((y & INFINITY_MASK64) != INFINITY_MASK64)
&& !coefficient_y) {
#ifdef SET_STATUS_FLAGS
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
// y==0 , return NaN
BID_RETURN (NAN_MASK64);
}
// check if y is NaN
if ((y & NAN_MASK64) == NAN_MASK64)
// y==NaN , return NaN
BID_RETURN (coefficient_y & QUIET_MASK64);
// otherwise return +/-Inf
BID_RETURN (((x ^ y) & 0x8000000000000000ull) | INFINITY_MASK64);
}
// x is 0
if (((y & INFINITY_MASK64) != INFINITY_MASK64)) {
if ((y & SPECIAL_ENCODING_MASK64) == SPECIAL_ENCODING_MASK64)
exponent_y = ((UINT32) (y >> 51)) & 0x3ff;
else
exponent_y = ((UINT32) (y >> 53)) & 0x3ff;
sign_y = y & 0x8000000000000000ull;
exponent_x += exponent_y - DECIMAL_EXPONENT_BIAS;
if (exponent_x > DECIMAL_MAX_EXPON_64)
exponent_x = DECIMAL_MAX_EXPON_64;
else if (exponent_x < 0)
exponent_x = 0;
BID_RETURN ((sign_x ^ sign_y) | (((UINT64) exponent_x) << 53));
}
}
if (!valid_y) {
// y is Inf. or NaN
// test if y is NaN
if ((y & NAN_MASK64) == NAN_MASK64) {
#ifdef SET_STATUS_FLAGS
if ((y & SNAN_MASK64) == SNAN_MASK64) // sNaN
__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
BID_RETURN (coefficient_y & QUIET_MASK64);
}
// y is Infinity?
if ((y & INFINITY_MASK64) == INFINITY_MASK64) {
// check if x is 0
if (!coefficient_x) {
__set_status_flags (pfpsf, INVALID_EXCEPTION);
// x==0, return NaN
BID_RETURN (NAN_MASK64);
}
// otherwise return +/-Inf
BID_RETURN (((x ^ y) & 0x8000000000000000ull) | INFINITY_MASK64);
}
// y is 0
exponent_x += exponent_y - DECIMAL_EXPONENT_BIAS;
if (exponent_x > DECIMAL_MAX_EXPON_64)
exponent_x = DECIMAL_MAX_EXPON_64;
else if (exponent_x < 0)
exponent_x = 0;
BID_RETURN ((sign_x ^ sign_y) | (((UINT64) exponent_x) << 53));
}
//--- get number of bits in the coefficients of x and y ---
// version 2 (original)
tempx.d = (double) coefficient_x;
bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52);
tempy.d = (double) coefficient_y;
bin_expon_cy = ((tempy.i & MASK_BINARY_EXPONENT) >> 52);
// magnitude estimate for coefficient_x*coefficient_y is
// 2^(unbiased_bin_expon_cx + unbiased_bin_expon_cx)
bin_expon_product = bin_expon_cx + bin_expon_cy;
// check if coefficient_x*coefficient_y<2^(10*k+3)
// equivalent to unbiased_bin_expon_cx + unbiased_bin_expon_cx < 10*k+1
if (bin_expon_product < UPPER_EXPON_LIMIT + 2 * BINARY_EXPONENT_BIAS) {
// easy multiply
C64 = coefficient_x * coefficient_y;
res =
get_BID64_small_mantissa (sign_x ^ sign_y,
exponent_x + exponent_y -
DECIMAL_EXPONENT_BIAS, C64, rnd_mode,
pfpsf);
BID_RETURN (res);
} else {
uf_status = 0;
// get 128-bit product: coefficient_x*coefficient_y
__mul_64x64_to_128 (P, coefficient_x, coefficient_y);
// tighten binary range of P: leading bit is 2^bp
// unbiased_bin_expon_product <= bp <= unbiased_bin_expon_product+1
bin_expon_product -= 2 * BINARY_EXPONENT_BIAS;
__tight_bin_range_128 (bp, P, bin_expon_product);
// get number of decimal digits in the product
digits_p = estimate_decimal_digits[bp];
if (!(__unsigned_compare_gt_128 (power10_table_128[digits_p], P)))
digits_p++; // if power10_table_128[digits_p] <= P
// determine number of decimal digits to be rounded out
extra_digits = digits_p - MAX_FORMAT_DIGITS;
final_exponent =
exponent_x + exponent_y + extra_digits - DECIMAL_EXPONENT_BIAS;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
rmode = rnd_mode;
if (sign_x ^ sign_y && (unsigned) (rmode - 1) < 2)
rmode = 3 - rmode;
#else
rmode = 0;
#endif
#else
rmode = 0;
#endif
round_up = 0;
if (((unsigned) final_exponent) >= 3 * 256) {
if (final_exponent < 0) {
// underflow
if (final_exponent + 16 < 0) {
res = sign_x ^ sign_y;
__set_status_flags (pfpsf,
UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
if (rmode == ROUNDING_UP)
res |= 1;
BID_RETURN (res);
}
uf_status = UNDERFLOW_EXCEPTION;
if (final_exponent == -1) {
__add_128_64 (PU, P, round_const_table[rmode][extra_digits]);
if (__unsigned_compare_ge_128
(PU, power10_table_128[extra_digits + 16]))
uf_status = 0;
}
extra_digits -= final_exponent;
final_exponent = 0;
if (extra_digits > 17) {
__mul_128x128_full (Q_high, Q_low, P, reciprocals10_128[16]);
amount = recip_scale[16];
__shr_128 (P, Q_high, amount);
// get sticky bits
amount2 = 64 - amount;
remainder_h = 0;
remainder_h--;
remainder_h >>= amount2;
remainder_h = remainder_h & Q_high.w[0];
extra_digits -= 16;
if (remainder_h || (Q_low.w[1] > reciprocals10_128[16].w[1]
|| (Q_low.w[1] ==
reciprocals10_128[16].w[1]
&& Q_low.w[0] >=
reciprocals10_128[16].w[0]))) {
round_up = 1;
__set_status_flags (pfpsf,
UNDERFLOW_EXCEPTION |
INEXACT_EXCEPTION);
P.w[0] = (P.w[0] << 3) + (P.w[0] << 1);
P.w[0] |= 1;
extra_digits++;
}
}
} else {
res =
fast_get_BID64_check_OF (sign_x ^ sign_y, final_exponent,
1000000000000000ull, rnd_mode,
pfpsf);
BID_RETURN (res);
}
}
if (extra_digits > 0) {
// will divide by 10^(digits_p - 16)
// add a constant to P, depending on rounding mode
// 0.5*10^(digits_p - 16) for round-to-nearest
__add_128_64 (P, P, round_const_table[rmode][extra_digits]);
// get P*(2^M[extra_digits])/10^extra_digits
__mul_128x128_full (Q_high, Q_low, P,
reciprocals10_128[extra_digits]);
// now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
amount = recip_scale[extra_digits];
__shr_128 (C128, Q_high, amount);
C64 = __low_64 (C128);
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
if (rmode == 0) //ROUNDING_TO_NEAREST
#endif
if ((C64 & 1) && !round_up) {
// check whether fractional part of initial_P/10^extra_digits
// is exactly .5
// this is the same as fractional part of
// (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
// get remainder
remainder_h = Q_high.w[0] << (64 - amount);
// test whether fractional part is 0
if (!remainder_h
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0]))) {
C64--;
}
}
#endif
#ifdef SET_STATUS_FLAGS
status = INEXACT_EXCEPTION | uf_status;
// get remainder
remainder_h = Q_high.w[0] << (64 - amount);
switch (rmode) {
case ROUNDING_TO_NEAREST:
case ROUNDING_TIES_AWAY:
// test whether fractional part is 0
if (remainder_h == 0x8000000000000000ull
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0])))
status = EXACT_STATUS;
break;
case ROUNDING_DOWN:
case ROUNDING_TO_ZERO:
if (!remainder_h
&& (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
&& Q_low.w[0] <
reciprocals10_128[extra_digits].w[0])))
status = EXACT_STATUS;
break;
default:
// round up
__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
reciprocals10_128[extra_digits].w[0]);
__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
reciprocals10_128[extra_digits].w[1], CY);
if ((remainder_h >> (64 - amount)) + carry >=
(((UINT64) 1) << amount))
status = EXACT_STATUS;
}
__set_status_flags (pfpsf, status);
#endif
// convert to BID and return
res =
fast_get_BID64_check_OF (sign_x ^ sign_y, final_exponent, C64,
rmode, pfpsf);
BID_RETURN (res);
}
// go to convert_format and exit
C64 = __low_64 (P);
res =
get_BID64 (sign_x ^ sign_y,
exponent_x + exponent_y - DECIMAL_EXPONENT_BIAS, C64,
rmode, pfpsf);
BID_RETURN (res);
}
}
|